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Themes

• (Certified) Programming. . . is algorithmic problem-solving. . . is

(interactive; human-guided, machine-supported) proof search;

• Kernel language design

• Inductive families of types

• Enabling idea: generalised “elimination with a motive”

• What about “real programs”: infinite or interactive computation?
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An informal Curry-Howard for programming languages

No matter how weak the type system, we can intuitively interpret it like this:

the type of your program is a theorem asserting

how it will behave

and

typechecking the program proves the theorem

[So typechecking is automated theorem proving, and programmers can

shed the burden of justifying (‘proving’) the behaviour of their programs.]

Type soundness theorems strengthen this intuition

well-typed programs don’t go wrong
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Logical substructure

The underlying (meta-)logic of these theorems and proofs had better be

• sound — so you don’t talk nonsense

• expressive — so you can say what you mean

• adequate — so what you say is what you really mean

For (statement and proof of) type soundness theorems, this is OK.

For the types of programs themselves, (relative) inexpressivity and

non-termination make each of these more problematic.
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Going further

Why can’t we say

well-typed programs go as specified?

Why can’t we expect more

• a more expressive type system, giving better specifications

• a total logic, so that we lose the uncertainty of ‘. . . run forever without

blocking. . . ’

• while retaining programming as we know it?

Holy Grail: correctness by design
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A Kernel language design: EPIGRAM(1)

• Inductive families of types

• Function definition: type signatures and implicit syntax

• Generalised elimination: “by” rule <=

• Allowable recursive calls

• Pattern guards/matching intermediate computations: only

implemented in Agda2!

• Semantics given by elaboration into (raw) type theory
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Inductive families of types

• Index information enforces stronger (A)DT invariants;

• Type-safe meta-programming for free;

• Control structures (can be) reified as data;

• Standard ADT programming techniques not available?
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Examples: indexing with real data

Peano-Dedekind naturals

data
Nat : ⋆

where
0 : Nat

n : Nat
Sn : Nat

Also: . . . booleans, polymorphic lists. . .

Polymorphic recursion [Bird & Paterson, Altenkirch & Reus]

data n : Nat
Lamn : ⋆

where v : Var n
var v : Lamn

e : Lam (Sn)
lam e : Lamn

f , e : Lamn
appfe : Lamn

Inference-rule notation suppresses:

• notational noise: quantification, qualification, arrows

• implicit syntax (Pollack): arguments which can be inferred by usage
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GADT-like examples

Bounded numbers

data n : Nat
Finn : ⋆

where
0n : Fin S n

i : Finn
Sn i : Fin (Sn)

Vectors (lists with length)

data A : ⋆ n : Nat
VecAn : ⋆

where
[]
A

: VecA 0
v : A vs : VecAn
v ::nvs : VecA (Sn)

(NB. lengths are correlated with corresponding constructors)

Hence also m × n Matrices

We get bounds-safe lookup and matrix transpose etc. without tears
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Classical Abstract Datatypes

Balanced trees as an intermediate data structure for sorting:

data c : Col h : Nat
RBT c h : ⋆

where
Bleaf : RBTB0

a : A ; l : RBT lc h ; r : RBT rc h
Bnode a l r : RBTB (S h)

a : A ; l , r : RBTB h
Rnode a l r : RBTR h

Note: the invariant here is tightly specified; no wiggle room!

Slogan:

smart constructors are just constructors

Also: AVL trees [A-V,L 1962], etc. . . .

JHM: FUN@RUN 2007-11-27 Slide 9



Indexing with respect to a defined function

a more informative type of binary numbers, indexed with respect to their

decoding cf. singleton types [Harper, Xi, Sheard]

data n : Nat
Binn : ⋆

where
B0 : Bin0

b : Binn
BS0 b : Bin(2n)

B1 : Bin1
b : Binn

BS1 b : Bin(2n + 1)

can easily be generalised to consider

• positional notation NumDn with respect to an arbitrary set of digits

D; then can correctly specify arithmetic

⊗ :: NumDn ⇒ NumDn ⇒ NumD(m × n)

• explicit size bounds on the digits, and on the words over them
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Bounded integers; branching on overflow

Obvious function |−| : Finn →Nat

Gives rise to a family over b,n : Nat expressing “small integer” property

data
b,n : Nat

Bounded b n : ⋆

where i : Fin b
Small i : Bounded b |i |

b, k : Nat
Large b k : Bounded b (k + b)

Obvious function bounded b n : Bounded b n

Now, case analysis on values of bounded b n gives an informative view

[Wadler 1987; McBride-McKinna 2004] of numbers. Slogan:

smarter types deserve smarter eliminators
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A type-safe evaluator: universes

A universe is given by a type TyExp of (type-)names, and a decoding

function (a recursive family) Val : TyExp→ ⋆, e.g.

TyExp = nat| · · · with Val nat = Nat etc.

Well-typed evaluator example. . . with a twist

• use of type names means we separate out host language types from

object language (but can take T = ⋆ for GADT-style)

• value constructor val : ValT →ExpT

• the type of the evaluator is the statement of type preservation:

eval : ExpT →ValT

cf. intensional polymorphism [Morrison et al., Harper et al., Weirich et al.]
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Type-safe meta-programming

Can straighforwardly extend the simple evaluator example to include

• stack type (name)s StkTyExp: just lists of TyExp

• well-typed stacks StkS indexed wrt S : StkTyExp

• family of code fragments c : Code S S ′ indexed wrt

S ,S ′ : StkTyExp

• compiler generates code to push a value:

compile : ExpT T →Code S (T ::S )

• interpreter for code:
c : Code S S ′ ; s : StkS

exec c s : StkS ′

Stack-safety for free by decorating the program you (McCarthy) first

thought of.
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Control is data

• Continuation-passing style emphasises this point;

• Can redo Hutton-Wright “Calculating an exceptional Interpreter” (what

about termination?);

• Classical ADT operations: “break invariant; update ; repair”

programming pattern needs some help: zippers (RBTs again)

• McCarthy’s idea of recursion-induction rehabilitated: computation

traces are first-class data (there’s much more to say about this topic)
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Elimination with a motive and its generalisation

• Programming with (sub-) families can be (used to be) painful;

• Raw induction/elimination rules are too clumsy;

• Need for equational constraints (Clark completion);

• Type shape of elimination is what matters. . .

• “Non-standard” recursion or case analysis is OK. . . provided it is

supported by evidence

• Can this be done in COQ?

JHM: FUN@RUN 2007-11-27 Slide 15



Prospectus

Now what?

EPIGRAM(2): a new type theory and implementation

What about computational effects?

What about applications?
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What about infinite or interactive computation?

• Hancock/Setzer/Hyvernat: use Petersson/Synek trees

• Uustalu/Capretta/Altenkirch/McBride/. . . : finally sort out

coinduction/corecursion properly, with nice syntax?

• Transaction models: memory, TCP/IP, http, ITasks?
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Vragen?


