Epigram by example

dr. James McKinna, HG 02.540
james@cs.ru.nl
Grondslagen, November 29, 2007

Ism: Conor McBride, Edwin Brady
Dank aan: 'proefkonijn’ Dan Synek

Themes

- (Certified) Programming. . . is algorithmic problem-solving. . . is (interactive; human-guided, machine-supported) proof search;
- Kernel language design
- Inductive families of types
- Enabling idea: generalised "elimination with a motive"
- What about "real programs": infinite or interactive computation?

An informal Curry-Howard for programming languages

No matter how weak the type system, we can intuitively interpret it like this:
the type of your program is a theorem asserting
how it will behave
and

typechecking the program proves the theorem

[So typechecking is automated theorem proving, and programmers can shed the burden of justifying ('proving') the behaviour of their programs.]

Type soundness theorems strengthen this intuition
well-typed programs don't go wrong

Logical substructure

The underlying (meta-)logic of these theorems and proofs had better be

- sound - so you don't talk nonsense
- expressive - so you can say what you mean
- adequate - so what you say is what you really mean

For (statement and proof of) type soundness theorems, this is OK.
For the types of programs themselves, (relative) inexpressivity and non-termination make each of these more problematic.

Going further

Why can't we say
well-typed programs go as specified?
Why can't we expect more

- a more expressive type system, giving better specifications
- a total logic, so that we lose the uncertainty of '. . . run forever without blocking...'
- while retaining programming as we know it?

Holy Grail: correctness by design

A Kernel language design: Epigram(1)

- Inductive families of types
- Function definition: type signatures and implicit syntax
- Generalised elimination: "by" rule <=
- Allowable recursive calls
- Pattern guards/matching intermediate computations: only implemented in Agda2!
- Semantics given by elaboration into (raw) type theory

Inductive families of types

- Index information enforces stronger (A)DT invariants;
- Type-safe meta-programming for free;
- Control structures (can be) reified as data;
- Standard ADT programming techniques not available?

Examples: indexing with real data

Peano-Dedekind naturals

data $\overline{\text { Nat : }} \quad \underline{\text { where }} \overline{0: \text { Nat }} \frac{n: \text { Nat }}{\mathrm{Sn}: \text { Nat }}$
Also: . . . booleans, polymorphic lists. . .
Polymorphic recursion [Bird \& Paterson, Altenkirch \& Reus]
data $\frac{n: \text { Nat }}{\operatorname{Lam} n: \star}$ where $\frac{v: \operatorname{Var} n}{\operatorname{var} v: \operatorname{Lam} n} \frac{e: \operatorname{Lam}(\mathrm{S} n)}{\operatorname{lam} e: \operatorname{Lam} n} \frac{f, e: \operatorname{Lam} n}{\operatorname{app} f e: \operatorname{Lam} n}$
Inference-rule notation suppresses:

- notational noise: quantification, qualification, arrows
- implicit syntax (Pollack): arguments which can be inferred by usage

GADT-like examples

Bounded numbers
data $\frac{n: \text { Nat }}{\text { Fin } n: \star} \quad$ where $\quad \overline{i: \operatorname{Fin} n}$
Vectors (lists with length)
data $\frac{A: \star n: \text { Nat }}{\operatorname{Vec} A n: \star}$ where $\overline{[]_{A}: \operatorname{Vec} A 0} \frac{v: A \quad v s: \operatorname{Vec} A n}{v:{ }_{n} v s: \operatorname{Vec} A(\operatorname{Sn})}$
(NB. lengths are correlated with corresponding constructors)
Hence also $m \times n$ Matrices
We get bounds-safe lookup and matrix transpose etc. without tears

Classical Abstract Datatypes

Balanced trees as an intermediate data structure for sorting:
$\begin{array}{lll}\frac{\text { data }}{} \frac{c: \mathrm{Col} h: \text { Nat }}{\mathrm{RBT} c h: \star} \quad \text { where } & \\ \frac{a: A ; l: \mathrm{RBT} l c h ; r: \mathrm{RBT} r c h}{\text { Bleaf } h \mathrm{RBTB0}} \\ & \frac{a: A ; l, r: \mathrm{RBTB} h}{\text { Rnode } a l r: \mathrm{RBTR} h}\end{array}$
Note: the invariant here is tightly specified; no wiggle room!
Slogan:

smart constructors are just constructors

Also: AVL trees [A-V,L 1962], etc. ...

Indexing with respect to a defined function

a more informative type of binary numbers, indexed with respect to their decoding cf. singleton types [Harper, Xi, Sheard]

$$
\begin{aligned}
\text { data } \frac{n: \text { Nat }}{\operatorname{Bin} n: \star} \text { where } & \overline{\mathrm{B}_{0}: \operatorname{Bin} 0}
\end{aligned} \begin{gathered}
\frac{b: \operatorname{Bin} n}{\mathrm{~B}_{\mathrm{S} 0} b: \operatorname{Bin}(2 n)} \\
\\
\overline{\mathrm{B}_{1}: \operatorname{Bin} 1}
\end{gathered} \frac{b: \operatorname{Bin} n}{\mathrm{~B}_{\mathrm{S} 1} b: \operatorname{Bin}(2 n+1)}
$$

can easily be generalised to consider

- positional notation Num $D n$ with respect to an arbitrary set of digits D; then can correctly specify arithmetic
$\otimes:: \operatorname{Num} D n \Rightarrow \operatorname{Num} D n \Rightarrow \operatorname{Num} D(m \times n)$
- explicit size bounds on the digits, and on the words over them

Bounded integers; branching on overflow

Obvious function $|-|:$ Fin $n \rightarrow$ Nat
Gives rise to a family over b, n : Nat expressing "small integer" property
data $\frac{b, n: \text { Nat }}{\text { Bounded } b n: \star}$
where $\quad \frac{i: \text { Fin } b}{\text { Small } i: \text { Bounded } b|i|} \quad \frac{b, k: \text { Nat }}{\text { Large } b k: \text { Bounded } b(k+b)}$
Obvious function bounded $b n$: Bounded $b n$
Now, case analysis on values of bounded $b n$ gives an informative view
[Wadler 1987; McBride-McKinna 2004] of numbers. Slogan:
smarter types deserve smarter eliminators

A type-safe evaluator: universes

A universe is given by a type TyExp of (type-)names, and a decoding function (a recursive family) Val : TyExp $\rightarrow \star$, e.g.

TyExp $=$ nat $\mid \cdots$ with Val nat $=$ Nat etc.
Well-typed evaluator example... with a twist

- use of type names means we separate out host language types from object language (but can take $T=\star$ for GADT-style)
- value constructor val : Val $T \rightarrow \operatorname{Exp} T$
- the type of the evaluator is the statement of type preservation:
eval : $\operatorname{Exp} T \rightarrow \operatorname{Val} T$
cf. intensional polymorphism [Morrison et al., Harper et al., Weirich et al.]

Type-safe meta-programming

Can straighforwardly extend the simple evaluator example to include

- stack type (name)s StkTyExp: just lists of TyExp
- well-typed stacks Stk S indexed wrt S : StkTyExp
- family of code fragments c : Code $S S^{\prime}$ indexed wrt $S, S^{\prime}:$ StkTyExp
- compiler generates code to push a value: compile : Exp $T T \rightarrow$ Code $S(T:: S)$
- interpreter for code: $\frac{c: \text { Code } S S^{\prime} ; s: \operatorname{Stk} S}{\operatorname{exec} c s: \operatorname{Stk} S^{\prime}}$

Stack-safety for free by decorating the program you (McCarthy) first thought of.

Control is data

- Continuation-passing style emphasises this point;
- Can redo Hutton-Wright "Calculating an exceptional Interpreter" (what about termination?);
- Classical ADT operations: "break invariant; update ; repair" programming pattern needs some help: zippers (RBTs again)
- McCarthy's idea of recursion-induction rehabilitated: computation traces are first-class data (there's much more to say about this topic)

Elimination with a motive and its generalisation

- Programming with (sub-) families can be (used to be) painful;
- Raw induction/elimination rules are too clumsy;
- Need for equational constraints (Clark completion);
- Type shape of elimination is what matters...
- "Non-standard" recursion or case analysis is OK. . . provided it is supported by evidence
- Can this be done in Coq?

Prospectus

Now what?
Epigram(2): a new type theory and implementation
What about computational effects?
What about applications?

What about infinite or interactive computation?

- Hancock/Setzer/Hyvernat: use Petersson/Synek trees
- Uustalu/Capretta/Altenkirch/McBride/.... finally sort out coinduction/corecursion properly, with nice syntax?
- Transaction models: memory, TCP/IP, http, ITasks?

Vragen?

