
LIP
Laboratoire de l’Informatique du Parallélisme
Ecole Normale Supérieure de Lyon
Institut IMAG
Unité de recherche associée au CNRS n°1398

Inductive De�nitionsin the System CoqRules and PropertiesChristine Paulin-Mohring December 1992Research Report No 92-49
Ecole Normale Supérieure de Lyon

46, Allée d’Italie, 69364 Lyon Cedex 07, France,
Téléphone : + 33 72 72 80 00; Télécopieur : + 33 72 72 80 80;

Adresses électroniques :
lip@frensl61.bitnet; lip@lip.ens−lyon.fr (uucp).

Inductive De�nitions in the System CoqRules and PropertiesChristine Paulin-MohringDecember 1992
AbstractIn the pure Calculus of Constructions, it is possible to represent data structuresand predicates using higher-order quanti�cation. However, this representation is notsatisfactory, from the point of view of both the e�ciency of the underlying programsand the power of the logical system. For these reasons, the calculus was extendedwith a primitive notion of inductive de�nitions [8]. This paper describes the rules forinductive de�nitions in the system Coq. They are general enough to be seen as oneformulation of adding inductive de�nitions to a typed lambda-calculus. We provestrong normalization for a subsystem of Coq corresponding to the pure Calculus ofConstructions plus Inductive De�nitions with only weak non-dependent eliminations.Keywords: Inductive De�nitions, Typed lambda-calculus, Calculus of Constructions.R�esum�eDans le Calcul des Constructions pures, il est possible de repr�esenter les struc-tures de donn�ees et les pr�edicats inductifs en utilisant une quanti�cation d'ordresup�erieur. Cependant cette repr�esentation n'est pas satisfaisante, ni du point de vuede l'e�cacit�e des programmes sous-jacents, ni du point de vue de la puissance dusyst�eme logique. Pour ces raisons, le calcul a �et�e �etendu par une notion primitive ded�e�nitions inductives [8]. Ce papier d�ecrit les r�egles pour les d�e�nitions inductivestelles qu'elles sont implant�ees dans le syst�eme Coq. Ces r�egles sont assez g�en�eralespour être consid�er�ees comme une formulation possible de l'ajout de d�e�nitions in-ductives �a un lambda-calcul typ�e. Nous prouvons la normalisation forte d'un soussyst�eme de Coq correspondant au calcul pur �etendu avec des types inductifs et uner�egle d'�elimination faible non-d�ependanteMots-cl�es: D�e�nitions inductives, lambda-calcul typ�e, Calcul des Constructions.

Inductive De�nitions in the system CoqRules and Properties �Christine Paulin-Mohring yEcole Normale Sup�erieure de LyonLIP-IMAG, URA CNRS 139846 All�ee d'Italie, 69364 Lyon cedex 07, Francee-mail : cpaulin@lip.ens-lyon.fr1 Introduction1.1 MotivationsSeveral proof environments suitable for mechanizing mathematics and program development [10,5] are based on the \Curry-Howard correspondence" between natural deduction proofs and typedfunctional programs. Such proof tools are used interactively and consequently aims at providingrules as natural as possible and avoid tedious encoding. Such a motivation was the starting pointfor an extension of the pure Calculus of Constructions with primitive inductive de�nitions.The (Pure) Calculus of Constructions extends the powerful polymorphic programming lan-guage F! with dependent types and allows reasoning about programs. Its main advantage is tobe a \closed system" where mathematical and computational notions can be internally repre-sented using higher-order quanti�cation. But this representation is not satisfactory from boththe computational and the logical points of view. This leads to a proposition for an extensionof the Calculus of Constructions with inductive de�nitions as �rst-class objects [8]. The rulesfor these de�nitions follow the point of view of Martin-L�of's type theory. From a speci�cationof the introduction rules for a new inductive de�nition, we generate a dependent eliminationwith new computational rules. This elimination for natural numbers corresponds both to theconstruction of functions following a primitive recursive scheme and to proofs by induction. Ourextension of the Calculus of Constructions with Inductive De�nitions, unlike Martin-L�of's typetheory, still preserve the property for the system to be closed.There exists an implementation of this extension, namely the system Coq [10] developedin the Formel project at Inria-Rocquencourt and ENS Lyon. The mechanism for inductivede�nitions has proved to be really useful for the development of examples but its meta-theory isnot yet established. The purpose of this paper is to give a precise description of the rules used inthe system and state what we know about its properties. In particular we shall prove the strongnormalization for a subsystem of Coq, corresponding to the pure Calculus of Constructions plusInductive De�nitions with only weak eliminations. For this, we use a similar result obtained byPh. Audebaud [1, 2] for an extension of the Calculus of Constructions with a �xpoint operator.The paper is organized as follow. The remaining part of this section describes the drawbacksof the impredicative coding of inductive de�nitions in the pure Calculus of Constructions and�This paper is an extended version of a paper to be published in the proceedings of the International Conferenceon Typed Lambda Calculus and ApplicationsyThis research was partly supported by ESPRIT Basic Research Action \Types for Proofs and Programs" andby Programme de Recherche Coordonn�ees \Programmation avanc�ee et Outils pour l'Intelligence Arti�cielle".1

gives an intuitive idea, using the example of natural numbers, of the rules for elimination weshall introduce. Part 2 introduces schematic rules for adding inductive de�nitions to a typedlambda-calculus. Part 3 gives the rules used in the system Coq and examples of inductivede�nitions. In part 4 the strong normalization of a subsystem coq of Coq is established. Inpart 5 we shall discuss our choices and make comparisons with other systems.1.2 Impredicative inductive de�nitionsIn [4, 21, 22] a systematic way to generate a representation of an inductive de�nition from adescription of the generative rules for it was described. But this representation is not reallyadequate. We list some problems :� We can represent a type of boolean with two elements true and false but the fact that trueand false are not equal is not provable in the system.� We can represent a type of natural numbers but the induction principle is not provable.� We can de�ne all primitive recursive functions on natural numbers. That is given twoterms x and g, we can �nd h such that (h 0) = x and (h n + 1) = (g n (h n)) holdsinternally for a closed natural number n (and consequently are provable). But if n is notclosed then the proposition (h n + 1) = (g n (h n)) (using Leibniz's equality) is provableusing an induction over n but is not an internal reduction rule. Moreover for n closed, thereduction of (h n+1) into (g n (h n)) can take a time proportional to n. This correspondsto the well-known problem of the predecessor function (the predecessor of n+1 is computedin n steps) and is a problem inherent to the representation of natural numbers with whatis known as Church's numerals.� Some structures represented with an impredicative coding (like the products of two types)can contain more elements (closed normal terms) than the one built from the constructorsof the type. It is explained for instance in [21].Some points concerning the representation of inductive de�nitions in an impredicative typetheory are reected in our rules for primitive inductive de�nitions. For instance an inductivede�nition makes sense in any context (and not just at toplevel); the names of the type andof its constructors are not relevant for the type conversion rules (so two types with the samespeci�cation will be equal). We use a uniform rule for the de�nitions of disjunction, conjunction,types and relations.1.3 The case of natural numbersThe problem with the inductive de�nitions in impredicative systems comes from the weaknessof the elimination scheme. The elimination scheme is intended to make use of the assumptionthat the inductive type is the smallest set generated by the introduction rules.The speci�cation of the natural numbers is a set nat with two constructors for zero and thesuccessor function : 0 of type nat and S of type nat!nat. Each \mathematical" natural numbern can be represented as a term (Sn 0). The elimination scheme internalizes the fact that thetype of natural numbers only contains elements representing (Sn 0) for some n.The �rst problem is to be able to represent enough functions on natural numbers. For this,we need a special kind of recursive de�nitions. Theoretically, the representation of functions Hon nat iteratively de�ned by equations H(0) = x, H(S n) = f(H(n)) combined with a notion ofproduct is enough to get many interesting functions (in F! for instance, all recursive functionsprovably total in higher-order arithmetic). 2

But this representation is not always e�cient. For instance, there is no representation in F!of the predecessor function which computes the predecessor of (S n) in a constant number ofreductions.The predecessor function can be e�ciently obtained in a ML-like language where the basicoperation for the elimination of a concrete type is the de�nition by pattern. In this framework,we can represent a function H which satis�es the equation H(0) = x, H(S n) = f(n). In ML,a general �xpoint is available to encode recursive calls.To keep the property of strong normalization, we do not allow a general �xpoint and restrictthe use of recursion. We want a direct representation of functionsH which satis�es the propertiesH(0) = x, H(S n) = f(n;H(n)). This can be done by the introduction of a recursor operatorR(C; x; f; n) such that if C is a type, x has type C, f has type nat! C ! C and n of typenat then R(C; x; f; n) has type C. Furthermore R(C; x; f; 0) behaves like x and R(C; x; f; (S n))behaves like (f n R(C; x; f; n)). If H(p) denotes R(C; x; f; n) the equality H(S n) = (f n H(n))will hold not only for closed terms n but also for a variable.For each inductive de�nition we shall introduce the analogous of the R operator for naturalnumbers. The term R(C; x; f; n) will be written as Elim(n; C)fxjfg in this paper, it correspondsto the notation (<C>Match n with x f) in Coq.Dependent elimination. A system like Coq is intended to program functions but also toreason about programs. It is natural to want an induction principle :8n : nat:8P:(P 0)!(8u : nat:(P u)!(P (S u)))!(P n)This proposition can be used to prove logical properties of programs. Now, in the paradigmof proofs as programs, we interpret (intuitionistic) proofs of a property P as correct programsw.r.t. the speci�cation represented by P . If n is a natural number, if x is a correct program forthe speci�cation (P 0) and f a correct program for the speci�cation 8u : nat:(P u)!(P (S u))then we can built using the induction principle a correct program w.r.t. (P n). It is easyto see that this program should behave like the program R(C; x; f; n) built from the recursorR. Obviously the recursor can be obtained from the induction principle just taking a constantpredicate (P n) � C. This suggests that we need only one operator, with the induction principleas type and which obeys the same reduction rules as the recursor operator. This is the principlebehind the rules in Martin-L�of's Intuitionistic Type Theory [18]. We shall also follow the sameideas for the system Coq.Strong eliminations When we have a concrete inductive structure like the natural numbers,we may want to de�ne a property (or a type) by induction over the structure of the naturalnumber. This possibility is called \strong elimination" because we are building a property (orequivalently a type) by computation over a program. For instance, we could de�ne a propertyP on natural numbers such that (P 0) is a true proposition (for instance (A : Set)A!A) and(P (S n)) is the absurdity proposition (A : Set)A. Then assuming 0 = (S n), because (P 0)is true, we have a proof of (P (S n)) which is the absurdity. We have consequentely internallyproved that :(0 = (S n)). This extension corresponds to a strong modi�cation of the underlyingtyped lambda-calculus.2 Rules for inductive de�nitionsIn this section we introduce schematic rules (parameterized by sorts) for inductive de�nitionsand illustrate them on the example of the inductive de�nition of lists of a given length.3

2.1 NotationsWe are interested in an extension of the pure Calculus of Constructions, but actually our propo-sition can be de�ned somehow independently of the underlying Generalized Type System (GTS).The systems we are studying in that paper extends a pure type system with new constructorsfor inductive de�nitions.2.1.1 Generalized type systemsWe use the now standard presentation of typed �-calculi as functional GTS [3, 12]. The set of(pseudo) terms contains the following constructions :t ::= s j x j (x : t)t j [x : t]t j (t t)with s ranging over the set S of sorts. For the pure Calculus of Constructions, we shall useS = fSet;TypeSg corresponding respectively to the star and the square in Barendregt's �-cube.The set of axioms is A = fSet : TypeSg. All rules for product are allowed : the set of rules isR = S � S.We write M [x N] to denote the substitution of the term N to free occurrences of thevariable x in M . The notation M !N is an abbreviation for (x : M)N whenever x does notoccur in N . The arrow symbol associates to the right and the application associates to the left.We say that a term is a type if it is correctly typed and that its type is a sort.2.1.2 Vectorial notationsWe introduce vectorial notations to write parametric rules.Construction. Let ~x and ~A be two possibly empty sequences of resp. variables and termswith the same length. Let M be a term, we de�ne the terms (~x : ~A)M , [~x : ~A]M and (M ~A)for an arbitrary M by induction over the structure of the sequences ~x and ~A.� If ~x and consequently ~A are empty then (~x : ~A)M = [~x : ~A]M = (M ~A) = M .� if ~x = x; ~x0 and ~A = A; ~A0 then (~x : ~A)M = (x : A)(~x0 : ~A0)M , [~x : ~A]M = [x : A][~x0 : ~A0]Mand (M ~A) = ((M A) ~A0).Decomposition. We use the same notations to describe the decomposition of a term. Let Pbe a term, we shall write P � [~x : ~A]M (resp. P � (~x : ~A)M , resp. P � (M ~A)) to de�ne ~x and~A as maximal sequences of terms such that the equality P = [~x : ~A]M (resp. P = (~x : ~A)M ,resp. P = (M ~A)) holds.For instance, a type in normal form can uniquely be written as (~x : ~A)s or (~x : ~A)(X ~a) withX a variable and s a sort.2.2 Preliminary De�nitions2.2.1 ArityDe�nition 1 (Arity) An arity of sort s is a term generated by the following syntax :Ar ::= s j (x :M)ArWe denote by arity(A; s) the property A is an arity of sort s.4

De�nition 2 (Strictly positive types) Let A be an arity and X be of type A, the terms Pwhich are strictly positive w.r.t. to X are generated by the syntax :Pos ::= X j (Pos m) j (x :M)Poswith the restriction that X does not occur in M and m. We write strict positive(P;X) theproperty P is strictly positive w.r.t. X.A strictly positive well-formed type can be written as as (~x : ~M)(X ~m) with the restriction thatX does not occur in any term of ~M or ~m.De�nition 3 (Forms of constructor) Let A be an arity and X be of type A, the terms Cwhich are a form of constructor w.r.t. X are generated by the syntax :Co ::= X j (Co m) j P!Co j (x : M)Cowith the restriction that strict positive(P;X) and X does not occur in M or m. We say that Cis a type of constructor of X if furthermore, C is a type.We write constructor(C;X) the property C is a form of constructor w.r.t. X.A well-formed form of constructor can be written as C � (~z : ~C)(X ~a). A strictly positive typeis a particular case of type of constructors, which we call a non-recursive type of constructor. Atype of constructor which is not a strictly positive type is called recursive.2.3 Inductive OperatorsWe introduce a new pseudo-term for inductive de�nitions t ::= Ind(x : t)f~tg with ~t a possiblyempty list of terms, written as t1j : : : jtn.In the expression Ind(x : t)f~tg, x is a bound variable. The typing rule for this operator is, withn an arbitrary number, possibly equal to 0 :arity(A; s) (8i = 1 : : :n)�; X : A ` Ci : s constructor(Ci; X)� ` Ind(X : A)fC1j : : : jCng : A (Inds)Example We take as an example of inductive de�nition, the type of lists with a given length.It is a type scheme which associate to each natural numbers n the type (listn n) of lists oflength n. The arity of this de�nition is nat ! Set. There is two constructors (one for niland the other one for cons). We want nil and cons to have type respectively (listn 0) and(n : nat)A!(listn n)!(listn (S n)). We can de�ne listn to be the term:listn � Ind(X : nat!Set)f(X 0)j(n : nat)A!(X n)!(X (S n))g : nat!Set2.4 ConstructorsNew pseudo-terms correspond to the constructors (which can also be seen as introduction rules)of the inductive de�nition : t := Constr(i; t). with i a positive integer.Let I be Ind(X : A)fC1j : : : jCng, the typing rule for this term is :� ` Ind(X : A)fC1j : : : jCng : A 1 � i � n� ` Constr(i; I) : Ci[X I] (Constr)5

Example. For our example of lists we can de�ne :nil � Constr(1; listn) : (listn 0)cons � Constr(2; listn) : (n : nat)A!(listn n)!(listn (S n))2.5 EliminationsThe rule for the elimination is a natural (although complicated) extension of the case of nat-ural numbers to a general inductive de�nition. We shall introduce two rules corresponding todependent and non dependent elimination.New pseudo-terms will correspond to the eliminations of the inductive de�nitions : t :=Elim(t; t)f~tg with ~t a possibly empty list of terms, written as t1j : : : jtn.We need to de�ne operations on forms of constructor that are used in the types of the argumentsof the elimination.2.5.1 Non dependent eliminationLet A be an arity of sort s (A � (~x : ~A)s), let X be a variable of type A, s0 be a sort, Q be avariable of type (~x : ~A)s0 and C be a type of constructor of X .De�nition 4 We de�ne a new term CfX;Qg by induction over the structure of the type ofconstructor C.(P!C)fX;Qg = P!P [X Q]!CfX;Qg if strict positive(P;X)((x :M)C)fX;Qg = (x :M)CfX;Qg if X does not occur in M(X ~a)fX;Qg = (Q ~a)Example. For our example, we have :(X 0)fX;Qg = (Q 0)(n : nat)A!(X n)!(X (S n))fX;Qg = (n : nat)A!(X n)!(Q n)!(Q (S n))The term CfX;Qg is not always well-formed. It depends on the product rules allowed in theGTS. But in the case where s = s0, CfX;Qg is a well-formed type. We can state more preciselythat it is well-formed if \enough" products are allowed for s0.Lemma 1 If �; X : A ` C : s with A � (~x : ~A)s and C is a type of constructor of X. Assumes0 is a sort which satis�es the following hypotheses :1. (~x : ~A)s0 is a well-formed type,2. for all sorts s00, (s00; s) 2 R implies (s00; s0) 2 R,3. if C is a recursive constructor then (s0; s0) 2 R,then the following judgment is derivable : �; X : A;Q : (~x : ~A)s0 ` CfX;Qg : s0.Let I and P be two terms of the appropriate type, we write CfI; Pg for the term CfX;Qg[X I; Q P].Rule Let I denotes Ind(X : A)fC1j : : : jCng with A � (~x : ~A)s. Let s0 be a sort. The typingrule for non-dependent elimination (s; s0) is :� ` c : (I ~a) � ` Q : (~x : ~A)s0 (8i = 1 : : :n)� ` fi : CifI; Qg� ` Elim(c; Q)ff1j : : : jfng : (Q ~a) (Nodeps;s0)6

Example. In our example, we get Elim(l; Q)fxjfg is well-typed of type (Q n) if c is of type(listn n), Q of type nat! s0, x of type (Q 0) and f of type (n : nat)A! (listn n)! (Q n)!(Q (S n)).2.5.2 Dependent eliminationLet A be an arity of sort s (A � (~x : ~A)s), let X be a variable of type A, let s0 be a sort, let Qbe a variable of type (~x : ~A)(X ~x)!s0, let C be a type of constructor of X , and c be a term oftype C.De�nition 5 We de�ne a new type CfX;Q; cg by induction over the type of constructor C.Let P be such that strict positive(P;X) (P � (~x : ~P)(X ~m)) and M be such that X does notoccur in M .(P!C)fX;Q; cg = (p : P)((~x : ~P)(Q ~m (p ~x)))!CfX;Q; (c p)g((x :M)C)fX;Q; cg = (x :M)CfX;Q; (c x)g(X ~a)fX;Q; cg = (Q ~a c)Example. For our example, with C2(X) � (n : nat)A!(X n)!(X (S n))(X 0)fX;Q; cg = (Q 0 c)C2(X)fX;Q; cg = (n : nat)(a : A)(p : (X n))(Q n p)!(Q (S n) (c n a p))Some restrictions are necessary to ensure that this term is well-formed. Even in the case s0 = s,we can have troubles forming a dependent arity.Lemma 2 Assume we have the same conditions as in lemma 1 the �rst one being replaced by(~x : ~A)(X ~x)!s0 is a well-formed type. The following judgment is derivable :�; X : A;Q : (~x : ~A)(X ~x)!s0; c : C ` CfX;Q; cg : s0We write CfI; P; tg for the term CfX;Q; cg[X I; Q P; c t].Rule Let I denotes Ind(X : A)fC1j : : : jCng with A � (~x : ~A)s. Let s0 be a sort. The typingrule for dependent elimination (s; s0) is :� ` c : (I ~a) � ` Q : (~x : ~A)(I ~x)!s0 (8i = 1 : : :n)� ` fi : CifI; Q;Constr(i; I)g� ` Elim(c; Q)ff1j : : : jfng : (Q ~a c) (Deps;s0)Example. In our example, we get Elim(l; Q)fxjfg is well-typed of type (Q n l) if c is of type(listn n), Q of type (n : nat)(listn n)!s0, x of type (Q 0 nil) and f of type (n : nat)(a : A)(m :(listn n))(Q n m)!(Q (S n) (cons n a m)).2.5.3 DiscussionObviously the non-dependent elimination can be coded using a dependent elimination over aconstant predicate. We prefer to distinguish the two operations, because in some systems, theterm (~x : ~A)(I ~x)! s is not well-formed, although (~x : ~A)s is (note that the rule Nodeps;scan be added in any GTS). We use the same syntax for both constructions. It is not prob-lematic because �rst, the two eliminations behaves the same w.r.t. the reduction rule, secondwe can solve the ambiguity using the type information. More precisely if type convertibility isdecidable in the system then, given an environment � and a term t, we can �nd if there exists atermM such that � ` t : M . In particular, if t is Elim(c; Q)f~fg then t is well-typed if and only if :7

� c is well typed of type M .� M is reducible to (I ~a) with I � Ind(X : A)fC1j : : : jCng and A � (~x : ~A)s.� ~f has length n (we write it as f1j : : : jfn).� Q is well-typed of type an arity A0.� Either A0 is convertible with (~x : ~A)s0, Nodeps;s0 is an allowed rule and for each i, fi iswell-typed in � and its type is convertible to CifI; Qg. In that case the type of t is (Q ~a).Or A0 is convertible with (~x : ~A)(I ~x)! s0 and Deps;s0 is an allowed rule and for each i,fi is well-typed in � and its type is convertible to CifI; Q;Constr(i; I)g. In that case thetype of t is (Q ~a c).2.6 Rules for conversionThe rules for conversion are extended w.r.t. the new operations for de�ning terms.A ' A0 (8i = 1 : : :n)Ci ' C 0iInd(X : A)fC1j : : : jCng ' Ind(X : A0)fC 01j : : : jC 0ngM 'M 0 i = i0Constr(i;M) ' Constr(i0;M 0) c ' c0 P ' P 0 (8i = 1 : : :n)fi ' f 0iElim(c; P)ff1j : : : jfng ' Elim(c0; P 0)ff 01j : : : jf 0ngA new reduction rule (called �-reduction) is added. We need some notations to state it. LetI denotes Ind(X : A)fC1j : : : jCng with A � (~x : ~A)s. Let F and f be two terms, let X be avariable of type A and C be a type of constructor of X .De�nition 6 We de�ne a new term C[X;F; f] by induction over C which is a type of construc-tor of X. Let P � (~x : ~P)(X ~m) be such that strict positive(P;X) and M such that X does notoccur in M . (P!C)[X;F; f] = [p : P]C[X;F; (f p [~x : ~P](F ~m (p ~x)))]((x :M)C)[X;F; f] = [x :M]C[X;F; (f x)](X ~a)[X;F; f] = fExample. For our example, we have :(X 0)[X;F; f] = (f 0)(n : nat)A!(X n)!(X (S n))[X;F; f] = [n : nat][a : A][p : (X n)](f n a p (F n p))C[X;F; f] is well-typed both in the dependent and the non dependent case.Lemma 3 Let s0 be a sort, C be a type of constructor of X and C � (~z : ~C)(X ~a).� Let � be �; X : A;Q : (~x : ~A)s0; F : (~x : ~A)(X ~x)! (Q ~x). If CfX;Qg is a well-formedtype in �, then the judgment �; f : CfX;Qg ` C[X;F; f] : (~z : ~C)(Q ~a) is provable.� Let � be �; X : A;Q : (~x : ~A)(X ~x)!s0; F : (~x : ~A)(c : (X ~x))(Q ~x c). If CfX;Q; cg is awell-formed type in �; c : C then the judgment �; c : C; f : CfX;Q; cg ` C[X;F; f] : (~z :~C)(Q ~a (c ~z)) is provable.As usual C[I; G; g] will denote C[X;F; f] [X I; F G; f g].8

The � reduction. Let Q and I be two terms and ~f be a sequence of n terms. We de�ne :Fun Elim(I; Q; ~f) = [~x : ~A][c : (I ~x)]Elim(c;Q)f~fg.The reduction rule is, if fi denotes the i� th element of the sequence ~f :Elim((Constr(i; I) ~m); Q)f~fg �!� (Ci[I; Fun Elim(I; Q; ~f); fi] ~m) (�-red)Example. For our example, we have :Fun Elim(listn;Q; xjf) = [n : nat][l : (listn n)]Elim(l; Q)fxjfgElim(nil; Q)fxjfg �!� xElim((cons n a p); Q)fxjfg �!�([n : nat][a : A][p : (listn n)](f n a p (Fun Elim(listn;Q; xjf) n p) n a p)�!�� (f n a p Elim(p;Q)fxjfg)3 The system Coq : de�nition3.1 The underlying GTSThe system Coq has two sorts (Set and Prop) at the impredicative level. Set and Prop distinguishbetween proofs that are interpreted as programs and proofs that are only a justi�cation of somelogical part.The underlying GTS is built from S = fProp; Set;Type;TypeSg with axioms and A = fProp :Type; Set : TypeSg and rules R = S � S.3.2 Rules for inductive de�nitionsInductive de�nitions can be de�ned both for Prop and Set, so we have the rules IndProp andIndSet.3.2.1 Weak eliminationsIn Coq, the rules for elimination are : DepSet;Set, DepSet;Prop, NodepProp;Prop.These rules make sense because we may build the same products over Set and Prop.We do not allow NodepProp;Set because, in general, we cannot build a program by case analysisover the structure of a proof that is discarded for computation.There is no strong reason to avoid the rule DepProp;Prop. But our interpretation of � ` a : Awith A : Prop is that A is provable, so we are not interested in a as an object to reason about.With only the NodepProp;Prop rule, the primitive inductive de�nitions of logical predicatesdo not have more power than the corresponding impredicative encoding of the same notions.The only advantage is that we get directly the recursor form of the elimination. With theimpredicative coding, we have to do a tedious proof going back to the iterative scheme.3.2.2 Strong eliminations.With the system above we shall not be able to prove for instance that 0 is not equal to 1. Forthis, one possibility is to allow a strong elimination, namely a rule like NodepSet;Type. This ruleis allowed in Coq but only for a restricted class of inductive de�nitions that are called smallinductive de�nitions.De�nition 7 A form of constructor of X is said to be small if it is (X ~a) or (x :M)C with Ca small form of constructor of X and M a \small type" ie of type Prop or Set (and not Type orTypeS). 9

An inductive type Ind(X : A)fC1j : : : jCng is said to be small if all the forms of constructorCi are small.In Coq the strong elimination scheme NodepSet;Type is only allowed for small inductive types.The rule can be written as :let I = Ind(X : (~x : ~A)Set)fC1j : : : jCng be a small inductive type :� ` c : (I ~a) � ` Q : (~x : ~A)Type (8i = 1 : : :n)� ` fi : CifI; Qg� ` Elim(c; Q)ff1j : : : jfng : (Q ~a) (NodepSet;Type)A problem to state this rule is to be able to write the type of Q in the system. For instancein the pure Calculus of Constructions, it is only possible to write Q : Type with ~A an emptylist. Also we cannot express the corresponding dependent elimination. But in the Coq system,there is a hierarchy of universes, so we can build arities on Type and there is no problem in theexpression of the elimination scheme.Other possible strong eliminations. We cannot allow strong eliminations for non-smallinductive types without getting an inconsistency. This can be shown with an adaptation of theargument developed in [6] to this system.Assume the rule NodepSet;Type is allowed for non-small inductive de�nitions. Then we canconstruct B : Set with one constructor " : Prop! B. With the rule NodepSet;Type we canbuild a projection E : B ! Prop and we will have (E (" A)) and A convertible for each Aof type Prop. So we get an object of type Set which is isomorphic to Prop. Because we haveimpredicativity at both levels, it is not surprising we get an inconsistency. We can howeverinterpret the system U in this system, taking for the interpretation of implication, �rst-orderand second-order quanti�cation the following terms :)U = [p; q : B](" ((E p)!(E q))) : B!B!B8U = [A : Set][f : A!B](" ((x : A)(E (f x)))) : (A : Set)(A!B)!B8U = [F : Set!B](" ((A : Set)(E (F A)))) : (Set!B)!BWe do not allow the rule NodepProp;Type even for small inductive de�nitions. Actually if sucha rule was available, we could �nd A : Prop, a; b : A and prove a 6= b. This goes againstthe intended interpretation of the Prop part of the system with a proof-irrelevance semantics(all proofs of a proposition are identi�ed). However this rule forbids the use of other naturalprinciple for instance the axiom for extensionality (A;B : Prop)(A!B)!(B!A)!A = B orthe excluded middle (A : Prop)A _ :A as shown by Berardi or Coquand [6].We do not allow the rule NodepSet;TypeS although it could have very interesting applications.But this rule destroys the interpretation of proofs in Coq as non-dependent programs of F!extended with inductive de�nitions. We could for instance build a type T (n) such that T (~n)is the n-ary product of a type A. This is really a non-trivial extension of the system from thecomputational point of view.B. Werner [23] recently proved the normalization property for a second-order polymorphicsystem extended with a type of natural numbers together with weak and strong eliminations. Ifthe proof can be extended to the full system, it will be possible to introduce an extended Coqsystem with the rule NodepSet;TypeS .3.2.3 Inductive types and universes.The system Coq is build on a GTS which extends the Calculus of Constructions with an implicithierarchy of universes. An alternative extension of the Calculus is to introduce inductive types10

at the predicative level. If we want to be exact, we have to say that, in the system Coq,the rules IndType, DepType;Prop, and DepType;Type are possible. But they were never used in theexamples developed so far. Also the interaction between the implicit hierarchy of universes andthe elimination scheme was not carefully checked.3.3 ExamplesWe give a few examples of \typical" rules to give a avor of what we get. We shall state theintroduction rules (the types of the constructor), the elimination principle (actually the typeof the \generic" elimination combinator [Q][~f]Fun Elim(I; Q; ~f) either in the dependent or thenondependent case) and the reduction rules.Absurd proposition We can de�ne a proposition ? � Ind(X : Prop)fg without constructors.The non-dependent elimination principle will have type : (P : Prop)?!P which says that fromabsurdity you can prove any proposition.Product type Let A and B be two types. The product of A and B will be de�ned as a typeA �B with only one constructor pair of type A!B!A �B.A �B � Ind(X : Set)fA!B!XgThe dependent elimination principle has type :prod rec : (P : A �B!Set)((a : A)(b : B)(P (pair a b)))!(x : A �B)(P x)which says that any element in the type A �B is equivalent to (pair a b) for some a in A and bin B. The non dependent elimination of A �B on a type C has type (A!B!C)!A �B!Cwhich corresponds to the uncurry�cation. The rule for conversion is :(prod rec P f (pair a b)) ' (f a b)Sum type The disjoint union (A+B) of A and B has two constructors inl of type A!(A+B)and inr of type B!(A+B). A+B � Ind(X : Set)fA!X jB!Xg. The dependent eliminationprinciple has type :sum rec : (P : A +B!Set)((a : A)(P (inl a)))!((b : B)(P (inr b)))!(x : A+B)(P x)The rules for conversion are :(sum rec P f g (inl a)) ' (f a) (sum rec P f g (inr b)) ' (g b)Remark that the constructors and eliminations for disjoint union or product are polymorphicwith respect to the types A and B.Booleans The type bool of booleans has two constructors true and false of type bool. Thedependent elimination principle will have type :bool rec : (P : bool!Set)(P true)!(P false)!(x : bool)(P x)which says that any element in the type bool is equal to true or to false. The rules for conversionare : (bool rec P f g true) ' f (bool rec P f g false) ' gSo bool rec behaves like a conditional. 11

3.3.1 EqualityAn example of an inductively de�ned predicate is the equality. It is a predicate parameterizedby a set A and an element x of A. We say that the set of elements of A equal to x is the smallestset which contains x.The arity of eqA;x is A!Prop, it has one constructor re equal of type (eqA;x x).eqA;x � Ind(X : A!Prop)f(X x)gThe non-dependent elimination principle has type :eqA;x ind : (P : A!Prop)(P x)!(y : A)(eqA;x y)!(P y)This principle says that if x and y are equal, to prove (P y) it is enough to prove (P x).Well-founded induction Assume we have a setA and an arbitrary relationR : A!A!Prop.We de�ne the set of elements ofA which are accessible for the relation R as the smallest set whichcontains x if it contains all its predecessors for R. The accessibility set Acc has arity A!Prop.The introduction rule Acc intro has type : (x : A)((y : A)(R y x)!(Acc y))!(Acc x)Acc � Ind(X : A!Prop)f(x : A)((y : A)(R y x)!(X y))!(X x)gThe non dependent elimination principle is :Acc ind : (P : A!Prop)((x : A)((y : A)(R y x)!(Acc y))!((y : A)(R y x)!(P y))!(P x))!(x : A)(Acc x)!(P x)3.4 Extraction of programsIt is possible to de�ne a realisability interpretation for the system Coq, that will extract pro-grams in the system F Ind! which is F! plus inductive de�nitions. More formally, F Ind! is de-�ned as the inductive GTS with sorts S = fSet;TypeSg, axioms A = fSet : TypeSg, rulesR = f(Set; Set); (TypeS ; Set); (TypeS ;TypeS)g and with inductive de�nitions of sort Set and onlynon-dependent elimination of sort (Set,Set). The added rules are IndSet, Constr and NodepSet;Set.(namely the system F! plus the rules IndSet, Constr and NodepSet;Set).As usual the informative contents of a term corresponds to the sort of its type. We remarkthat the informative contents of Elim(t; Q)f~fg is the one of Q and consequently ~f and if it isinformative then t also is informative (this property would not be true if NodepProp;Set was arule).The extension of the extraction function de�ned in [20, 21] for informative terms involvinginductive de�nitions is the following :E(Ind(X : A)fC1j : : : jCng) = Ind(X : E(A))fE(C1)j : : : jE(Cn)gE(Constr(i; I)) = Constr(i; E(I))E(Elim(t; Q)f~fg) = Elim(E(t); E(Q))fE(~f)gIt is easy to check that the extraction function preserves typability.4 Meta-theory4.1 The Calculus of Constructions with �xpointsIn order to study the meta-theory of the system Coq, we shall use a di�erent extension of theCalculus of Constructions introduced by Ph. Audebaud [1, 2]. His idea was to extend the12

Calculus of Constructions with a �xpoint in order to encode e�cient inductive types and alsoto reason about partial objects. A �xpoint operator is introduced at the level of both types andprograms. For types it is assumed that it only applies to positive operators, in a sense that willbe explained after.We do not need the full power of this calculus and in particular we are not interested inpartial objects. We will only consider a subsystem of CC+ that we call CC�. This system isthe pure Calculus of Constructions with a �xpoint operator for positive types transformers. Weshall also need only one sort that we also call Set.4.1.1 De�nitionsThe terms contain the pure terms of the Calculus of Constructions plus a term for �xpointformation that will be written <x : t>t0.The set of positive and negative terms with respect to a variable X are de�ned by the followinggrammar : Pos ::= M j X j (Pos m) j [x :M]Pos j (x : Neg)PosNeg ::= M j (Neg m) j [x :M]Neg j (x : Pos)Negwith the restriction that X does not occur in M or m. If M is strictly positive with respect toX then it is also positive with respect to X . We shall write positive(P;X) to indicate that P ispositive with respect to X .4.1.2 RulesThe rules for this calculus are the ones for a GTS with axioms : A = fSet : TypeSg and S � Sas the set of rules. Furthermore the conversion rules are extended with the reduction step for�xpoints : <x : A>M �! ([x : A]M <x : A>M) (�x-red)There is one new rule for �xpoint introduction at the level of types :� ` A : TypeS �; X : A `M : A positive(M;X)� ` <X : A>M : A (�xintroTypeS)4.1.3 PropertiesPh. Audebaud proved that CC+ enjoys the Church-Rosser property and also strong normaliza-tion for �-reduction (of course not for �x-red) We can embed CC� in CC+ just transforming Setand TypeS into the Prop and Type sorts of CC+. Consequently, we have strong normalizationfor �-reduction in CC� as well.4.2 The system coqWe introduce a subsystem coq of Coq which is the pure Calculus of Constructions plus inductivede�nitions with weak non dependent eliminations. We de�ne a transformation from coq to thesystem CC� that gives the strong normalization result for � and � reductions in coq.The system coq is the inductive GTS with sorts S = fSet;TypeSg, axioms A = fSet : TypeSg,rules R = S � S with inductive de�nitions of sort Set and only non-dependent elimination ofsort (Set,Set). The added rules are IndSet, Constr and NodepSet;Set.13

4.3 Translation from coq to CC�We de�ne a translation from terms in the Calculus of Constructions into terms in CC�. M willdenote the translation of the term M and if � is the environment x1 :M1; : : : ; xn : Mn of CC�,we write � the environment x1 :M1; : : : ; xn :Mn of CC�.We can prove that � `coq M : N , implies � `CC� M : N . This is done by induction over theproof of � `coq M : N .4.3.1 Translating the pure partThe systems coq and CC� have a common part (terms and rules) corresponding to the pureCalculus of Constructions. The translation acts trivially as the identity on this part.Set = Setx = x if x is a variable(x : A)B = (x : A)B[x : A]B = [x : A]B(A B) = (A B)All rules involving variables, application, product or abstraction are mapped by the translationinto the corresponding rules in CC�.Properties. This will have interesting consequences. We can remark that the de�nitionsconcerning inductive de�nitions (form of constructors of X) only involves the pure part of theCalculus. There can be inductive de�nitions in it but only in subterms in which X does notoccur, hence which are passive with respect to the operations. It implies that all the de�nitionsin the section2.2 (for instance constructor(C;X), CfX;Qg and C[X;F; f]) make sense both inCC� and coq. We have the following results :Lemma 4 Let C;X;Q; F and f be terms of the system CC� such that the following makessense.� If constructor(C;X) then constructor(C;X).� CfX;Qg=CfX;Qg� C[X;F; f] = C[X;F; f]It is easy to check that if strict positive(P;X) holds then positive(P;X) also holds. Our vectorialnotations will commute with the translation operation. We introduce the notations (~x : ~A)M ,[~x : ~A]M and (M ~A) with their obvious meaning.The interesting cases of the translation correspond to the terms involving inductive de�ni-tions.4.3.2 Translating the inductive de�nitionsIn the impredicative coding of inductive de�nitions, there is an identi�cation between the def-inition of the type and the expected iterative scheme. In the system CC�, using �xpoints, wecan identify the de�nition of the type and the expected recursive scheme.14

The case of natural numbers For the natural numbers, it will give us the following repre-sentation : nat � <X : �>(C : �)C!(X!C!C)!CThe recursor is just the identity function. A similar representation was proposed in the frame-work of AF2 by M. Parigot [19]. The main drawback of this encoding of natural numbers is thatthe representation of the nth natural number uses a space proportional to 2n. This is a problemfor practical uses but not for our study of the theoretical properties of the system Coq.The general case. Let I be Ind(X : A)fC1j : : : jCng and A � (~x : ~A)Set. We de�ne :I = <X : A>[~x : ~A](Q : A)C1fX;Qg!� � �!CnfX;Qg!(Q ~x)We have to check that this is indeed well-formed, by justifying the �xintroTypeS rule.But if I is well-formed then we have from the premisses of the rule IndSet, that �; X : A `coqCi : Set and constructor(Ci; X). By induction hypothesis, we get �; X : A `CC� Ci : Set.Because we have constructor(Ci; X) in coq, we also have constructor(Ci; X) in CC�. We cancompute for Q of type A the term CifX;Qg. We have �; X : A;Q : A `CC� CifX;Qg : Set. Itis easy to check that CifX;Qg is negative with respect to X . Consequently[~x : ~A](Q : A)C1fX;Qg!� � �!CnfX;Qg!(Q ~x)is positive with respect to X and has type A. So we can apply the �xintroTypeS rule and get :� `CC� I : A4.3.3 Translation of the eliminationWith this de�nition the translation of the elimination is almost trivial :Elim(c; Q)f~fg = (c Q ~f)Assume that � ` Elim(c; Q)f~fg : (Q ~t) is obtained by an application of the NodepSet;Set rule.Let I be Ind(X : A)fC1j : : : jCng and A � (~x : ~A)Set. We assume � `coq c : (I ~t), � `coq Q : Aand for all i, 1 � i � n, � `coq fi : CifI; Qg. By induction hypothesis we deduce � `CC� c : (I ~t),� `CC� Q : A and for all i, 1 � i � n, � `coq fi : CifI; Qg. Using the de�nition of I and a�x-reduction, we �nd : c : (Q : A)C1fI; Qg!� � �!CnfI; Qg!(Q ~t)and (c Q) is well typed of type :C1fI; Qg!� � �!CnfI; Qg!(Q ~t)We deduce from this easily that : � `CC� Elim(c; Q)f~fg : (Q ~t).We remark that we have Fun Elim(I; Q; ~f) = [~x : A][c : (I ~x)](c Q ~f) which has type (~x :A)(I ~x)!(Q ~x). 15

4.3.4 Translation of the constructors.The translation of the constructors involves transformations on terms.We assume I = Ind(X : A)fC1j : : : jCng, i such that 1 � i � n and Ci � (~z : ~C)(X ~a). Weexpect Constr(i; I) to have type Ci[X I] ie (~z : ~C[X I])(I ~a). We take with ~f = f1j : : : jfn :Constr(i; I) = [~z : ~C[X I]][Q : A][f1 : C1fI; Qg] : : : [fn : CnfI; Qg](Ci[I; Fun Elim(I; Q; ~f); fi] ~z)We have �; Q : A; f1 : C1fI; Qg; : : : ; fn : CnfI; Qg `CC� Fun Elim(I; Q; ~f) : (~x : A)(I ~x)!(Q ~x).From lemma 4 we deduce :�; Q : A; f1 : C1fI; Qg; : : : ; fn : CnfI; Qg `CC� Ci[I; Fun Elim(I; Q; ~f); fi] : (~z : ~C[X I])(Q ~a)Because (I ~a) is convertible with(Q : A)C1fI; Qg!� � �!CnfI; Qg!(Q ~a)We deduce the expected result : � ` Constr(i; I) : Ci[X I]4.3.5 Reduction ruleWe have to show that if M �coq N then M �CC� N . The �-reduction rule does not lead to anyproblem. For the inductive reduction we have the following sequence of reductions :Elim((Constr(i; I) ~m); Q)f~fg= (Constr(i; I) ~m Q ~f)= ([~z : ~C[X I]][Q : A][f1 : C1fI; Qg] : : : [fn : CnfI; Qg](Ci[I; Fun Elim(I; Q; ~f); fi] ~z)~m Q ~f)�!+� (Ci[I; Fun Elim(I; Q; ~f); fi] ~m) = (Ci[I; Fun Elim(I; Q; ~f); fi] ~m)So we have if M reduces to N in one step of inductive reduction then M reduces to N in atleast one step of �-reduction. Remark that we do not use �x-reduction at this stage, this rule isonly used to make sure that the elimination and constructors are well-typed.We can deduce from these results that M �coq N implies M �CC� N and consequentlyit ends our proof of � `coq M : N implies � ` M : N , justifying the rule of convertibility.Furthermore an in�nite sequences of � and � reduction in coq will lead to an in�nite sequenceof �-reductions in CC� and consequently :Theorem 1 The system coq is strongly normalizing.Corollary 1 The system F Ind! is strongly normalizing.4.4 The Calculus of Inductive De�nitionsFrom the previous study we can deduce properties of the full Calculus of Inductive De�nitionsas de�ned in section 3. 16

4.4.1 Weak eliminationThe distinction between Prop and Set does not matter for the study of the normalization prop-erties. We can just map Prop and Type to respectively Set and TypeS . First let us consider theCalculus of Constructions with only weak (possibly dependent) eliminations. We can map thiscalculus (called Coqw) into the system coq using a transformation which forgets dependencies.This is an extension of the map which transforms a term of the Calculus of Constructions into aterm of F! as described for instance in [20, 21]. It is easy to show that as the Calculus of Con-structions is conservative over F! , the system Coqw is conservative over coq. The normalizationfor coq implies its consistency (there can be no closed normal proof of (C : Set)C) and then theconsistency of Coqw. The translation from Coqw to coq preserves the underlying pure lambdaterms (without any type information). We believe (but did not check precisely the details) thatthe method of translation from the pure Calculus of Constructions to F! used by Geuvers andNederhof [13] could also be adapted to Coqw and coq in order to justify strong normalizationfor Coqw.4.4.2 Strong eliminationTo deal with strong elimination is more complicated because in a system with strong eliminationwe cannot anymore ignore dependencies with respect to programs. Also we know that a carelessuse of strong elimination leads to paradoxes.The scheme for strong elimination in Coq is restricted to the rule NodepSet;Type. This rule issu�cient to prove for instance :(true = false).What we actually use of this rule in the examples developed so far could be obtained byjust adding the axiom :(true = false) to Coqw and not the full scheme of strong elimination. IfA : Type in Coqw with only weak elimination, then A � (~x : ~A)Prop. Now with NodepSet;Typewe can build a function of type nat! A by giving F of type A and G of type nat!A!A.Furthermore, we shall have (H 0) convertible with F and (H (S n)) convertible with (G n (H n)).Using only :(true = false) and weak eliminations we could internally represent a term H oftype nat! A such that (H 0) ,A F and (H (S n)) ,A (G n (H n)). The equivalence ,Abeing de�ned as [p; q : A](~x : ~A)((p ~x)!(q ~x)^ (q ~x)!(p ~x)). Obviously the proofs are shorterto do with the strong elimination scheme than with this internal encoding.5 Discussion5.1 Allowing more positive typesOne restriction in our proposition for an extension with inductive de�nition is in the shaperequired for a form of constructors and mainly the condition of strict positivity.We could relax this condition in two ways. The �rst one is to ask only for a positivitycondition (as de�ned in section 4.1.1). As it is explained in [8], with only a positivity conditionand if we allow the rule IndType and the elimination NodepType;Type, we get a paradox. But inthe system without the rule IndType, such an extension could be justi�ed by a translation inCC�.We could also extend the de�nition of strictly positive by saying X is strictly positive inInd(Y : A)fC1j : : : jCng if X occurs strictly negatively in each Ci (we say that X occurs strictlynegatively in (~z : ~C)(X ~a) if X does not occur or occurs strictly positively in each term of ~C).This possibility follows the general habit to say that X is strictly positive in A+B or A �B if itis strictly positive or does not occur in A and B. This allows also to de�ne mutually inductivetypes by an encoding using several levels of inductive de�nitions.17

But the �rst question with a weaker notion of positivity is how to de�ne naturally the elim-ination principles, namely the auxiliary functions CfX;Pg or CfX;P; cg. There are severalpossibilities either using a product (for the non-dependent case) or a strong sum (for the depen-dent case) together with projection (it works for the two extensions of the positivity condition).In the case of an extension with several levels of inductive de�nitions, we can use a strong elim-ination scheme in order to de�ne the predicates CfX;Pg and CfX;P; cg but it is not reallysatisfactory to use a so strong scheme for de�ning the type of even a weak elimination. Anotherpossibility is the one proposed by Mendler [16] which can be extended to the dependent elimi-nation in our formalism and does not involve auxiliary operations. But none of this possibilitiesgive a really natural formulation of the elimination principle.5.2 Mutually inductive de�nitionsThe lack of de�nition of mutually inductive types is obviously a drawback of our proposition.We are not sure that the best way to introduce them will be by an encoding using several levelsof inductive de�nitions. We rather think it should be included at the basic level by a simplegeneralization of the rules presented in this paper.A possibility will be to add a new kind of objects corresponding to an inductive declaration.This object will have the form :Ind(X1 : A1; : : : ; Xn : An)fC1j : : :CpgA correct declaration in an environment � will satisfy that each Ci is a type of constructor ofone of the Xk well-typed in the environment �; X1 : A1; : : : ; Xn : An.Constructors If decl is an inductive declaration Ind(X1 : A1; : : : ; Xn : An)fC1j : : : jCpg thenwe have new terms Ind(i)fdeclg which are well-typed of type Ai if 1 � i � n. Also if 1 � i � pthe term Constr(i; decl) will be well typed of type Ci[Xk Ind(k)fdeclg]1�k�n.Eliminations. Given n predicates P1; : : : ; Pn we can obviously extends the operations CfX;Pgand CfX;P; cg to CfX1; : : : ; Xn; P1; : : : ; Png and CfX1; : : : ; Xn; P1; : : : ; Pn; cg. The rules foreliminations remain similar. We write Ik for the term Ind(k)fdeclg :� ` c : (Ik ~a) (8i = 1 : : :n)� ` Pi : (~x : ~Ai)s0 (8i = 1 : : :p)� ` fi : CifI1; : : : ; In; P1; : : : ; Png� ` Elim(c; P1; : : : ; Pn)ff1j : : : jfpg : (Pk ~a)The dependent elimination will be the following (we do not write the environment which is thesame in all judgements) :` c : (Ik ~a) (8i = 1 : : :n)` Pi : (~x : ~Ai)(Ii ~x)!s0 (8i = 1 : : :p)` fi : CifI1; : : : ; In; P1; : : : ; Pn;Constr(i; decl)g` Elim(c; P1; : : : ; Pn)ff1j : : : jfpg : (Pk ~a c)This extension preserves the \natural" aspect of the elimination schemes (we get an usefulinduction scheme without unnecessary encoding).5.3 Elimination for inductive predicateAs mentioned by Th. Coquand in [7], the general elimination scheme proposed in this paper isnot fully adequate for the case of inductive predicate, because it does not take into account thefact that, for instance, an object in the type (listn (S n)) can only be built from the second18

constructor. He proposed an alternative presentation of the elimination scheme similar to ade�nition by pattern-matching in functional languages. With this method we can easily prove:(true = false) without introducing the full power of strong elimination.5.4 ConclusionThe main ideas of the formulation of the inductive de�nitions were already in [8] and a similarproposition was simultaneously done by [9]. The purpose of this paper was to give the precisede�nitions corresponding to the system Coq and also to show that strong normalization for alarge useful subsystem of Coq could be obtained from previous results known about the Calculusof Constructions.The main point about this presentation is that it corresponds to a closed system. This isdi�erent from the extension with inductive de�nitions provided in other systems like Lego [14] orAlf [15] also based on typed lambda-calculus. In these systems new constants and new equalityrules can be added in the system. It is the user responsibility to check that adding these newobjects and rules is safe.Our proposition was intended to be of practical use and integrated to the previous imple-mentation of the Calculus of Constructions. Indeed, with these operations, the type recognitionprocedure or the discharge operation were easy to extend. Also having only one kind of con-stants (as abbreviation) makes a lot of things simpler. It is less clear whether this presentationis well-suited for proof synthesis. For instance, de�ning the addition function going back to theelimination scheme is a bit delicate and surely users will prefer to de�ne such a function usingequalities or an ML-like syntax. Also assume that addition is de�ned for instance as :add � [n;m : nat]Elim(n; nat)fm; [p; addmp : nat](S addmp)gThen we will have (add (S n) m) is convertible with (S (add n m)) but we do not have(add (S n) m) reduces to (S (add n m)). Obviously we would like such an equality correspond-ing to the intended de�nition of the addition to be automatically recognized by the system. Inconclusion, our opinion is that the status of names involved in the inductive de�nitions has stillto be clearly understood.AcknowledgementsWe thanks G. Huet, B. Werner and A. Sellink for comments on a previous version of the paper.References[1] Ph. Audebaud. Partial objects in the calculus of constructions. In Proceedings of the sixthConf. on Logic in Computer Science. IEEE, 1991.[2] Ph. Audebaud. Extension du Calcul des Constructions par Points �xes. PhD thesis, Uni-versit�e Bordeaux I, 1992.[3] H. Barendregt. Lambda calculi with types. Technical Report 91-19, Catholic UniversityNijmegen, 1991. in Handbook of Logic in Computer Science, Vol II.[4] C. B�ohm and A. Berarducci. Automatic synthesis of typed �-programs on term algebras.Theoretical Computer Science, 39, 1985.[5] R.L. Constable et al. Implementing Mathematics with the Nuprl Proof Development System.Prentice-Hall, 1986. 19

[6] Th. Coquand. Metamathematical investigations of a Calculus of Constructions. In P. Odd-ifredi, editor, Logic and Computer Science. Academic Press, 1990. Rapport de rechercheINRIA 1088, also in [11].[7] Th. Coquand. Pattern matching with dependent types. In Nordstr�om et al. [17].[8] Th. Coquand and C. Paulin-Mohring. Inductively de�ned types. In P. Martin-L�of andG. Mints, editors, Proceedings of Colog'88. Springer-Verlag, 1990. LNCS 417.[9] P. Dybjer. Comparing integrated and external logics of functional programs. Science ofComputer Programming, 14:59{79, 1990.[10] G. Dowek et al. The Coq Proof Assistant User's Guide Version 5.6. Rapport Technique134, INRIA, December 1991.[11] G. Huet ed. The Calculus of Constructions, Documentation and user's guide, VersionV4.10, 1989. Rapport technique INRIA 110.[12] H. Geuvers. Type systems for Higher Order Logic. Faculty of Mathematics and Informatics,Catholic University Nijmegen, 1990.[13] H. Geuvers and M.-J. Nederhof. A modular proof of strong normalization for the Calculusof Constructions. Faculty of Mathematics and Informatics, Catholic University Nijmegen,1989.[14] Z. Luo and R. Pollack. Lego proof development syste : User's manual. Technical ReportECS-LFCS-92-211, University of Edinburgh., 1992.[15] L. Magnusson. The new implementation of ALF. In Nordstr�om et al. [17].[16] N. Mendler. Recursive types and type constraints in second order lambda-calculus. InSymposium on Logic in Computer Science, Ithaca, NY, 1987. IEEE.[17] B. Nordstr�om, K. Petersson, and G. Plotkin, editors. Proceedings of the 1992 Workshop onTypes for Proofs and Programs, 1992.[18] P. Martin-L�of. Intuitionistic Type Theory. Studies in Proof Theory. Bibliopolis, 1984.[19] M. Parigot. On the representation of data in lambda-calculus. In CSL'89, volume 440 ofLNCS, Kaiserslautern, 1989. Springer-Verlag.[20] C. Paulin-Mohring. Extracting F!'s programs from proofs in the Calculus of Constructions.In Association for Computing Machinery, editor, Sixteenth Annual ACM Symposium onPrinciples of Programming Languages, Austin, January 1989.[21] C. Paulin-Mohring. Extraction de programmes dans le Calcul des Constructions. PhDthesis, Universit�e Paris 7, January 1989.[22] F. Pfenning and C. Paulin-Mohring. Inductively de�ned types in the Calculus of Construc-tions. In Proceedings of Mathematical Foundations of Programming Semantics, LNCS 442.Springer-Verlag, 1990. also technical report CMU-CS-89-209.[23] B. Werner. A normalization proof for an impredicative type system with large eliminationover integers. In Nordstr�om et al. [17]. 20

