
Introduction A simple criterion Refinements Pitfalls Conclusion

The guard condition of Coq

Bruno Barras

December 19, 2006

Introduction A simple criterion Refinements Pitfalls Conclusion

Why this talk ?

Defining functions by recursion is very common

Logical consistency relies heavily on termination

Reference Manual of Coq refers to Gimenez’ paper
“Codifying guard definitions with recursive schemes” (94)

This condition has been extended over the years to support
more schemes

Bugs (or scary error messages)
Uncaught exception: Assert failure("kernel/inductive.ml",)

Introduction A simple criterion Refinements Pitfalls Conclusion

Why this talk ?

Defining functions by recursion is very common

Logical consistency relies heavily on termination

Reference Manual of Coq refers to Gimenez’ paper
“Codifying guard definitions with recursive schemes” (94)

This condition has been extended over the years to support
more schemes

Bugs (or scary error messages)

Uncaught exception: Assert failure("kernel/inductive.ml",)

Introduction A simple criterion Refinements Pitfalls Conclusion

Why this talk ?

Defining functions by recursion is very common

Logical consistency relies heavily on termination

Reference Manual of Coq refers to Gimenez’ paper
“Codifying guard definitions with recursive schemes” (94)

This condition has been extended over the years to support
more schemes

Bugs (or scary error messages)
Uncaught exception: Assert failure("kernel/inductive.ml",)

Introduction A simple criterion Refinements Pitfalls Conclusion

Overview of the talk

1 Introduction
Syntactic guard criterion
Strictly positive inductive definitions

2 A simple criterion

3 Refinements

4 Pitfalls

5 Conclusion

Introduction A simple criterion Refinements Pitfalls Conclusion

Overview

1 Introduction
Syntactic guard criterion
Strictly positive inductive definitions

2 A simple criterion

3 Refinements

4 Pitfalls

5 Conclusion

Introduction A simple criterion Refinements Pitfalls Conclusion

A long time ago...

Recursion was made by recursors (Gödel T).

Only allows recursive calls on direct subterms

Cumbersome in a functional programming setting

Example

Definition half n :=
fst(Rec (0,false)

(fun (k,odd) ⇒ if odd then (k+1,false)
else (k,true))

n)

instead of

Fixpoint half n :=
match n with S(S k) ⇒ half k | ⇒ 0 end

Introduction A simple criterion Refinements Pitfalls Conclusion

Syntactic guard criterion

Towards syntactic guard criterion

Proposal by Coquand (92):
recursor = pattern-matching + fixpoint

Gimenez’ paper (94): translation towards recursors.
For f : I → T , define If similar to I such that every subterm
of type I comes with its image by f . Then write g : I → If
and h : If → T .

Blanqui (05), Calculus of Algebraic Constructions: reducibility
proof (CC + higher order rewriting)

Only work for simple criterion.

Introduction A simple criterion Refinements Pitfalls Conclusion

Strictly positive inductive definitions

Positivity condition

Also crucial for consistency

Lists
Inductive list (A:Type) : Type :=

nil | cons (x:A) (l:list A).

Ordinals Inductive ord:Set :=
O | S(o:ord) | lim(f:nat→ord).

Useful extension: nested inductive types
Inductive tree:Set := None(l:list tree).
Reuse list library

Introduction A simple criterion Refinements Pitfalls Conclusion

Strictly positive inductive definitions

Positivity condition (more formally)

Definition (Terms)

s | x | Πx : T .U | λx : T .M | M N

| Ind(X : A){~C} | Constr(n, I) | Fix Fk : T := M
| Match M with ~p ⇒ ~t end

Definition (strict positivity)

Π~x : ~t.C is strictly positive w.r.t. X if forall i either:

(Norec) X does not occur free in ti , or

(Rec) ti = Π~y : ~u.X ~w where X does not occur in ~u~w , or

(Nested) ti = Π~y : ~u. Ind(Y : B){~D} ~w and

X does not occur free in ~u~w
Di is strictly positive w.r.t. X forall i

Introduction A simple criterion Refinements Pitfalls Conclusion

Strictly positive inductive definitions

Impredicativity

Recursive calls cannot be allowed on all constructor arguments

Inductive I : Set := C (f:forall A:Set,A->A).
Fixpoint F (x:I) : False :=
match x with
C f => F (f I x)

end

Definition (recursive positions)

constructors arguments that satisfy (Rec) or (Nested) clause of
positivity.

Introduction A simple criterion Refinements Pitfalls Conclusion

Strictly positive inductive definitions

Regular trees

Different instances of the same inductive type may have
different sets of recursive positions

Example (Str(list) and Str(tree))

list

[] [⊥, .]

tree

[.]

list

[] [., .]

Introduction A simple criterion Refinements Pitfalls Conclusion

Strictly positive inductive definitions

Trees as sets of paths

While checking positivity, we build a regular tree that identifies
recursive positions.
But: parameters not instanciated

Lemma

The computed tree is the set of paths that cannot contain an
infinite number of inductive objects.

Introduction A simple criterion Refinements Pitfalls Conclusion

Overview

1 Introduction
Syntactic guard criterion
Strictly positive inductive definitions

2 A simple criterion

3 Refinements

4 Pitfalls

5 Conclusion

Introduction A simple criterion Refinements Pitfalls Conclusion

Size information

(strict) σ− ::= > | τ−

(non-strict) σ+ ::= ⊥ | τ+

(size info) σ ::= σ+ ∪ σ−

A map ρ associates size information to every variable

>

⊥

τ−1 τ−2 τ−3 τ−4

τ+
1 τ+

2 τ+
3 τ+

4

. . .

Introduction A simple criterion Refinements Pitfalls Conclusion

Guard condition in short

A judgement ρ `S M ⇒ σ meaning that M has size
information σ, where ρ associates size information to variables

A judgement M ∈ CheckF ,k
ρ meaning that M does recursive

calls to F only on strict subterms, as specified by ρ

Pattern-matching propagates information on pattern variables
Constr(i , I) x1 . . . xk | σ = {(xj , σ.i .j−) | j ≤ k}

Remarks

Easy encoding of recursors as fix+match (non regression)

Allow recursive calls on deep subterms

Introduction A simple criterion Refinements Pitfalls Conclusion

Definition of the condition (1)

Typing rule:

Γ (F : T) ` M : T M ∈ GuardF
k

Γ ` (Fix Fk : T := M) : T

tk = Ind(X : A){~C} ~u Str(X , ~C) = τ M ∈ CheckF ,k
{(xk ,τ+)}

λ~x : ~t.M ∈ GuardF
k

Introduction A simple criterion Refinements Pitfalls Conclusion

Definition of the condition (2)

M ∈ Checkf ,k
ρ ρ `S M ⇒ σ ∀i . bi ∈ Checkf ,k

ρ∪(pi |σ)

Match M with ~p ⇒ ~b end ∈ Checkf ,k
ρ

ρ `S tk ⇒ σ− ∀i , ti ∈ Checkf ,k
ρ

f ~t ∈ Checkf ,k
ρ

Introduction A simple criterion Refinements Pitfalls Conclusion

Definition of the condition (boring cases)

Simply check recursively that subexpressions are guarded

f 6∈ FV (M)

M ∈ Checkf ,k
ρ

T ∈ Checkf ,k
ρ U ∈ Checkf ,k

ρ

Πx : T U ∈ Checkf ,k
ρ

T ∈ Checkf ,k
ρ U ∈ Checkf ,k

ρ

λx : T U ∈ Checkf ,k
ρ

M ∈ Checkf ,k
ρ N ∈ Checkf ,k

ρ

M N ∈ Checkf ,k
ρ

Introduction A simple criterion Refinements Pitfalls Conclusion

Subterms

(x , σ) ∈ ρ

ρ `S x ~t ⇒ σ

ρ `S M ⇒ σ

ρ `S λx : A.M ⇒ σ

Introduction A simple criterion Refinements Pitfalls Conclusion

Overview

1 Introduction
Syntactic guard criterion
Strictly positive inductive definitions

2 A simple criterion

3 Refinements

4 Pitfalls

5 Conclusion

Introduction A simple criterion Refinements Pitfalls Conclusion

Checking guard modulo reduction

In fact, the typing rule for fixpoints is:

Γ (F : T) ` M : T M →∗
β M ′ M ′ ∈ GuardF

k

Γ ` (Fix Fk : T := M) : T

Breaks strong normalization!

Example

Fixpoint F n := let x := F n in 0.
Eval compute in (F 0).

Introduction A simple criterion Refinements Pitfalls Conclusion

Pattern-matching

∀i , ρ `S bi ⇒ σi

ρ `S Match M with ~p ⇒ ~b end ⇒ u~σ

Example

Definiton pred n (H:n<>0) :=
match n with
0 ⇒ match H with end

| S k ⇒ k
end.

Fixpoint F x :=
if eq nat dec x 0 then 0 else F (pred x)

Introduction A simple criterion Refinements Pitfalls Conclusion

Fixpoints as argument of F

A fix returns a strict subterm if its body does

Size information of recursive argument is propagated

ρ `S un ⇒ σ ρ ∪ {(G , τ−), (xn, σ)} `S M ⇒ τ−

ρ `S (Fix Gn : T := λ~x : ~t.M) ~u ⇒ τ−

Example

Fixpoint F x y :=
if ‘‘x ≤ y’’ then x else F (x-S(y)) y

Introduction A simple criterion Refinements Pitfalls Conclusion

Nested fixpoints

ρ `S un ⇒ σ M ∈ CheckF ,k
ρ{(xk ,σ)} T ∈ CheckF ,k

ρ ~u ∈ CheckF ,k
ρ

(Fix Gn : T := M) ~u ∈ CheckF ,k
ρ

Example (size of a tree)

Fixpoint size (t:tree) :=
match t with
Node l ⇒ fold right (fun t’ n ⇒ n+size t’) 1 l

end.

Introduction A simple criterion Refinements Pitfalls Conclusion

Overview

1 Introduction
Syntactic guard criterion
Strictly positive inductive definitions

2 A simple criterion

3 Refinements

4 Pitfalls

5 Conclusion

Introduction A simple criterion Refinements Pitfalls Conclusion

Nested vs. mutual inductive types

Example (Guard violated)

Fixpoint size (t:tree) :=
match t with

Node l ⇒ S(size forest l)
end

with size forest (l:list tree) :=
match l with
nil ⇒ 0

| t::l’ ⇒ size t + size l’
end.

Mutual inductive types can be used in the context of both mutual
fixpoints and nested fixpoints.
Nested inductive types cannot be used in the context of mutual
fixpoints.

Introduction A simple criterion Refinements Pitfalls Conclusion

Overview

1 Introduction
Syntactic guard criterion
Strictly positive inductive definitions

2 A simple criterion

3 Refinements

4 Pitfalls

5 Conclusion

Introduction A simple criterion Refinements Pitfalls Conclusion

Many extensions already,

Many are still missing (syntactic criterion)

Introduction A simple criterion Refinements Pitfalls Conclusion

So why this talk ?

An opportunity to stop and think

A highly critical (implementation) bug found: apply the patch!

Syntactic criterions are dead: Gimenez, Blanqui, Barthe
(and...) moved to type-based guard verification (size
annotation)

	Introduction
	Syntactic guard criterion
	Strictly positive inductive definitions

	A simple criterion
	Refinements
	Pitfalls
	Conclusion

