Type Theory, Fall 2009

Herman Geuvers
 Radboud University Nijmegen, NL

Lecture: Formalising Mathematics in Type Theory

Types versus Sets

- Everything has a type

$$
M: A
$$

- Types are a bit like sets, but: ..
- types give "syntactic information"

$$
3+(7 * 8)^{5}: \text { nat }
$$

- sets give "semantic information"

$$
3 \in\left\{n \in \mathbb{N} \mid \forall x, y, z>0\left(x^{n}+y^{n} \neq z^{n}\right)\right\}
$$

Per Martin-Löf:
A type comes with
construction principles: how to build objects of that type? and elimination principles: what can you do with an object of that type?

This fits well with the Brouwerian view of mathematics:
"there exists an x " means
"we have a method of constructing x "

In short: a type is characterised by the construction principles for its objects.

- A natural number is either 0 or the successor S applied to a natural number.
So the natural numbers are the objects of the shape $S(\ldots S(0) \ldots)$.
- A binary tree is either a leaf or the join of two binary trees.
- A proof of $n \leq m$ is either le_{n}, and then $m=n$, or le_{S} applied to a proof of $n \leq p$, and then $m=S(p)$.

Note:

Checking whether an object belongs to an alleged type is decidable!

But if type checking should be decidable, there is not much information one can encode in a type (?)

$$
X:=\left\{n \in \mathbb{N} \mid \forall x, y, z>0\left(x^{n}+y^{n} \neq z^{n}\right)\right\}
$$

is X a type?
The proper question is: what are the objects of X ? (How does one construct them?)

One constructs an object of the type X by giving an $N \in \mathbb{N}$ and a proof of the fact that $\forall x, y, z>0\left(x^{N}+y^{N} \neq z^{N}\right)$.

The type X consists of pairs $\langle N, p\rangle$, with

- $N \in \mathbb{N}$
- p a proof of $\forall x, y, z>0\left(x^{N}+y^{N} \neq z^{N}\right)$
$\langle N, p\rangle: X$ is decidable (if proof-checking is decidable).

More technically.
(Especially related to the type theory of Coq, but more widely applicable.)

- A data type (or set) is a term A : Set, or A : Type.
- A formula is a term φ : Prop
- An object is a term $t: A$ for some A : Set
- A proof is a term $p: \varphi$ for some φ : Prop.
- Set and Prop are both "universes" or "sorts".

Slogan: (Curry-Howard isomorphism)
Propositions as Types
Proofs as Terms

Judgement

$$
\Gamma \vdash M: U
$$

- Γ is a context
- M is a term
- U is a type

Two readings

- M is an object (expression) of data type U (if U : Set or U : Type)
- M is a proof (deduction) of proposition U (if U : Prop)

Γ contains

- variable declarations $x: T$
$-x: A$ with $A:$ Set/Type $\rightsquigarrow ' d e c l a r i n g ~ x$ in A^{\prime}
$-x: \varphi$ with $\varphi:$ Prop \rightsquigarrow 'assuming φ^{\prime} (axiom)
- definitions $x:=M: T$
$-x:=t: A$ with $A:$ Set/Type \rightsquigarrow 'defining x as the expression t '
$-x:=p: \varphi$ with $\varphi:$ Prop \rightsquigarrow 'defining x as the proof p of φ^{\prime} (\simeq declaring x as a "reference" to the lemma φ)
- Interactive theorem proving $=$ interactive term construction Proving $\varphi=$ (interactively) constructing a proof term $p: \varphi$
- Proof checking = Type checking

Type checking is decidable and hence proof checking is.

Decidability problems:
$\Gamma \vdash M: A$? Type Checking Problem
TCP
$\Gamma \vdash M:$? Type Synthesis Problem TSP
$\Gamma \vdash$?: A Type Inhabitation Problem TIP

TCP and TSP are decidable
TIP is undecidable

De Bruijn criterion for theorem provers / proof checkers
How to check the checker?

Interactive Theorem Prover:
USER $\left.\rightarrow \begin{array}{|c|c|}\begin{array}{c}\text { Proof Engine, } \\ \text { big, with lots } \\ \text { of automation, } \\ \text { generating } \\ \text { (potential?) proofs }\end{array} & \stackrel{y}{\text { Proof Checker, }} \\ \text { proof term } \\ \text { small program, } \\ \text { user verifiable }\end{array}\right]$

A TP satisfies the De Bruijn criterion if a small, 'easily' verifiable, independent proof checker can be written.

How proof terms occur (in Coq)

Lemma trivial : forall $\mathrm{x}: \mathrm{A}, \mathrm{P} \mathrm{x}->\mathrm{P} \mathrm{x}$.
intros x H.
exact H.
Qed.

- Using the tactic script a term of type
forall x:A, P x \rightarrow P x has been created.
- Using Qed, trivial is defined as this term and added to the global context.
- $(\beta):(\lambda x: A . M) N \rightarrow_{\beta} M[N / x]$
- (ι : primitive recursion reduction rules (inductive types)
- (δ) : definition unfolding: if $x:=t: A \in \Gamma$, then

$$
M(x) \rightarrow_{\delta}^{\Gamma} M(t)
$$

- Transitive, reflexive, symmetric closure: $=_{\beta \iota \delta}$

NB: Types that are equal modulo $=_{\beta \iota \delta}$ have the same inhabitants (definitional equality):

$$
\text { (conversion) } \frac{\Gamma \vdash M: A \quad \Gamma \vdash B: s}{\Gamma \vdash M: B} A={ }_{\beta \iota \delta} B
$$

The Poincaré principle
Says that if $x: A(n) \rightarrow B$ and $y: A(f m)$, then $x y: B$ iff $f m=n$ by a computation.

But: type checking should be decidable, so $f m=n$ should be decidable.

So: the definable functions in our type theory must be restricted: all computations should terminate.

Example of the recursion scheme (1 abbreviates (S 0) etc.)
Fixpoint nfib (n:nat) :nat :=
match n with
| $0=>0$
| S m => match m with
| $0 \quad \Rightarrow 1$
| S p \Rightarrow nfib $\mathrm{p}+\mathrm{nfib} \mathrm{m}$
end
end.
NB: Recursive calls should be 'smaller' (according to some rather general syntactic measure)

- Coq includes a (small, functional) programming language in which executable functions can be written.

Dependently typed data types: vectors of length n over A

Inductive vect (A:Set) : nat -> Set :=
| nnil : vect A 0
| ccons : forall (n:nat)(a:A), vect A n-> vect A (S n).
Now define, for example,

- head : forall (A:Set)(n:nat), vect $A(S n) \rightarrow A$
- tail : forall (A:Set)(n:nat), vect $A(S n) \rightarrow$ vect $A n$

Let the type checker do the work for you!
Implicit Syntax
If the type checker can infer some arguments, we can leave them out:

Write $f_{-} a b$ in stead of $f S T a b$ if
$f: \Pi S, T:$ Set. $S \rightarrow T \rightarrow T$

Also: define $F:=f_{-}$and write $F a b$.

Use Σ-types for mathematical structures
theory of groups: Given A : Type, a group over A is a tuple consisting of

$$
\begin{array}{rll}
\circ & : A \rightarrow A \rightarrow A \\
e & : & A \\
\text { inv } & : A \rightarrow A
\end{array}
$$

such that the following types are inhabited.

$$
\begin{aligned}
\forall x, y, z: A .(x \circ y) \circ z & =x \circ(y \circ z), \\
\forall x: A . e \circ x & =x, \\
\forall x: A .(\operatorname{inv} x) \circ x & =e .
\end{aligned}
$$

Type of group-structures over $A, \operatorname{Group}-\operatorname{Str}(A)$, is

$$
(A \rightarrow A \rightarrow A) \times(A \times(A \rightarrow A))
$$

The type of groups over $A, \operatorname{Group}(A)$, is
$\operatorname{Group}(A):=\Sigma \circ: A \rightarrow A \rightarrow A . \Sigma e: A . \Sigma \mathrm{inv}: A \rightarrow A$.

$$
\begin{aligned}
& (\forall x, y, z: A .(x \circ y) \circ z=x \circ(y \circ z)) \wedge \\
& (\forall x: A . e \circ x=x) \wedge \\
& (\forall x: A .(\operatorname{inv} x) \circ x=e) .
\end{aligned}
$$

If $t: \operatorname{Group}(A)$, we can extract the elements of the group structure by projections: $\pi_{1} t: A \rightarrow A \rightarrow A, \pi_{1}\left(\pi_{2} t\right): A$
If $f: A \rightarrow A \rightarrow A, a: A$ and $h: A \rightarrow A$ with p_{1}, p_{2} and p_{3} proof-terms of the associated group-axioms, then

$$
\left\langle f,\left\langle a,\left\langle h,\left\langle p_{1},\left\langle p_{2}, p_{3}\right\rangle\right\rangle\right\rangle\right\rangle\right\rangle: \operatorname{Group}(A)
$$

We would like to use names for the projections: Coq has labelled record types (type dependent)

- Record My_type : Set :=
\{ l_1 : type_1 ;
l_2 : type_2 ;
l_3 : type_3 \}.
If X : My_type, then ($1_{_} 1 \mathrm{X}$) : type_1.
- Basically, My_type consists of labelled tuples:
[l_1:= value_1, l_2:=value_2, l_3:=value_3]
- Also with dependent types: l_1 may occur in type_2. If X : My_type, then

$$
\left(l_{-} 2 \mathrm{X}\right): \text { type_2 [(1_1 X)/l_1] }
$$

- Record Group : Type := \{ cr : Set; op : cr -> cr -> cr;
unit : cr;
inv : cr -> cr;
assoc : forall x y z : cr, op (op $x y$) $z=o p x(o p y z)$ \}.

If X : Group, then (op X) : (cr X) -> (cr X) -> (cr X).

The record types can be defined in Coq using inductive types.
Note: Group is in Type and not in Set

Let the checker infer even more for you!

Coercions

- The user can tell the type checker to use specific terms as coercions.

Coercion k : A >-> B declares the term k : A -> B as a coercion.

- If f a can not be typed, the type checker will try to type check (k f) a and f (k a).
- If we declare a variable $\mathrm{x}: \mathrm{A}$ and A is not a type, the type checker will check if ($k A$) is a type.

Coercions can be composed.

```
Record Monoid : Type :=
    { m_cr :> Semi_grp;
        m_proof : (Commutative m_cr (sg_op m_cr))
            /\ (IsUnit m_cr (sg_unit m_cr) (sg_op m_cr)) }.
```

- A monoid is now a tuple $\left\langle\left\langle\left\langle S,=_{S}, r\right\rangle, a, f, p\right\rangle, q\right\rangle$

If M : Monoid, the carrier of M is $\left(\mathrm{cr}\left(\mathrm{sg}_{-} \mathrm{cr}\left(\mathrm{m}_{-} \mathrm{cr} \mathrm{M}\right)\right)\right.$)
Nasty !!
\Rightarrow We want to use the structure M as synonym for the carrier set (cr (sg_cr (m_cr M))).
\Rightarrow The maps cr, sg_cr, m_cr should be left implicit.

- The notation m_cr :> Semi_grp declares the coercion m_cr : Monoid >-> Semi_grp.

We have the following coercions.
OrdField >-> Field >-> Ring >-> Group

Group >-> Monoid >-> Semi_grp >-> Setoid

- All properties of groups are inherited by rings, fields, etc.
- Also notation can be inherited: $\mathrm{x}[+] \mathrm{y}$ denotes the addition of x and y for $\mathrm{x}, \mathrm{y}: \mathrm{G}$ from any semi-group (or monoid, group, ring,...) G.
- The coercions must form a tree, so there is no real multiple inheritance:
E.g. it is not possible to define rings in such a way that it inherits both from its additive group and its multiplicative monoid.
- Set theory (and logic): a function $f: A \rightarrow B$ is a relation $R \subset A \times B$ such that $\forall x: A . \exists!y: B . R x y$. "functions as graphs"
- In Type theory, we have functions-as-graphs ($R: A \rightarrow B \rightarrow$ Prop), but also functions-as-algorithms: $f: A \rightarrow B$.

Functions as algorithms also compute: β and ι rules:

$$
\begin{array}{rll}
(\lambda x: A \cdot M) N & \longrightarrow_{\beta} & M[N / x] \\
\operatorname{Rec} b f 0 & \longrightarrow_{\iota} & b, \\
\operatorname{Rec} b f(S x) & \longrightarrow_{\iota} & f x(\operatorname{Rec} b f x) .
\end{array}
$$

Terms of type $A \rightarrow B$ denote algorithms, whose operational semantics is given by the reduction rules.
(Type theory as a small programming language)

Intensionality versus Extensionality
The equality in the side condition in the (conversion) rule can be intensional or extensional.

Extensional equality requires the following rules:

$$
\begin{aligned}
\text { (ext) } & \frac{\Gamma \vdash M, N: A \rightarrow B \quad \Gamma \vdash p: \Pi x: A .(M x=N x)}{\Gamma \vdash M=N: A \rightarrow B} \\
\text { (conv) } & \frac{\Gamma \vdash P: A \quad \Gamma \vdash A=B: s}{\Gamma \vdash P: B}
\end{aligned}
$$

- Intensional equality of functions = equality of algorithms (the way the function is presented to us (syntax))
- Extensional equality of functions = equality of graphs (the (set-theoretic) meaning of the function (semantics))

Adding the rule (ext) renders TCP undecidable
Suppose $H:(A \rightarrow B) \rightarrow$ Prop and $x:(H f)$; then

$$
x:(H g) \text { iff there is a } p: \Pi x: A . f x=g x
$$

So, to solve this TCP, we need to solve a TIP.

The interactive theorem prover Nuprl is based on extensional type theory.
"An equality involving a computation does not require a proof"

In type theory: if $t=q$ by evaluation (computing an algorithm), then this is a trivial equality, proved by reflexivity.
This is made precise by the conversion rule:

$$
\frac{\Gamma \vdash M: A}{\Gamma \vdash M: B} A={ }_{\beta \iota \delta} B
$$

Can we actually use the programming power of Type Theory when formalizing mathematics?

Yes. For automation: replacing a proof obligation by a computation

- Suppose we have a class of problems with a syntactic encoding as a data type, say via the type Problem.
Example: equalities between expressions over a group

```
Inductive E : Set :=
    evar : nat -> E
    | eone : E
    | eop : E -> E -> E
    | einv : E -> E
```

- Suppose we have a decoding function $\llbracket-\rrbracket$: Problem \rightarrow Prop
- Suppose we have a decision function Dec: Problem $\rightarrow\{0,1\}$
- Suppose we can prove Ok: $\forall p: \operatorname{Problem}((\operatorname{Dec}(p)=1) \rightarrow \llbracket p \rrbracket)$

To verify P (from the class of problems):

- Find a p : Problem such that $\llbracket p \rrbracket=P$.
- Then $\operatorname{Dec}(p)$ yields either 1 or 0
- If $\operatorname{Dec}(p)=1$, then we have a proof of P (using Ok)
- If $\operatorname{Dec}(p)=0$, we obtain no information about P (it 'fails')

Note: if Dec is complete:

$$
\forall p: \operatorname{Problem}((\operatorname{Dec}(p)=1) \leftrightarrow \llbracket p \rrbracket)
$$

then $\operatorname{Dec}(p)=0$ yields a proof of $\neg P$.

How to represent the notion of set?
Note: A set is not just a type, because
$M: A$ is decidable whereas $t \in X$ is undecidable

A setoid is a pair $[A,=]$ with

- A : Set,
- $=: A \rightarrow(A \rightarrow$ Prop $)$ an equivalence relation over A

Function space setoid (the setoid of setoid functions)
$\left[A \xrightarrow{s} B,={ }_{A \xrightarrow{s} B}\right]$ is defined by

$$
A \xrightarrow{s} B:=\Sigma f: A \rightarrow B .\left(\Pi x, y: A \cdot\left(x={ }_{A} y\right) \rightarrow\left((f x)={ }_{B}(f y)\right)\right),
$$

$$
f={ }_{A \xrightarrow{s}{ }_{B}} g:=\Pi x, y: A \cdot\left(x={ }_{A} y\right) \rightarrow\left(\pi_{1} f x\right)={ }_{B}\left(\pi_{1} g y\right) .
$$

Two mathematical constructions: quotient and subset for setoids
Q is an equivalence relation over the setoid $\left[A,={ }_{A}\right]$ if

- $Q: A \rightarrow(A \rightarrow \operatorname{Prop})$ is an equivalence relation,
- $={ }_{A} \subset Q$, i.e. $\forall x, y: A \cdot\left(x={ }_{A} y\right) \rightarrow(Q x y)$.

The quotient setoid $\left[A,={ }_{A}\right] / Q$ is defined as

$$
[A, Q]
$$

Easy exercise:
If the setoid function $f:\left[A,={ }_{A}\right] \rightarrow\left[B,={ }_{B}\right]$ respects Q
(i.e. $\left.\forall x, y: A .(Q x y) \rightarrow\left((f x)={ }_{B}(f y)\right)\right)$
it induces a setoid function from $\left[A,={ }_{A}\right] / Q$ to $\left[B,={ }_{B}\right]$.

Given $\left[A,==_{A}\right]$ and predicate P on A define the sub-setoid

$$
\left[A,={ }_{A}\right] \mid P:=\left[\Sigma x: A \cdot(P x),={ }_{A} \mid P\right]
$$

$={ }_{A} \mid P$ is $={ }_{A}$ restricted to $P:$ for $q, r: \Sigma x: A .(P x)$,

$$
q\left(={ }_{A} \mid P\right) r:=\left(\pi_{1} q\right)={ }_{A}\left(\pi_{1} r\right)
$$

Proof-irrelevance is "embedded" in the subsetoid construction:

Setoid functions are proof-irrelevant.

What should be the type of the reciprocal?

- Let recip : $A \rightarrow A$ with $\forall x: A . x \neq 0 \rightarrow \operatorname{mult} x(\operatorname{recip} x)=1$
- Either leave recip 0 unspecified (Mizar) or make an arbitrary choice for it (HOL). But it should be undefined
- Type theoretic solution

$$
\text { recip : }(\Sigma x: A \cdot x \neq 0) \rightarrow A
$$

- Then recip is only defined on elements that are non-zero: recip takes as input a pair $\langle a, p\rangle$ with $p: a \neq 0$ and returns $\operatorname{recip}\langle a, p\rangle: A$.
- How to understand the dependency of this object (of type A) on the proof p ?
- Take a setoid $\left[A,={ }_{A}\right]$ as the carrier of a field
- The operations on the field are taken to be setoid functions
- The field-properties are now denoted using the setoid equality.

For the reciprocal:

$$
\text { recip : }\left[A,={ }_{A}\right] \mid\left(\lambda x: A \cdot x \neq{ }_{A} 0\right) \rightarrow\left[A,=_{A}\right],
$$

a setoid function from the subsetoid of non-zeros to $\left[A,={ }_{A}\right]$
Note recip still takes a pair of an object and a proof $\langle a, p\rangle$ and returns recip $\langle a, p\rangle: A$.
But recip is now a setoid function which implies
If $p: a \neq{ }_{A} 0, q: a \neq{ }_{A} 0$, then $\operatorname{recip}\langle a, p\rangle={ }_{A} \operatorname{recip}\langle a, q\rangle$

- The 'subtype' $\{t: A \mid(P t)\}$ is defined as the type of pairs $\langle t, p\rangle$ where $t: A$ and $p:(P t)$.
- Equality on this subtype is "just" equality on A.
- A partial function is a function on a subtype
E.g. $(-)^{-1}:\{x: \mathbb{R} \mid x \neq 0\} \rightarrow \mathbb{R}$.

If $x: \mathbb{R}$ and $p: x \neq 0$, then $\frac{1}{\langle x, p\rangle}: \mathbb{R}$.

- We only consider partial functions that are proof-irrelevant, i.e. if $p: t \neq 0$ and $q: t \neq 0$, then $\frac{1}{\langle t, p\rangle}=\frac{1}{\langle t, q\rangle}$.

