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Abstract

In the pure Calculus of Constructions, it is possible to represent data structures
and predicates using higher-order quantification. However, this representation is not
satisfactory, from the point of view of both the efficiency of the underlying programs
and the power of the logical system. For these reasons, the calculus was extended
with a primitive notion of inductive definitions [8]. This paper describes the rules for
inductive definitions in the system Coq. They are general enough to be seen as one
formulation of adding inductive definitions to a typed lambda-calculus. We prove
strong normalization for a subsystem of Coq corresponding to the pure Calculus of
Constructions plus Inductive Definitions with only weak non-dependent eliminations.

Keywords: Inductive Definitions, Typed lambda-calculus, Calculus of Constructions.

Résumé

Dans le Calcul des Constructions pures, il est possible de représenter les struc-
tures de données et les prédicats inductifs en utilisant une quantification d’ordre
supérieur. Cependant cette représentation n’est pas satisfaisante, ni du point de vue
de Defficacité des programmes sous-jacents, ni du point de vue de la puissance du
systeme logique. Pour ces raisons, le calcul a été étendu par une notion primitive de
définitions inductives [8]. Ce papier décrit les régles pour les définitions inductives
telles qu’elles sont implantées dans le systeme Coq. Ces régles sont assez générales
pour étre considérées comme une formulation possible de ’ajout de définitions in-
ductives a un lambda-calcul typé. Nous prouvons la normalisation forte d’un sous
systeme de Coq correspondant au calcul pur étendu avec des types inductifs et une
regle d’élimination faible non-dépendante

Mots-clés: Définitions inductives, lambda-calcul typé, Calcul des Constructions.
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1 Introduction

1.1 Motivations

Several proof environments suitable for mechanizing mathematics and program development [10,
5] are based on the “Curry-Howard correspondence” between natural deduction proofs and typed
functional programs. Such proof tools are used interactively and consequently aims at providing
rules as natural as possible and avoid tedious encoding. Such a motivation was the starting point
for an extension of the pure Calculus of Constructions with primitive inductive definitions.

The (Pure) Calculus of Constructions extends the powerful polymorphic programming lan-
guage F,, with dependent types and allows reasoning about programs. Its main advantage is to
be a “closed system” where mathematical and computational notions can be internally repre-
sented using higher-order quantification. But this representation is not satisfactory from both
the computational and the logical points of view. This leads to a proposition for an extension
of the Calculus of Constructions with inductive definitions as first-class objects [8]. The rules
for these definitions follow the point of view of Martin-Lof’s type theory. From a specification
of the introduction rules for a new inductive definition, we generate a dependent elimination
with new computational rules. This elimination for natural numbers corresponds both to the
construction of functions following a primitive recursive scheme and to proofs by induction. Our
extension of the Calculus of Constructions with Inductive Definitions, unlike Martin-Lo6f’s type
theory, still preserve the property for the system to be closed.

There exists an implementation of this extension, namely the system Coq [10] developed
in the Formel project at Inria-Rocquencourt and ENS Lyon. The mechanism for inductive
definitions has proved to be really useful for the development of examples but its meta-theory is
not yet established. The purpose of this paper is to give a precise description of the rules used in
the system and state what we know about its properties. In particular we shall prove the strong
normalization for a subsystem of Coq, corresponding to the pure Calculus of Constructions plus
Inductive Definitions with only weak eliminations. For this, we use a similar result obtained by
Ph. Audebaud [1, 2] for an extension of the Calculus of Constructions with a fixpoint operator.

The paper is organized as follow. The remaining part of this section describes the drawbacks
of the impredicative coding of inductive definitions in the pure Calculus of Constructions and

*This paper is an extended version of a paper to be published in the proceedings of the International Conference
on Typed Lambda Calculus and Applications
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gives an intuitive idea, using the example of natural numbers, of the rules for elimination we
shall introduce. Part 2 introduces schematic rules for adding inductive definitions to a typed
lambda-calculus. Part 3 gives the rules used in the system Coq and examples of inductive
definitions. In part 4 the strong normalization of a subsystem coq of Coq is established. In
part 5 we shall discuss our choices and make comparisons with other systems.

1.2 Impredicative inductive definitions

In [4, 21, 22] a systematic way to generate a representation of an inductive definition from a
description of the generative rules for it was described. But this representation is not really
adequate. We list some problems :

e We can represent a type of boolean with two elements true and false but the fact that true
and false are not equal is not provable in the system.

e We can represent a type of natural numbers but the induction principle is not provable.

o We can define all primitive recursive functions on natural numbers. That is given two
terms z and ¢, we can find A such that (b 0) = 2 and (h n+ 1) = (¢ n (b n)) holds
internally for a closed natural number n (and consequently are provable). But if n is not
closed then the proposition (h n 4 1) = (¢ n (h n)) (using Leibniz’s equality) is provable
using an induction over n but is not an internal reduction rule. Moreover for n closed, the
reduction of (h n+41) into (¢ n (h n)) can take a time proportional to n. This corresponds
to the well-known problem of the predecessor function (the predecessor of n41 is computed
in n steps) and is a problem inherent to the representation of natural numbers with what
is known as Church’s numerals.

e Some structures represented with an impredicative coding (like the products of two types)
can contain more elements (closed normal terms) than the one built from the constructors
of the type. It is explained for instance in [21].

Some points concerning the representation of inductive definitions in an impredicative type
theory are reflected in our rules for primitive inductive definitions. For instance an inductive
definition makes sense in any context (and not just at toplevel); the names of the type and
of its constructors are not relevant for the type conversion rules (so two types with the same
specification will be equal). We use a uniform rule for the definitions of disjunction, conjunction,
types and relations.

1.3 The case of natural numbers

The problem with the inductive definitions in impredicative systems comes from the weakness
of the elimination scheme. The elimination scheme is intended to make use of the assumption
that the inductive type is the smallest set generated by the introduction rules.

The specification of the natural numbers is a set nat with two constructors for zero and the
successor function : 0 of type nat and 5 of type nat— nat. Each “mathematical” natural number
n can be represented as a term (5™ 0). The elimination scheme internalizes the fact that the
type of natural numbers only contains elements representing (5™ 0) for some n.

The first problem is to be able to represent enough functions on natural numbers. For this,
we need a special kind of recursive definitions. Theoretically, the representation of functions H
on nat iteratively defined by equations H(0) =z, H(S n) = f(H(n)) combined with a notion of
product is enough to get many interesting functions (in F,, for instance, all recursive functions
provably total in higher-order arithmetic).



But this representation is not always efficient. For instance, there is no representation in F,
of the predecessor function which computes the predecessor of (S n) in a constant number of
reductions.

The predecessor function can be efficiently obtained in a ML-like language where the basic
operation for the elimination of a concrete type is the definition by pattern. In this framework,
we can represent a function [ which satisfies the equation H(0) = z, H(S n) = f(n). In ML,
a general fixpoint is available to encode recursive calls.

To keep the property of strong normalization, we do not allow a general fixpoint and restrict
the use of recursion. We want a direct representation of functions H which satisfies the properties
H(0) =, H(S n) = f(n,H(n)). This can be done by the introduction of a recursor operator
R(C,z, f,n) such that if C is a type, @ has type C, f has type nat — C — C and n of type
nat then R(C,xz, f,n) has type C. Furthermore R(C,z, f,0) behaves like z and R(C,z, f,(5 n))
behaves like (f n R(C,z, f,n)). If H(p) denotes R(C,z, f,n) the equality H(S n) = (f n H(n))
will hold not only for closed terms n but also for a variable.

For each inductive definition we shall introduce the analogous of the R operator for natural
numbers. The term R(C,z, f,n) will be written as Elim(n, C'){z|f} in this paper, it corresponds
to the notation (<C>Match n with x f) in Coq.

Dependent elimination. A system like Coq is intended to program functions but also to
reason about programs. It is natural to want an induction principle :

Vi natVP.(P 0)— (Yu : nat.(P u)— (P (5 u)))—(P n)

This proposition can be used to prove logical properties of programs. Now, in the paradigm
of proofs as programs, we interpret (intuitionistic) proofs of a property P as correct programs
w.r.t. the specification represented by P. If n is a natural number, if z is a correct program for
the specification (P 0) and f a correct program for the specification Yu : nat.(P u)— (P (S5 u))
then we can built using the induction principle a correct program w.r.t. (P n). It is easy
to see that this program should behave like the program R(C,z, f,n) built from the recursor
R. Obviously the recursor can be obtained from the induction principle just taking a constant
predicate (P n) = C. This suggests that we need only one operator, with the induction principle
as type and which obeys the same reduction rules as the recursor operator. This is the principle
behind the rules in Martin-Lo6f’s Intuitionistic Type Theory [18]. We shall also follow the same
ideas for the system Coq.

Strong eliminations When we have a concrete inductive structure like the natural numbers,
we may want to define a property (or a type) by induction over the structure of the natural
number. This possibility is called “strong elimination” because we are building a property (or
equivalently a type) by computation over a program. For instance, we could define a property
P on natural numbers such that (P 0) is a true proposition (for instance (A : Set)A — A) and
(P (S n)) is the absurdity proposition (A : Set)A. Then assuming 0 = (5 n), because (P 0)
is true, we have a proof of (P (5 n)) which is the absurdity. We have consequentely internally
proved that =(0 = (5 n)). This extension corresponds to a strong modification of the underlying
typed lambda-calculus.

2 Rules for inductive definitions

In this section we introduce schematic rules (parameterized by sorts) for inductive definitions
and illustrate them on the example of the inductive definition of lists of a given length.



2.1 Notations

We are interested in an extension of the pure Calculus of Constructions, but actually our propo-
sition can be defined somehow independently of the underlying Generalized Type System (GTS).
The systems we are studying in that paper extends a pure type system with new constructors
for inductive definitions.

2.1.1 Generalized type systems

We use the now standard presentation of typed A-calculi as functional GTS [3, 12]. The set of
(pseudo) terms contains the following constructions :

t o= sla|(z:t)t]|[e:t]t]| (t1)

with s ranging over the set § of sorts. For the pure Calculus of Constructions, we shall use
S = {Set, Typeg} corresponding respectively to the star and the square in Barendregt’s A-cube.
The set of axioms is A = {Set : Types}. All rules for product are allowed : the set of rules is
R=8xS8.

We write M[z — N] to denote the substitution of the term N to free occurrences of the
variable z in M. The notation M — N is an abbreviation for (z : M )N whenever z does not
occur in N. The arrow symbol associates to the right and the application associates to the left.

We say that a term is a type if it is correctly typed and that its type is a sort.

2.1.2 Vectorial notations

We introduce vectorial notations to write parametric rules.

Construction. Let & and A be two possibly empty sequences of resp. variables and terms
with the same length. Let M be a term, we define the terms (& : A)M, [ : A]M and (M A)
for an arbitrary M by induction over the structure of the sequences # and A.

—. —

e If # and consequently A are empty then (& %I))M =[@:AIM = (M A)= M.

— — —

o if F=2,2"and A = A, A" then (Z: A)M = (2 : A)(&/ : A)M, [T : A]M = [z : A][o" : A]M
and (M A)=((M A) A").

Decomposition. We use the same notations to describe the decomposition of a term. Let P
be a term, we shall write P = [Z : A]M (resp. P = (& : A)M, resp. P = (M A)) to define & and
A as maximal sequences of terms such that the equality P = [ : %I]M (resp. P = (4 %f)M,
resp. P = (M A)) holds.

For instance, a type in normal form can uniquely be written as (& : A)s or (Z: A)(X @) with
X a variable and s a sort.

2.2 Preliminary Definitions
2.2.1 Arity

Definition 1 (Arity) An arity of sort s is a term generated by the following syntaz :
Arn=s| (z: M)Ar

We denote by arity(A,s) the property A is an arity of sort s.



Definition 2 (Strictly positive types) Let A be an arity and X be of type A, the terms P
which are strictly positive w.r.t. to X are generated by the syntax :

Pos := X | (Pos m) | (¢ : M)Pos

with the restriction that X does not occur in M and m. We write strict_positive(P, X ) the
property P is strictly positive w.r.t. X.

A strictly positive well-formed type can be written as as (7 : M)(X 1) with the restriction that
X does not occur in any term of M or m.

Definition 3 (Forms of constructor) Let A be an arity and X be of type A, the terms C
which are a form of constructor w.r.t. X are generated by the syntax :

Couz=X|(Com)| P—=Col|(xz:M)Co

with the restriction that strict_positive(P, X ) and X does not occur in M or m. We say that C
s a type of constructor of X if furthermore, C is a type.
We write constructor(C, X ) the property C is a form of constructor w.r.t. X.

—

A well-formed form of constructor can be written as C' = (2: C')(X @). A strictly positive type
is a particular case of type of constructors, which we call a non-recursive type of constructor. A
type of constructor which is not a strictly positive type is called recursive.

2.3 Inductive Operators

We introduce a new pseudo-term for inductive definitions ¢ ::= Ind(z : t){t_} with ¢ a possibly
empty list of terms, written as ¢;]...|t,.

In the expression Ind(x : t){t_}, x is a bound variable. The typing rule for this operator is, with
n an arbitrary number, possibly equal to 0 :

(Vi=1...n)
arity(A, s) I'X:AFC;:s  constructor(C;, X )
I'Find(X : A){Cy|...|C}: A

(Indy)

Example We take as an example of inductive definition, the type of lists with a given length.
It is a type scheme which associate to each natural numbers n the type (listn n) of lists of
length n. The arity of this definition is nat — Set. There is two constructors (one for nil
and the other one for cons). We want nil and cons to have type respectively (listn 0) and
(n : nat)A— (listn n)—(listn (S n)). We can define listn to be the term:

listn = Ind(X : nat—Set){(X 0)|(n: nat)A— (X n)— (X (5 n))} : nat— Set

2.4 Constructors

New pseudo-terms correspond to the constructors (which can also be seen as introduction rules)
of the inductive definition : ¢ := Constr(7,t). with 7 a positive integer.

Let I be Ind(X : A){C}|...|C.}, the typing rule for this term is :

I'Find(X : A){Cy|...|C,}: A 1<i<n
I' F Constr(i, I): C;[X 1]

(Constr)



Example. For our example of lists we can define :

nil = Constr(1,listn) :(listn 0)
cons = Constr(2,listn) :(n: nat)A— (listn n)— (listn (S n))

2.5 Eliminations

The rule for the elimination is a natural (although complicated) extension of the case of nat-
ural numbers to a general inductive definition. We shall introduce two rules corresponding to
dependent and non dependent elimination.

New pseudo-terms will correspond to the eliminations of the inductive definitions : t :=
Elim(¢,){#} with 7 a possibly empty list of terms, written as . ..|t,.
We need to define operations on forms of constructor that are used in the types of the arguments
of the elimination.

2.5.1 Non dependent elimination

Let A be an arity of sort s (A = (& : A)s), let X be a variable of type A, s’ be a sort, @ be a

—

variable of type (7 : A)s’ and C be a type of constructor of X.

Definition 4 We define a new term C{X,Q} by induction over the structure of the type of
constructor C'.

(P—=CNHX,Q} = P—PX—Q]—-C{X,Q} if strict_positive(P, X )
(z: MH)CHX,Q} = (2: M)C{X,Q} if X does not occur in M
(X a{X, Q} = (@ a)

Example. For our example, we have :

(X 0{X,Q} =(Q0)
(n:nat)A—(X n)—(X (S n){X,Q} =(n:nat)A—(X n)—(Q n)—(Q (5 n))

The term C{X, @} is not always well-formed. It depends on the product rules allowed in the
GTS. But in the case where s = s/, C{X,Q} is a well-formed type. We can state more precisely
that it is well-formed if “enough” products are allowed for s'.

—

Lemma 1 IfI', X : AFC:s with A= (Z: A)s and C is a type of constructor of X. Assume
s’ is a sort which satisfies the following hypotheses :

—

1. (Z: A)s' is a well-formed type,

2. for all sorts s, (s",s) € R implies (s”,s') € R,

3. if C is a recursive constructor then (s',s') € R,
then the following judgment is derivable : I', X : A, Q) : (¥ : %I)s’ FO{X,Q}:¢s.

Let I and P be two terms of the appropriate type, we write C'{I, P} for the term C{X, Q}[X —
1,Q — PJ.

Rule Let I denotes Ind(X : A){Cy|...|C,} with A = (Z: A)s. Let &' be a sort. The typing
rule for non-dependent elimination (s,s’) is :

(Vi=1...n)
The:(Id) TFQ:(7:A)s Tk fi:C{I,Q}
I'F Elim(e, Q{A]. .|/} 1 (Q @)

(Nodepy ;)



Example. In our example, we get Elim({,Q){z|f} is well-typed of type (@ n) if ¢ is of type
(listn n), @) of type nat— ', z of type (@ 0) and f of type (n : nat)A — (listn n) — (Q n)—
(Q (5 n)).

2.5.2 Dependent elimination

—

Let A be an arity of sort s (A = (Z: A)s), let X be a variable of type A, let s’ be a sort, let ()
be a variable of type (7 : A)(X @) — ¢, let C' be a type of constructor of X, and ¢ be a term of
type C'.

Definition 5 We define a new type C{X,Q,c} by induction over the type of constructor C.

—

Let P be such that strict_positive(P,X ) (P = (Z : P)}(X m)) and M be such that X does not
occur in M.

(P=CNHX.Q.c} = (p: P)(7: P)Q i (p 7))~ C{X.Q.(cp)}
((z: M)ORX,Q,c} = (x: M)C{X,@Q,(c2)}
(X O){X,Q,c} = (Qadc)

Example. For our example, with C3(X) = (n : nat) A— (X n)— (X (5 n))

(X 0){X,Q,¢c} =(Q0¢)

Co(X)X,Q.c} = (n: nat)(a: A)Y(p: (X )@ n p)—(Q (S n) (¢ ap))
Some restrictions are necessary to ensure that this term is well-formed. Even in the case s = s,
we can have troubles forming a dependent arity.

Lemma 2 Assume we have the same conditions as in lemma 1 the first one being replaced by

—

(Z: A) (X &)— s is a well-formed type. The following judgment is derivable :

—

IVX:A,Q:(F:A)X 2)—d,c:CHO{X,Q,c}: ¢
We write C'{I, P,t} for the term C{X,Q,c}[X «— I,Q — P,c — t].

Rule Let I denotes Ind(X : A){Cy|...|C,} with A = (Z: A)s. Let &' be a sort. The typing
rule for dependent elimination (s,s) is :

(Vi=1...n)
The:(Ia@) THQ:(Z:A)IZ)—s TFfi:CH{I,Q,Constr(i,I)}
I'FElim(e, Q){fi]-.-|fu}:(Q @ ¢)

(Deps,s’)

Example. In our example, we get Elim({,Q){z|f} is well-typed of type (@ n [) if ¢ is of type
(listn n), Q of type (n : nat)(listn n)—s', x of type (@ 0 nil) and f of type (n : nat)(a : A)(m :
(listn n))(Q n m)—(Q (5 n) (cons n a m)).

2.5.3 Discussion

Obviously the non-dependent elimination can be coded using a dependent elimination over a
constant predicate. We prefer to distinguish the two operations, because in some systems, the
term (7 : A)(I ¥) — s is not well-formed, although (7 : A)s is (note that the rule Nodep,,
can be added in any GTS). We use the same syntax for both constructions. It is not prob-
lematic because first, the two eliminations behaves the same w.r.t. the reduction rule, second
we can solve the ambiguity using the type information. More precisely if type convertibility is
decidable in the system then, given an environment I' and a term ¢, we can find if there exists a

term M such that I' - ¢ : M. In particular, if ¢ is Elim(c, Q){f} then ¢ is well-typed if and only if :



e cis well typed of type M.

o M is reducible to (I @) with I = Ind(X : A){C|...|C,} and A = (Z: A)s.
e [ has length n (we write it as fi|...[f,).

o () is well-typed of type an arity A'.

e Either A’ is convertible with (& : %I)s’, Nodep, ;s is an allowed rule and for each i, f; is
well-typed in I' and its type is convertible to C;{I,@}. In that case the type of ¢ is (@ @).
Or A’ is convertible with (Z : A)(I &)— s and Dep, , is an allowed rule and for each ¢,
fi is well-typed in I' and its type is convertible to C;{I, (), Constr(i,I)}. In that case the

type of tis (Q @ ¢).

2.6 Rules for conversion

The rules for conversion are extended w.r.t. the new operations for defining terms.
(Vi=1...n)
A~ A C;~
Ind(X : A){Cy|...|C.} ~Ind(X : A){C]|...|C.}

(Vi=1...n)
M~ M i =1 c~c P~ P fi= [l
Constr(i, M ) ~ Constr(¢/, M’) Elim(e, P){fi| .. .|fu} = Elim(¢/, POY{f]] ... |f.}

A new reduction rule (called t-reduction) is added. We need some notations to state it. Let
I denotes Ind(X : A){Cy|...|C,} with A = (& : A)s. Let F' and f be two terms, let X be a
variable of type A and €' be a type of constructor of X.

Definition 6 We define a new term C[X, F, f] by induction over C' which is a type of construc-
tor of X. Let P = (& : P)(X m) be such that strict_positive(P, X ) and M such that X does not
occur in M.

(P =X, F, f] [p: PICIX, E,(f p [#: PI(F i (p @))))
((z: M)O)X,F f] = [o: MC[X, F,(f @)]
(X @)[X, F, f] f

Example. For our example, we have :

(X O)[X,Ff] =(f0)
(n:nat)A— (X n)—(X (S n)[X,F,f] =[n:nafla:Allp: (X n)](fnap(F np))

C[X, F, f] is well-typed both in the dependent and the non dependent case.

—

Lemma 3 Let s’ be a sort, C be a type of constructor of X and C = (Z:C)(X a).

o Let Abel', X : A,Q : (7 %f)s’,F (& A))(X T)—(Q ¥). If C{X,Q} is a well-formed
type in A, then the judgment A, f: C{X,Q}F C[X, F, f]: (Z: C)(Q @) is provable.

—

o Let Abe T, X : A, Q:(F: AYX &)=, F :(F: A)(c: (X D))Q T ¢). FC{X,Q,c}isa
well-formed type in A, c: C then the judgment Ajc: C, f: C{X,Q,c} - C[X,F, f]:(Z:
C)Q @ (¢ 2)) is provable.

As usual C[I,G, ¢g] will denote C[X, F, f][X «— [, F — G, f — g].



The : reduction. Let @) and I be two terms and fbe a sequence of n terms. We define :

Fun_Elim(1,Q, f) = [Z : A][c : (I )]Elim(c, Q){f}.

The reduction rule is, if f; denotes the ¢ — th element of the sequence f
Elim((Constr(i, 1) 1), Q){f} —, (Ci[L, Fun_Elim(1,Q, ), f] ) (t-red)

Example. For our example, we have :

Fun_Elim(listn, Q,z|f) = [n: nat][l : (listn n)]Elim(l, Q){z|f}

Elim(nil, Q){z|f} —,

Elim((cons n a p),Q){z|f} —.

([n: nat]la : A]lp: (listn n)](f n a p (Fun_Elim(listn,Q,z|f) n p) n a p)
—5 (f n a p Elim(p, Q){z[f})

3 The system Coq : definition

3.1 The underlying GTS

The system Coq has two sorts (Set and Prop) at the impredicative level. Set and Prop distinguish
between proofs that are interpreted as programs and proofs that are only a justification of some
logical part.

The underlying GTS is built from & = {Prop, Set, Type, Types} with axioms and A = {Prop :
Type, Set : Types} and rules R =S8 x S.

3.2 Rules for inductive definitions

Inductive definitions can be defined both for Prop and Set, so we have the rules Indpo, and
Indset.

3.2.1 Weak eliminations

In Coq, the rules for elimination are : Depset set, Depset Prop, Nodepprop Prop-
These rules make sense because we may build the same products over Set and Prop.

We do not allow Nodepprop set because, in general, we cannot build a program by case analysis
over the structure of a proof that is discarded for computation.

There is no strong reason to avoid the rule Depprop prop. But our interpretation of I' Fa : A
with A : Prop is that A is provable, so we are not interested in a as an object to reason about.

With only the Nodeppiop prop rule, the primitive inductive definitions of logical predicates
do not have more power than the corresponding impredicative encoding of the same notions.
The only advantage is that we get directly the recursor form of the elimination. With the
impredicative coding, we have to do a tedious proof going back to the iterative scheme.

3.2.2 Strong eliminations.

With the system above we shall not be able to prove for instance that 0 is not equal to 1. For
this, one possibility is to allow a strong elimination, namely a rule like Nodepset Type. This rule
is allowed in Coq but only for a restricted class of inductive definitions that are called small
inductive definitions.

Definition 7 A form of constructor of X is said to be small if it is (X @) or (z : M)C with C
a small form of constructor of X and M a “small type” ie of type Prop or Set (and not Type or

Types ).



An inductive type Ind(X : A{Cy|...|Cn} is said to be small if all the forms of constructor
C; are small.

In Coq the strong elimination scheme Nodepset Type is only allowed for small inductive types.
The rule can be written as :

—

let I =1Ind(X :(&: A)Set){C,|...|C,} be a small inductive type :

(Vi=1...n)
Tke:(Ia) T'FQ:(Z: A)Type TFfi: CALQ}

L' Elim(c, Q{A] -1 fa} (@ @)

A problem to state this rule is to be able to write the type of ¢ in the system. For instance
in the pure Calculus of Constructions, it is only possible to write ¢) : Type with A an empty
list. Also we cannot express the corresponding dependent elimination. But in the Coq system,
there is a hierarchy of universes, so we can build arities on Type and there is no problem in the
expression of the elimination scheme.

(NOdepSet,Type)

Other possible strong eliminations. We cannot allow strong eliminations for non-small
inductive types without getting an inconsistency. This can be shown with an adaptation of the
argument developed in [6] to this system.

Assume the rule Nodepset Type is allowed for non-small inductive definitions. Then we can
construct B : Set with one constructor ¢ : Prop — B. With the rule NOdepSet,Type we can
build a projection £ : B — Prop and we will have (£ (¢ A)) and A convertible for each A
of type Prop. So we get an object of type Set which is isomorphic to Prop. Because we have
impredicativity at both levels, it is not surprising we get an inconsistency. We can however
interpret the system U in this system, taking for the interpretation of implication, first-order
and second-order quantification the following terms :

=v = [p.q:B)(e (Ep)—(Eq)): B—B—B
Vo = [A:Set][f:A—B](e ((z:A)(L (fx)))):(A:Set)(A—B)—B
Vo = [F:Set—B](e ((A:Set)(L (F A)))):(Set—B)—D

We do not allow the rule Nodepprop Type €ven for small inductive definitions. Actually if such
a rule was available, we could find A : Prop, a,b : A and prove a # b. This goes against
the intended interpretation of the Prop part of the system with a proof-irrelevance semantics
(all proofs of a proposition are identified). However this rule forbids the use of other natural
principle for instance the axiom for extensionality (A, B : Prop)(A—B)—(B—A)— A = B or
the excluded middle (A : Prop)A VvV = A as shown by Berardi or Coquand [6].

We do not allow the rule Nodepset Types although it could have very interesting applications.
But this rule destroys the interpretation of proofs in Coq as non-dependent programs of F
extended with inductive definitions. We could for instance build a type T'(n) such that T'(7)
is the m-ary product of a type A. This is really a non-trivial extension of the system from the
computational point of view.

B. Werner [23] recently proved the normalization property for a second-order polymorphic
system extended with a type of natural numbers together with weak and strong eliminations. If
the proof can be extended to the full system, it will be possible to introduce an extended Coq
system with the rule Nodepset Types-

3.2.3 Inductive types and universes.

The system Coq is build on a GTS which extends the Calculus of Constructions with an implicit
hierarchy of universes. An alternative extension of the Calculus is to introduce inductive types
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at the predicative level. If we want to be exact, we have to say that, in the system Coq,
the rules Indtype, DepType Prop, and Deprype Type are possible. But they were never used in the
examples developed so far. Also the interaction between the implicit hierarchy of universes and
the elimination scheme was not carefully checked.

3.3 Examples

We give a few examples of “typical” rules to give a flavor of what we get. We shall state the
introduction rules (the types of the constructor), the elimination principle (actually the type

— —

of the “generic” elimination combinator [Q][f]Fun_Elim(I, (), f) either in the dependent or the
nondependent case) and the reduction rules.

Absurd proposition We can define a proposition — = Ind( X : Prop){} without constructors.
The non-dependent elimination principle will have type : (P : Prop)— — P which says that from
absurdity you can prove any proposition.

Product type Let A and B be two types. The product of A and B will be defined as a type
A * B with only one constructor pair of type A—B— A x B.

Ax B =Ind(X :Set){A—-B—X}
The dependent elimination principle has type :
prod_rec: (P : Ax B—Set)((a: A)(b: B)(P (pair a b)))—(z: Ax B)(P z)

which says that any element in the type A+ B is equivalent to (pair a b) for some a in A and b
in B. The non dependent elimination of A * B on a type C has type (A—=B—C)—Ax B—C
which corresponds to the uncurryfication. The rule for conversion is :

(prod_rec P f (pair a b))~ (f a b)

Sum type The disjoint union (A+ B) of A and B has two constructors inlof type A—(A+ B)
and inrof type B—(A+B). A+ B = Ind(X :Set){A— X|B— X}. The dependent elimination
principle has type :

sum_rec: (P : A4+ B—Set)((a: A)(P (inl a)))—((b: B)(P (inr b)))—(z: A+ B)(P z)
The rules for conversion are :
(sum_rec P f g (inl a))~(f a) (sum_rec P f g (inr b))~ (g b)

Remark that the constructors and eliminations for disjoint union or product are polymorphic
with respect to the types A and B.

Booleans The type bool of booleans has two constructors true and false of type bool. The
dependent elimination principle will have type :

bool_rec : (P : bool — Set)( P true)— (P false)— (z : bool)( P x)

which says that any element in the type boolis equal to true or to false. The rules for conversion
are :

(bool_rec P f g true)~ f  (bool_rec P f g false)~ g

So bool_rec behaves like a conditional.

11



3.3.1 Equality

An example of an inductively defined predicate is the equality. It is a predicate parameterized
by a set A and an element x of A. We say that the set of elements of A equal to z is the smallest
set which contains z.

The arity of eq4 , is A— Prop, it has one constructor refl_equal of type (eq, , ).

€qs, = Ind(X : A—Prop){(X z)}
The non-dependent elimination principle has type :
€4 p-ind : (P A—Prop)(P z)—(y: A)(eqa, y)— (P y)

This principle says that if  and y are equal, to prove (P y) it is enough to prove (P z).

Well-founded induction Assume we have a set A and an arbitrary relation R : A— A — Prop.
We define the set of elements of A which are accessible for the relation R as the smallest set which
contains z if it contains all its predecessors for R. The accessibility set Acc has arity A— Prop.
The introduction rule Acc_intro has type : (2 : A)((y : A)(R y ) — (Acc y)) —(Acc )

Ace=1Ind(X : A—=Prop){(z: A)((y: A)( Ry 2)— (X y))— (X 2)}
The non dependent elimination principle is :

Accind : (P : A—Prop)
(2 A)((y: A)(Ry v)—(Accy))=((y: ARy )= (P y))— (P z))
—(z: A)(Acc 2)— (P )

3.4 Extraction of programs

It is possible to define a realisability interpretation for the system Coq, that will extract pro-
grams in the system F™ which is F, plus inductive definitions. More formally, £ is de-
fined as the inductive GTS with sorts & = {Set, Types}, axioms A = {Set : Types}, rules
R = {(Set, Set); (Types, Set); (Types, Types)} and with inductive definitions of sort Set and only
non-dependent elimination of sort (Set,Set). The added rules are Indset, Constr and Nodepset set-
(namely the system F,, plus the rules Indge, Constr and Nodepset set).

As usual the informative contents of a term corresponds to the sort of its type. We remark
that the informative contents of EIim(t,Q){f_} is the one of Q and consequently f and if it is
informative then ¢ also is informative (this property would not be true if Nodepprop set Was a
rule).

The extension of the extraction function defined in [20, 21] for informative terms involving

inductive definitions is the following :
E(lnd(X - A){Cy]...1CLY) = Ind(X : E(A){ECY)]...|E(CR)}
E(Constr(i,I))_) Constr(i, E(1)) B
E(Elim(1, Q){f}) = Elim(&(2), E@)LES)}

It is easy to check that the extraction function preserves typability.

4 Meta-theory

4.1 The Calculus of Constructions with fixpoints

In order to study the meta-theory of the system Coq, we shall use a different extension of the
Calculus of Constructions introduced by Ph. Audebaud [1, 2]. His idea was to extend the
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Calculus of Constructions with a fixpoint in order to encode efficient inductive types and also
to reason about partial objects. A fixpoint operator is introduced at the level of both types and
programs. For types it is assumed that it only applies to positive operators, in a sense that will
be explained after.

We do not need the full power of this calculus and in particular we are not interested in
partial objects. We will only consider a subsystem of CC+ that we call C'C,. This system is
the pure Calculus of Constructions with a fixpoint operator for positive types transformers. We
shall also need only one sort that we also call Set.

4.1.1 Definitions

The terms contain the pure terms of the Calculus of Constructions plus a term for fixpoint
formation that will be written <z : t>t'.

The set of positive and negative terms with respect to a variable X are defined by the following
grammar :

Pos == M| X | (Posm)|[z:M]Pos| (z: Neg)Pos
Neg M | (Negm) | [« : M]Neg | (z : Pos)Neg

with the restriction that X does not occur in M or m. If M is strictly positive with respect to
X then it is also positive with respect to X. We shall write positive(P, X ) to indicate that P is
positive with respect to X.

4.1.2 Rules

The rules for this calculus are the ones for a GTS with axioms : A = {Set : Types} and § X S
as the set of rules. Furthermore the conversion rules are extended with the reduction step for
fixpoints :

<z A>M — ([ A]IM <z : A>M) (fix-red)

There is one new rule for fixpoint introduction at the level of types :

I'FA:Types D' X:AFM:A positive(M,X)
PF<X:A>M : A

(fixintroType.)

4.1.3 Properties

Ph. Audebaud proved that CC+ enjoys the Church-Rosser property and also strong normaliza-
tion for f-reduction (of course not for fix-red) We can embed C'C), in CC+ just transforming Set
and Typeg into the Prop and Type sorts of CC+. Consequently, we have strong normalization
for B-reduction in C'C, as well.

4.2 The system coq

We introduce a subsystem coq of Coq which is the pure Calculus of Constructions plus inductive
definitions with weak non dependent eliminations. We define a transformation from coq to the
system C'C), that gives the strong normalization result for 4 and ¢ reductions in coq.

The system coq is the inductive GTS with sorts & = {Set, Types}, axioms A = {Set : Types },
rules R = & x § with inductive definitions of sort Set and only non-dependent elimination of
sort (Set,Set). The added rules are Indger, Constr and Nodepset set-
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4.3 Translation from coq to CC,

We define a translation from terms in the Calculus of Constructions into terms in C'C,. M will
denote the translation of the term M and if I' is the environment z, : My, ..., 2, : M, of CC,,
we write I' the environment y : My,...,z, : M, of ccy.

We can prove that ' t,,, M : N, implies T Fee, M : N. This is done by induction over the
proof of I' =, M : N.

4.3.1 Translating the pure part

The systems coq and CC,, have a common part (terms and rules) corresponding to the pure
Calculus of Constructions. The translation acts trivially as the identity on this part.

Set = Set
T = a if xis a variable
(z:A)B = (z:A)B
[t:A]B = [z:A]B

(AB) = (AB)

All rules involving variables, application, product or abstraction are mapped by the translation
into the corresponding rules in C'C),.

Properties. This will have interesting consequences. We can remark that the definitions
concerning inductive definitions (form of constructors of X') only involves the pure part of the
Calculus. There can be inductive definitions in it but only in subterms in which X does not
occur, hence which are passive with respect to the operations. It implies that all the definitions
in the section2.2 (for instance constructor(C, X ), C{X,Q} and C[X, F, f]) make sense both in
CC), and coq. We have the following results :

Lemma 4 Let O, X,Q),F and f be terms of the system CC, such that the following makes
sense.

o If constructor(C, X ) then constructor(C', X ).

o C{X,Q}=C{X.Q}

« CIX. 1, [] = CIX.F.]]

It is easy to check that if strict_positive(P, X ) holds then positive(P, X ) also holds. Our vectorial

notations will commute with the translation operation. We introduce the notations (# : A)M,
[Z: A]JM and (M A) with their obvious meaning.
The interesting cases of the translation correspond to the terms involving inductive defini-

tions.

4.3.2 Translating the inductive definitions

In the impredicative coding of inductive definitions, there is an identification between the def-
inition of the type and the expected iterative scheme. In the system CC), using fixpoints, we
can identify the definition of the type and the expected recursive scheme.
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The case of natural numbers For the natural numbers, it will give us the following repre-
sentation :

nat = <X 1 +>(C : %) C = (X =C—=C)=C

The recursor is just the identity function. A similar representation was proposed in the frame-
work of AF, by M. Parigot [19]. The main drawback of this encoding of natural numbers is that
the representation of the nth natural number uses a space proportional to 2". This is a problem
for practical uses but not for our study of the theoretical properties of the system Coq.

The general case. Let I be Ind(X : A){C}]...|C,} and A = (7 : A)Set. We define :

—.

I=<X:A>[7:AIQ:A)CH{X,Q}— - —C{X,Q}—(Q 7)

We have to check that this is indeed well-formed, by justifying the fixintroype, rule.

But if I is well-formed then we have from the premisses of the rule Indge, that I' X : A -,
C; : Set and constructor(C;, X ). By induction hypothesis, we get T, X : A Fee, C; : Set.
Because we have constructor(C;, X ) in coq, we also have constructor(C;, X ) in CC,. We can
compute for () of type A the term C;{X,Q}. We have I X : A,Q : A bce, Ci{X,Q} : Set. It
is easy to check that C;{X,Q} is negative with respect to X. Consequently

[7: A)Q : )T {X,Q}— - —C {X,Q}—(Q 7
is positive with respect to X and has type A. So we can apply the fixintrorype, Tule and get :

TFCCHT:Z

4.3.3 Translation of the elimination

With this definition the translation of the elimination is almost trivial :

Elim(c,Q){/} =(Q /)
Assume that T' Elim(C,Q){f} : (Q 1) is obtained by an application of the Nodepset set rule.
Let I be Ind(X : A){Cy]...|C,} and A = (7 : A)Set. We assume T F,,, ¢ : (I 1), T F,pp Q A
and forall i, 1 <i < n, T k., fi : C:{I,Q}. By induction hypothesis we deduce T Fee, € (T1),
T Fee, Q:Aand forall i,1 <i<mn, Tk, fi : C{I1,Q}. Using the definition of T and a

fix-reduction, we find :

— — — =

_ We remark that we have Fun_Elim(Z,Q, f) = [Z : A][c : (I #)](c @ f) which has type (7 :
A)(I T)—(Q 7).
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4.3.4 Translation of the constructors.

The translation of the constructors involves transformations on terms.
We assume [ = Ind(X : A){C4]...|C,}, ¢ such that 1 < ¢ <nand C; = (Z: C)(X @). We
expect Constr(i, ) to have type C;[X —[] ie (Z: C_')[XHI])(T @). We take with f= fil oo fa

Comstii D) = [7: CIX —1)1Q < Al - CHUT. Q) [f, - AT, Q)
(E[T, Fun_Ellm(I,Q,f),fi] )

We have T',Q : A, f, : C1{1,Q},. : Co{l,Q} Fee, Fun_Elim(1,Q, N:(@: AT 35— (Q 7).

From lemma 4 we deduce :

T?Q :Zv fl :C_l{TvQ}v .. '7fn C_n{TvQ} l_CC,L 6[77 Fun—EIim(Ivaf)vfi] : (5 C_:[XHI])(Q 3)

Because (I @) is convertible with

We deduce the expected result :

T Constr(i,I): C;[X <]

4.3.5 Reduction rule

We have to show that if M =.,, N then M =ce, N. The B-reduction rule does not lead to any
problem. For the inductive reduction we have the following sequence of reductions :

=

Fm(Con 1) 70117
= (Constr(i,I)m Q f) -
= (% [XHI]][ _][ Cl{I Q... [fn C_{T,Q}](a[jv Fun_Elim(7,Q, f), fi] )

i Q f)

—7% (CJ[I,Fun_Elim(I,Q, f), fi] ) = (Ci[L, Fun_Elim(1,Q, f), f] 171)

So we have if M reduces to N in one step of inductive reduction then M reduces to N in at
least one step of S-reduction. Remark that we do not use fix-reduction at this stage, this rule is
only used to make sure that the elimination and constructors are well-typed.

We can deduce from these results that M = =coq N implies M =ce, N and consequently
it ends our proof of I' ,,, M : N implies I = M : N, justifying the rule of convertibility.
Furthermore an infinite sequences of + and f reduction in coq will lead to an infinite sequence
of B-reductions in C'C, and consequently :

Theorem 1 The system coq is strongly normalizing.

Corollary 1 The system F!" is strongly normalizing.

4.4 The Calculus of Inductive Definitions

From the previous study we can deduce properties of the full Calculus of Inductive Definitions
as defined in section 3.
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4.4.1 Weak elimination

The distinction between Prop and Set does not matter for the study of the normalization prop-
erties. We can just map Prop and Type to respectively Set and Types. First let us consider the
Calculus of Constructions with only weak (possibly dependent) eliminations. We can map this
calculus (called Cog,) into the system coq using a transformation which forgets dependencies.
This is an extension of the map which transforms a term of the Calculus of Constructions into a
term of F,, as described for instance in [20, 21]. It is easy to show that as the Calculus of Con-
structions is conservative over F,,, the system Cogq, is conservative over coq. The normalization
for coq implies its consistency (there can be no closed normal proof of (C' : Set)C') and then the
consistency of Cogq,. The translation from Coq, to coq preserves the underlying pure lambda
terms (without any type information). We believe (but did not check precisely the details) that
the method of translation from the pure Calculus of Constructions to F,, used by Geuvers and
Nederhof [13] could also be adapted to Cog, and coq in order to justify strong normalization
for Cogq,.

4.4.2 Strong elimination

To deal with strong elimination is more complicated because in a system with strong elimination
we cannot anymore ignore dependencies with respect to programs. Also we know that a careless
use of strong elimination leads to paradoxes.

The scheme for strong elimination in Coq is restricted to the rule Nodepset Type. This rule is
sufficient to prove for instance =(true = false).

What we actually use of this rule in the examples developed so far could be obtained by
just adding the axiom —(true = false) to Cog, and not the full scheme of strong elimination. If
A : Type in Cogq, with only weak elimination, then A = (& : %I)Prop. Now with Nodepset Type
we can build a function of type nat — A by giving F of type A and G of type nat — A — A.
Furthermore, we shall have (H 0) convertible with F and (H (5 n)) convertible with (G' n (H n)).

Using only —(true = false) and weak eliminations we could internally represent a term H of
type nat — A such that (H 0) <4 F and (H (S n)) <4 (G n (H n)). The equivalence <4
being defined as [p, ¢ : A)(Z : A)((p T)—(q &) A (q &) —(p &)). Obviously the proofs are shorter
to do with the strong elimination scheme than with this internal encoding.

5 Discussion

5.1 Allowing more positive types

One restriction in our proposition for an extension with inductive definition is in the shape
required for a form of constructors and mainly the condition of strict positivity.

We could relax this condition in two ways. The first one is to ask only for a positivity
condition (as defined in section 4.1.1). As it is explained in [8], with only a positivity condition
and if we allow the rule Indtype and the elimination Nodeptype Type, We get a paradox. But in
the system without the rule Indtype, such an extension could be justified by a translation in
ccy.

We could also extend the definition of strictly positive by saying X is strictly positive in
Ind(Y : A){C4|...|C,} if X occurs strictly negatively in each C; (we say that X occurs strictly
negatively in (Z: C)(X @) if X does not occur or occurs strictly positively in each term of C).
This possibility follows the general habit to say that X is strictly positive in A+ B or A B if it
is strictly positive or does not occur in A and B. This allows also to define mutually inductive
types by an encoding using several levels of inductive definitions.
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But the first question with a weaker notion of positivity is how to define naturally the elim-
ination principles, namely the auxiliary functions C'{X, P} or C{X, P,c¢}. There are several
possibilities either using a product (for the non-dependent case) or a strong sum (for the depen-
dent case) together with projection (it works for the two extensions of the positivity condition).
In the case of an extension with several levels of inductive definitions, we can use a strong elim-
ination scheme in order to define the predicates C'{X, P} and C'{X, P, ¢} but it is not really
satisfactory to use a so strong scheme for defining the type of even a weak elimination. Another
possibility is the one proposed by Mendler [16] which can be extended to the dependent elimi-
nation in our formalism and does not involve auxiliary operations. But none of this possibilities
give a really natural formulation of the elimination principle.

5.2 Mutually inductive definitions

The lack of definition of mutually inductive types is obviously a drawback of our proposition.
We are not sure that the best way to introduce them will be by an encoding using several levels
of inductive definitions. We rather think it should be included at the basic level by a simple
generalization of the rules presented in this paper.

A possibility will be to add a new kind of objects corresponding to an inductive declaration.
This object will have the form :

|nd(X1 . A17 . '7Xn : An){01| . Cp}

A correct declaration in an environment I' will satisfy that each C; is a type of constructor of
one of the X; well-typed in the environment I', X; : A;,.... X,, : 4,,.

Constructors If decl is an inductive declaration Ind(X; : Ay,..., X, : A,){C1|...|C,} then
we have new terms Ind(i){decl} which are well-typed of type 4; if 1 <i¢<n. Alsoif 1 <i<p
the term Constr(i, decl) will be well typed of type C;[ Xy — Ind(k){decl}]i<r<n-

Eliminations. Given n predicates P, ..., P, we can obviously extends the operations C{X, P}
and C{X,P,c} to C{Xy,..., X, Pi,.... P} and C{Xy,....X,,, P1,..., P,,c}. The rules for

eliminations remain similar. We write I; for the term Ind(k){decl} :
I'kFe: (I a) I'FPo(d: A)s 't fi:CAlL,....0,,P,....,P,}
I'F Elim(c, Py, ..., PO Al 1o} o (P @)

The dependent elimination will be the following (we do not write the environment which is the
same in all judgements) :

Fe: (1, @) FP (T AL &)= FfiiCAlL, .. L, Py, ..o, Py, Constr(i, decl) }
FElim(e, Pr,..., B ){fil ... 1o} : (Py @ c)

This extension preserves the “natural” aspect of the elimination schemes (we get an useful
induction scheme without unnecessary encoding).
5.3 Elimination for inductive predicate

As mentioned by Th. Coquand in [7], the general elimination scheme proposed in this paper is
not fully adequate for the case of inductive predicate, because it does not take into account the
fact that, for instance, an object in the type (listn (S n)) can only be built from the second
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constructor. He proposed an alternative presentation of the elimination scheme similar to a
definition by pattern-matching in functional languages. With this method we can easily prove
=(true = false) without introducing the full power of strong elimination.

5.4 Conclusion

The main ideas of the formulation of the inductive definitions were already in [8] and a similar
proposition was simultaneously done by [9]. The purpose of this paper was to give the precise
definitions corresponding to the system Coq and also to show that strong normalization for a
large useful subsystem of Coq could be obtained from previous results known about the Calculus
of Constructions.

The main point about this presentation is that it corresponds to a closed system. This is
different from the extension with inductive definitions provided in other systems like Lego [14] or
Alf [15] also based on typed lambda-calculus. In these systems new constants and new equality
rules can be added in the system. It is the user responsibility to check that adding these new
objects and rules is safe.

Our proposition was intended to be of practical use and integrated to the previous imple-
mentation of the Calculus of Constructions. Indeed, with these operations, the type recognition
procedure or the discharge operation were easy to extend. Also having only one kind of con-
stants (as abbreviation) makes a lot of things simpler. It is less clear whether this presentation
is well-suited for proof synthesis. For instance, defining the addition function going back to the
elimination scheme is a bit delicate and surely users will prefer to define such a function using
equalities or an ML-like syntax. Also assume that addition is defined for instance as :

add = [n,m : natlElim(n, nat){m, [p, addmp : naf](S addmp)}

Then we will have (add (5 n) m) is convertible with (S (add n m)) but we do not have
(add (S n) m) reduces to (5 (add n m)). Obviously we would like such an equality correspond-
ing to the intended definition of the addition to be automatically recognized by the system. In
conclusion, our opinion is that the status of names involved in the inductive definitions has still
to be clearly understood.
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