The Constructive Engine

Randy Pollack

LFCS, University of Edinburgh

Version of December 30, 2006

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Outline

- **Checking Type Judgements**
- PTS
- Strategy for Typechecking
- Transform for Efficiency: Incremental context correctness

(ロ) (同) (三) (三) (三) (○) (○)

- Making it Syntax Directed
- Binding: Huet's Concrete Constructive Engine
- An Improved Constructive Engine
- References

Outline

- Checking Type Judgements
- PTS
- Strategy for Typechecking
- Transform for Efficiency: Incremental context correctness

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Making it Syntax Directed
- Binding: Huet's Concrete Constructive Engine
- An Improved Constructive Engine
- References

Checking Type Judgements

- Type Judgements have shape $\Gamma \vdash M : A$
 - M is a term claimed to have type A in context of assumptions, Γ.
- Correct judgements are specified inductively by a set of rules.
- Like other relations defined by inductive rule sets, a type judgement can be verified by checking a derivation tree.
 - Side conditions, decidability, ...
 - This is how NuPrl is checked.
- In some type theories, the information in the judgement is enough to build a derivation.
 - Intensional theories with Church-style terms ($\lambda x: A.M$):
 - Calculus of Constructions, ECC, Coq, λP (LF), ...

Type Checking and Type Synthesis

- The Type Checking (TC) problem, given Γ, M and A, is to decide Γ ⊢ M : A.
- The Type Synthesis (TS) problem, given Γ and M is to find A s.t. $\Gamma \vdash M : A$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

• ... Or to find a principle description of all such *A*.

We will use TS to solve TC for a class of PTS.

History of Checking PTS

- [Mar71] Martin-Löf's theory with Type:Type (λ*); feasible abstract algorithm for checking.
- [Hue89] Coined name constructive engine, gave concrete ML program for checking CC.
- ► [HP91] Proved correctness of engine, extended to universes.
- [Pol92] Extended constructive engine to λP (LF).
- [Pol] Abstract algorithm for whole λ -cube.
- [vBJMP94] Deeper study of checking for all PTS; machine checked.
- [Pol94] Machine checked proof of correctness.
- ▶ [Pol95] Machine checked proof of correctness.
- [Bar99] Machine checked for CC with inductive types (including normalization); working typechecker extracted from proof!

[Sev98] Simpler proof for functional PTS.

Outline

Checking Type Judgements

PTS

- Strategy for Typechecking
- Transform for Efficiency: Incremental context correctness

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Making it Syntax Directed
- Binding: Huet's Concrete Constructive Engine
- An Improved Constructive Engine
- References

The Language

PTS is a language and a typing relation parameterised by $(\mathcal{V}, \mathcal{S}, ax, rl)$ where:

> \mathcal{V} is an infinite set of *variables*, ranged over by *x*, *y*;

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- S is a set of *sorts*, ranged over by *s*, *t*;
- ax $\subseteq S \times S$ called *axioms*;
- $\blacktriangleright \ \mathsf{rl} \subseteq \mathcal{S} \times \mathcal{S} \times \mathcal{S} \text{ called } \textit{rules}.$

The Language

Terms (M, N, A, B) are given by the grammar:

atoms
$$\alpha ::= x \mid s$$

terms $M ::= \alpha \mid \lambda x: M.M \mid \Pi x: M.M \mid MM$

- Write $A \xrightarrow{wh} B$ for β -weak-head-reduction to whnf.
- Write $A \simeq B$ for β -conversion.

Contexts (Г) are lists of variable-term pairs, written as

context $\Gamma ::= \bullet | \Gamma, x:A$ empty, non-empty

Typing judgement of PTS has shape $\Gamma \vdash M : A$.

- (Γ, M) is the **subject** of judgement $\Gamma \vdash M : A$.
- ► A is the **predicate** of the judgement.

The Constructive Engine

Typing Rules $Ax \frac{ax(s_1:s_2)}{\bullet \vdash s_1:s_2} \qquad \text{START} \frac{\Gamma \vdash A:s \quad x \notin \Gamma}{\Gamma, x:A \vdash x:A}$ WEAK $\frac{\Gamma \vdash \alpha : B \quad \Gamma \vdash A : s \quad x \notin \Gamma}{\Gamma . x : A \vdash \alpha : B}$ $\mathsf{PI} \ \frac{\Gamma \vdash A : s_1 \quad \Gamma, x : A \vdash B : s_2 \quad \mathsf{rl}(s_1, s_2, s_3) \quad x \notin \Gamma}{\Gamma \vdash \Pi x : A : B : s_3}$ LDA $\frac{\Gamma, x: A \vdash M: B \quad \Gamma \vdash \Pi x: A.B: s \quad x \notin \Gamma}{\Gamma \vdash \lambda x: A.M: \Pi x: A.B}$ APP $\frac{\Gamma \vdash M : \Pi x : A.B \quad \Gamma \vdash N : A}{\Gamma \vdash M N : [N/x]B}$ CONV $\frac{\Gamma \vdash M : A \quad \Gamma \vdash B : s \quad A \simeq B}{\Gamma \vdash M : B}$ ・ロト・日本・日本・日本・日本

Outline

Checking Type Judgements

PTS

- Strategy for Typechecking
- Transform for Efficiency: Incremental context correctness

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Making it Syntax Directed
- Binding: Huet's Concrete Constructive Engine
- An Improved Constructive Engine
- References

Strategy for Programming

- To solve TS we want a set of rules that is syntax directed on the subject of the judgement, Γ, M.
- Rules are read as recursion equations. For example

$$\mathsf{PI} \quad \frac{\Gamma \vdash A : s_1 \quad \Gamma, x : A \vdash B : s_2 \quad \mathsf{rl}(s_1, s_2, s_3) \quad x \notin \Gamma}{\Gamma \vdash \Pi x : A : B : s_3}$$

is read as

$$TS(\Gamma, \Pi x: A.B) = let s_1 = TS(\Gamma, A) in$$

let s_2 = TS(((\Gamma, x: A), B)) in
if rl(s_1, s_2, s_3) then s_3 else fail

- Reason about the relation rather than the program.
- Termination must still be proved (because of side conditions).

Problems with the Strategy

Relation may be too inefficient in practice:

- Some rules have two premises ...
- ... the PTS context is constructed by weakening on every branch.

Solution: Incrementally maintain context correctness instead of repeatedly checking it.

Rule CONV is not syntax directed:

Structure doesn't tell when to use the rule.

CONV
$$\frac{\Gamma \vdash M : A \quad \Gamma \vdash B : s \quad A \simeq B}{\Gamma \vdash M : B}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Solution: permute the rule to end of derivations

These are the two main ideas in the Constructive Engine.

Basic Properties for Type Synthesis

- ► The (raw) language of PTS is Church–Rosser.
 - Conversion testing by reduction is complete, but possibly non-terminating.
 - For normalizing PTS, conversion testing is decidable on well-typed terms.
 - A TS program should only try reduction on terms already known to be well-typed.

(日) (日) (日) (日) (日) (日) (日)

- **Subject Reduction:** If $\Gamma \vdash M : A$ and $M \rightarrow M'$ then $\Gamma \vdash M' : A$.
- **Type Correctness:** If $\Gamma \vdash M : A$ then $\exists s \, . \, \Gamma \vdash A : s \lor A = s$.

Functional PTS

Definition: A PTS is functional iff

$$\begin{array}{rcl} \operatorname{ax}(s_1:s_2) \wedge \operatorname{ax}(s_1:s_2') & \Longrightarrow & s_2 = s_2' \\ \operatorname{rl}(s_1,s_2,s_3) \wedge \operatorname{rl}(s_1,s_2,s_3') & \Longrightarrow & s_3 = s_3'. \end{array}$$

► In non-functional PTS, different instances of a rule may be used:

$$Ax \quad \frac{ax(s_1:s_2)}{\bullet \vdash s_1:s_2}$$

- Non-functional PTS may sometimes be handled using schematic sort variables and constraints.
 - E.g. universes in Coq and Lego.
- But non-functional PTS lack other good properties too, so we ignore them in the rest of this talk.
- In functional PTS, rules Ax and PI are deterministic for TS.

Decidability Issues

Example: Consider the PTS:

S = natural numbers ax = {(*i* : *n*) | Turing machine *i*, with *i* on its tape, halts in exactly *n* steps} rl = \emptyset

- ax and rl are decidable.
- The PTS is functional and strongly normalizing (there are no well-typed redices).
- ► TC and TS are undecidable:

 $x: i \vdash x: i \iff \exists n . ax(i:n) \iff$ Turing machine *i* halts on input *i*.

► Definition: Sort *s* is a topsort iff $\neg \exists s' \cdot ax(s:s')$.

The Constructive Engine

Transform for Efficiency: Incremental context correctness

Outline

Checking Type Judgements

PTS

Strategy for Typechecking

Transform for Efficiency: Incremental context correctness

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Making it Syntax Directed

Binding: Huet's Concrete Constructive Engine

An Improved Constructive Engine

References

Step 1: System with Valid Contexts Typing Ax $\frac{\vdash_{vc} \Gamma \quad ax(s_1:s_2)}{\Gamma \vdash_{vt} s_1:s_2}$ VAR $\frac{\vdash_{vc} \Gamma \quad x:A \in \Gamma}{\Gamma \vdash_{vt} x:A}$ $\mathsf{PL} \ \frac{\Gamma \vdash_{vt} A : s_1 \quad \Gamma, x : A \vdash_{vt} B : s_2 \quad \mathsf{rl}(s_1, s_2, s_3) \quad x \notin \Gamma}{\Gamma \vdash_{vt} \Pi x : A : B : s_3}$ LDA $\frac{\Gamma, x: A \vdash_{vt} M: B \quad \Gamma \vdash_{vt} \Pi x: A.B: s \quad x \notin \Gamma}{\Gamma \vdash_{vt} \lambda x: A.M: \Pi x: A.B}$ APP $\frac{\Gamma \vdash_{vt} M : \Pi x: A.B \quad \Gamma \vdash_{vt} N : A}{\Gamma \vdash_{vt} M N : [N/x]B}$ CONV $\frac{\Gamma \vdash_{vt} M : A \quad \Gamma \vdash_{vt} B : s \quad A \simeq B}{\Gamma \vdash M : B}$ Contexts VALNIL $\xrightarrow{\vdash_{vc} \bullet}$ VALCONS $\frac{\vdash_{vt} A: s \quad x \notin \Gamma}{\vdash_{vc} \Gamma, x: A}$

System with Valid Contexts

- ▶ \vdash_{vc} and \vdash_{vt} are mutually inductive.
- Correctness (for all PTS)
 - $\Gamma \vdash_{vt} M : A \Longrightarrow \Gamma \vdash M : A$
 - Proof by direct induction using simple properties of \vdash .
 - F⊢M: A ⇒ F⊢_{vt} M: A Proof by induction, requiring weakening for ⊢_{vt} to treat the WEAK rule of ⊢.
 - ► Derivations essentially isomorphic with ⊢.
- Efficiency
 - ▶ Infeasible: checks $\vdash_{vc} \Gamma$ on every branch.
- Still not syntax directed: CONV rule.

Step 2: System with Locally Valid Contexts Typing Ax $\frac{\operatorname{ax}(s_1:s_2)}{\Gamma \vdash_{Mt} s_1:s_2}$ VAR $\frac{x:A \in \Gamma}{\Gamma \vdash_{Mt} x:A}$ $\mathsf{PL} \stackrel{\Gamma \vdash_{lvt} A: s_1 \quad \Gamma, x: A \vdash_{lvt} B: s_2 \quad \mathsf{rl}(s_1, s_2, s_3) \quad x \notin \Gamma}{=}$ $\Gamma \vdash_{het} \Pi x : A : B : S_2$ LDA $\frac{\Gamma, x: A \vdash_{lvt} M: B \quad \Gamma \vdash_{lvt} \Pi x: A.B: s \quad x \notin \Gamma}{\Gamma \vdash_{lvt} \lambda x: A.M: \Pi x: A.B}$ APP $\frac{\Gamma \vdash_{lvt} M : \Pi x : A.B \quad \Gamma \vdash_{lvt} N : A}{\Gamma \vdash_{lvt} M N : [N/x]B}$ CONV $\frac{\Gamma \vdash_{Mt} M : A \quad \Gamma \vdash_{Mt} B : s \quad A \simeq B}{\Gamma \vdash_{M} M : B}$

Contexts

NIL
$$- \operatorname{Cons} \frac{\Gamma \vdash_{lvt} A : s \quad x \not\in \Gamma}{\vdash_{lvc} \Gamma, x : A}$$

System with Locally Valid Contexts

- ▶ \vdash_{lvt} does not depend on \vdash_{lvc} .
- Correctness (for all PTS)
 - (Γ⊢_{Ivt} M : A ∧ ⊢_{Ivc} Γ) ⇒ Γ⊢_{vt} M : A Proof by tricky induction on the sum of the heights of the derivations of Γ⊢_{Ivt} M : A and ⊢_{Ivc} Γ.
 - This proof says \vdash_{Nt} derivations can be expanded to \vdash_{Vt} derivations.
 - Thus: $\Gamma \vdash M : A \iff (\vdash_{lvc} \Gamma \land \Gamma \vdash_{lvt} M : A)$
- Efficiency
 - Contexts are not checked on every branch ...
 - ...so local extensions (rules PI and LDA) must be checked locally. (Note rule LDA.)
 - "The derivation tree of ⊢_{vt} has become a graph by identifying the duplicate derivations of ⊢_{vc} Γ."
 - Derivations much smaller than \vdash .

Outline

- **Checking Type Judgements**
- PTS
- Strategy for Typechecking
- Transform for Efficiency: Incremental context correctness

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Making it Syntax Directed
- Binding: Huet's Concrete Constructive Engine
- An Improved Constructive Engine
- References

Permuting CONV Out of Derivations

- ► ⊢_{lvt} is not syntax directed: the shape of the subject doesn't tell where to use rule CONV.
- The idea is to permute uses of CONV to the root of derivations.
- When CONV passes through a premise of another rule, we may need to do some computation on that premise.
- ► E.g. rule APP becomes

APP
$$\frac{\Gamma \vdash M \Rightarrow X \quad X \xrightarrow{wh} \Pi x : A.B \quad \Gamma \vdash N \Rightarrow A' \quad A \simeq A'}{\Gamma \vdash M N \Rightarrow [N/x]B}$$

• Note, $\Pi x: A.B$ is a whnf.

Soundness depends on subject reduction and type correctness.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Syntax Directed Relation Notation: Write $\Gamma \vdash M \Rightarrow \xrightarrow{wh} A$ for $(\Gamma \vdash M \Rightarrow X \land X \xrightarrow{wh} A)$. Typing

$$Ax \quad \frac{ax(s_1:s_2)}{\Gamma \vdash s_1 \Rightarrow s_2} \qquad VAR \quad \frac{x:A \in I}{\Gamma \vdash x \Rightarrow A}$$

$$PI \quad \frac{\Gamma \vdash A \Rightarrow \stackrel{wh}{\longrightarrow} s_1 \quad \Gamma, x:A \vdash B \Rightarrow \stackrel{wh}{\longrightarrow} s_2 \quad rI(s_1, s_2, s_3) \quad x \notin \Gamma}{\Gamma \vdash \Pi x:A.B \Rightarrow s_3}$$

$$LDA \quad \frac{\Gamma, x:A \vdash M \Rightarrow B \quad \Gamma \vdash \Pi x:A.B \Rightarrow s \quad x \notin \Gamma}{\Gamma \vdash \lambda x:A.M \Rightarrow \Pi x:A.B}$$

$$APP \quad \frac{\Gamma \vdash M \Rightarrow \stackrel{wh}{\longrightarrow} \Pi x:A.B \quad \Gamma \vdash N \Rightarrow A' \quad A \simeq A'}{\Gamma \vdash M N \Rightarrow [N/x]B}$$

Contexts

NIL
$$\overline{\vdash \bullet}$$
 Cons $\frac{\Gamma \vdash A \Rightarrow \xrightarrow{win} s \quad x \not\in \Gamma}{\vdash \Gamma, x: A}$

...b

Correctness of Syntax Directed Relation

Soundness: For any PTS,

$$(\vdash \Gamma \land \Gamma \vdash M \Rightarrow A) \Longrightarrow \Gamma \vdash M : A.$$

- Completeness? $\Gamma \vdash M : A \Longrightarrow (\Gamma \vdash M \Rightarrow A' \land A \simeq A')$
 - Counterexample for non-functional PTS [Pol92].
 - Source of incompleteness is rule LDA.
 - Open problem for arbitrary functional PTS.
- This system is syntax directed, but is not a satisfactory TS program!
 - It may not terminate when it should.

Termination

Assume a functional, normalizing PTS.

- The rules are syntax directed, so building a putative derivation tree does terminate.
- reduction terminates for any well-typed term.
- In rules PI and APP, we only apply reduction (conversion) to well-typed terms.
- There is a problem with rule LDA:

LDA
$$\frac{\Gamma, x: A \vdash M \Rightarrow B \quad \Gamma \vdash \Pi x: A.B \Rightarrow s}{\Gamma \vdash \lambda x: A.M \Rightarrow \Pi x: A.B}$$

- The left premise must be synthesised first, to get B
- A in the extended context is not yet checked, so some reduction may diverge.

Improve Rule LDA

Expand the right premise:

$$\frac{\Gamma, x: A \vdash M \Rightarrow B}{\Gamma \vdash \lambda x: A.M \Rightarrow \Pi x: A.B} \xrightarrow{Wh} s_1 \quad \Gamma, x: A \vdash B \Rightarrow \xrightarrow{Wh} s_2 \quad rl(s_1, s_2, s_3)}{\Gamma \vdash \Pi x: A.B \Rightarrow s}$$

Move the premises around:

LDA
$$\frac{\Gamma \vdash A \Rightarrow \stackrel{wh}{\longrightarrow} s_1 \quad \Gamma, x: A \vdash M \Rightarrow B \quad \Gamma, x: A \vdash B \Rightarrow \stackrel{wh}{\longrightarrow} s_2 \quad r!(s_1, s_2, s_3)}{\Gamma \vdash \lambda x: A.M \Rightarrow \Pi x: A.B}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 めん⊙

Regain Completeness for Full PTS

LDA
$$\frac{\Gamma \vdash A \Rightarrow \xrightarrow{wh} s_1 \quad \Gamma, x: A \vdash M \Rightarrow B \quad \Gamma, x: A \vdash B \Rightarrow \xrightarrow{wh} s_2 \quad r!(s_1, s_2, s_3)}{\Gamma \vdash \lambda x: A.M \Rightarrow \Pi x: A.B}$$

- **Definition:** A PTS is full iff $\forall s_1, s_2 . \exists s_3 . rl(s_1, s_2, s_3)$.
 - λ^* , CC, ECC and CIC are full.
- For full PTS, we can omit the side condition $rl(s_1, s_2, s_3)$.
- ▶ Thus there is no need to actually know *s*₂; any sort will do.
- If B is not a topsort, the third premise is derivable from type correctness on the second premise:

$$\exists s . (\Gamma, x: A \vdash B \Rightarrow \xrightarrow{wh} s_B) \lor B = s_B.$$

▶ In the second case, if $ax(s_B:s)$, then $\Gamma, x:A \vdash B \Rightarrow s$.

LDA
$$\frac{\Gamma \vdash A \Rightarrow \stackrel{wh}{\longrightarrow} s_1 \quad \Gamma, x: A \vdash M \Rightarrow B \quad B \text{ not a topsort}}{\Gamma \vdash \lambda x: A.M \Rightarrow \Pi x: A.B}$$

The Constructive Engine

Abstract Constructive Engine Sound and complete for full PTS.

Ax $\frac{\operatorname{ax}(s_1:s_2)}{\Gamma \vdash s_1 \Rightarrow s_2}$ Var $\frac{x:A \in I}{\Gamma \vdash x \Rightarrow A}$ $\mathsf{PI} \xrightarrow{\Gamma \vdash A \Rightarrow \xrightarrow{wh} s_1 \quad \Gamma, x: A \vdash B \Rightarrow \xrightarrow{wh} s_2 \quad \mathsf{rl}(s_1, s_2, s_3) \quad x \notin \Gamma}{\Gamma \vdash \Pi x: A.B \Rightarrow s_3}$ LDA $\frac{\Gamma \vdash A \Rightarrow \stackrel{wh}{\longrightarrow} s_1 \quad \Gamma, x: A \vdash M \Rightarrow B \quad B \text{ not a topsort } x \notin \Gamma}{\Gamma \vdash \lambda x: A.M \Rightarrow \Pi x: A.B}$ $\frac{\Gamma \vdash M \Rightarrow \stackrel{wh}{\longrightarrow} \Pi x: A.B \quad \Gamma \vdash N \Rightarrow A' \quad A \simeq A'}{\Gamma \vdash M N \Rightarrow [N/x]B}$ APP Cons $\frac{\Gamma \vdash A \Rightarrow \xrightarrow{wh} s \quad x \not\in \Gamma}{\vdash \Gamma, x : A}$ NIL —

The Constructive Engine

Outline

- **Checking Type Judgements**
- PTS
- Strategy for Typechecking
- Transform for Efficiency: Incremental context correctness

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Making it Syntax Directed
- Binding: Huet's Concrete Constructive Engine
- An Improved Constructive Engine
- References

Binding: Huet's Concrete Constructive Engine

Binding

- User input is ascii, so after parsing, raw terms have strings for variable names, x.
- Introduce a new species of checked terms, (M, A), with equality up-to α -equivalence.
 - Using de Bruijn representation, FreshOcaml, C α ml, FreshLib, ...
 - ... with a new species of bound variable, v, w.
 - Continue to use strings, x, for global variables.

terms $M ::= x | s | v | \lambda v:M.M | \Pi v:M.M | M M$ context $\Gamma ::= \bullet | \Gamma, x:A$

A judgement form (the kernel) that does type synthesis and translates to checked terms at the same time:

$$\Gamma \vdash M \Rightarrow M : A$$

- M and Γ are abstract datatypes, only constructed by the kernel.
- Only operation needed on black terms is structural decomposition.

-Binding: Huet's Concrete Constructive Engine

Huet's Concrete Constructive Engine: Kernel Ax $\frac{ax(s_1:s_2)}{\Gamma \vdash s_1 \Rightarrow s_1:s_2}$ VAR $\frac{x:A \in \Gamma}{\Gamma \vdash x \Rightarrow x:A}$ $\mathsf{PI} \xrightarrow{\Gamma \vdash A \Rightarrow \xrightarrow{wh} A : s_1 \quad \Gamma, x : A \vdash B \Rightarrow \xrightarrow{wh} B : s_2 \quad \mathsf{rl}(s_1, s_2, s_3) \xrightarrow{x \not \models \mathbf{v}} \mathsf{fresh}}{\Gamma \vdash \Pi x : A : B \Rightarrow \Pi v : A . [v/x]B : s_3}$ X∉Г Х∉Г LDA $\frac{\Gamma \vdash A \Rightarrow \stackrel{wh}{\longrightarrow} A : s_1 \quad \Gamma, x: A \vdash M \Rightarrow M : B \quad B \text{ not a topsort } v \text{ fresh}}{\Gamma \vdash \lambda x: A.M \Rightarrow \lambda v: A.[v/x]M : \Pi v: A.[v/x]B}$ $\frac{\Gamma \vdash M \Rightarrow \xrightarrow{wh} M : \Pi v : A.B \quad \Gamma \vdash N \Rightarrow N : A' \quad A \simeq A'}{\Gamma \vdash M N \Rightarrow M N : [N/v]B}$ App CONS $\frac{\Gamma \vdash A \Rightarrow \stackrel{Wn}{\longrightarrow} A : s \quad x \notin \Gamma}{\vdash \Gamma \cdot x : A}$ NIL — ✓・ □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The Constructive Engine

Outline

- **Checking Type Judgements**
- PTS
- Strategy for Typechecking
- Transform for Efficiency: Incremental context correctness

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Making it Syntax Directed
- Binding: Huet's Concrete Constructive Engine
- An Improved Constructive Engine
- References

A Problem: Repeated Concrete Binding Names

Some correct judgements are not accepted because of side condition *x* ∉ Γ on rules PI and LDA:

$$\bullet \vdash \lambda x : \star . \lambda x : x . x : \Box x : \star . \Box y : x . x.$$
(1)

- ► One might think these side conditions can be omitted, making lookup in Γ block structured.
- For dependent types this is unsound:
 - Running (1) in the concrete engine without these side conditions yields the unsound judgement:

• $\vdash \lambda x: \star \lambda x: x. x \Rightarrow \lambda w: \star \lambda v: w. v: \Box w: \star \Box v: w. v.$

- Context lookup can safely be block structured
 - because type synthesis is directed by the syntax of the black term;
- but resolving bound variable names cannot be ...
 - because the synthesised type may have different binding dependency than the term: e.g. equation (1).

An Improved Constructive Engine

A Pretty Fix for the Problem

- Ugly fix: α-convert black terms, …
 - we don't want to define binding opertions (e.g. α-conversion) on black terms.
- Pretty fix: to safely allow black names (x) to be duplicated in Γ, use the fresh variable names (v) to disambiguate:

terms $M ::= s | v | \lambda v:M.M | \Pi v:M.M | M M$ context $\Gamma ::= \bullet | \Gamma, (x, v):A$

- This only works if red terms use names for binding (e.g. FreshOcaml, Cαml or FreshLib).
 - See below a fix for de Bruijn representation.
- For good taste, we keep black names unique in the global context.
- Concrete names (x) don't appear in red terms, and no dummy substitution [v/x]M is required to fix up bound names.
- In the rules (next slide), rule VAR is split for sequential lookup.

An Improved Constructive Engine

A Pretty Fix Using Named Binding Ax $\frac{ax(s_1:s_2)}{\Gamma \vdash s_1 \rightarrow s_1 \rightarrow s_1 \rightarrow s_2}$ VARHD $\frac{1 \vdash x \Rightarrow v : A}{\Gamma,(x,v):A \vdash x \Rightarrow v : A}$ VARTL $\frac{1 \vdash x \Rightarrow v : A}{\Gamma,(y,w):B \vdash x \Rightarrow v : A}$ $\mathsf{PI} \xrightarrow{\Gamma \vdash A \Rightarrow \xrightarrow{wh} A : s_1 \quad \Gamma, (x, v) : A \vdash B \Rightarrow \xrightarrow{wh} B : s_2 \quad \mathsf{rl}(s_1, s_2, s_3) \quad v \text{ fresh}}{\Gamma \vdash \Pi x : A : B \Rightarrow \Pi v : A : B : s_3}$ LDA $\frac{\Gamma \vdash A \Rightarrow \xrightarrow{wh} A : s_1 \quad \Gamma, (x, v) : A \vdash M \Rightarrow M : B \quad B \text{ not a topsort } v \text{ fresh}}{\Gamma \vdash \lambda x : A . M \Rightarrow \lambda v : A . M : \Pi v : A . B}$ $\mathsf{APP} \quad \frac{\Gamma \vdash M \Rightarrow \stackrel{wh}{\longrightarrow} M : \Pi v : A.B \quad \Gamma \vdash N \Rightarrow N : A' \quad A \simeq A'}{\Gamma \vdash M N \Rightarrow M N : [N/v]B}$ CONS $\frac{\Gamma \vdash A \Rightarrow \xrightarrow{wh} A : s \quad x \not\in \Gamma \quad v \text{ fresh}}{\vdash \Gamma, (x, v) : A}$ /** • □ ▶ ◀┌ऺऺऺॏ ▶ ◀ ॾ ▶ ◀ ॾ ▶ ॾ ୬ ९ ୯

A Fix With de Bruijn Representation

- When the red terms use de Bruijn representation, we can't use the "fresh" names (ν) to disambiguate Γ.
- Introduce a new concept, timestamps (notation: *i*, *j*), to annotate freshness:

terms $M ::= i | s | v | \lambda v:M.M | \Pi v:M.M | M M$ context $\Gamma ::= \bullet | \Gamma, (x,i):A$

- In the rules (next slide) side condition "*i* fresh" can be satisfied by taking *i* = length Γ.
- This is the solution LEGO uses.

An Improved Constructive Engine

A Fix With de Bruijn Representation

$$Ax \quad \frac{ax(s_{1}:s_{2})}{\Gamma \vdash s_{1} \Rightarrow s_{1}:s_{2}}$$

$$VaRHD \quad \frac{VaRHD}{\Gamma,(x,i):A \vdash x \Rightarrow i:A} \quad VaRTL \quad \frac{\Gamma \vdash x \Rightarrow i:A \quad x \neq y}{\Gamma,(y,j):B \vdash x \Rightarrow i:A}$$

$$PI \quad \frac{\Gamma \vdash A \Rightarrow \stackrel{wh}{\longrightarrow} A:s_{1} \quad \Gamma,(x,i):A \vdash B \Rightarrow \stackrel{wh}{\longrightarrow} B:s_{2} \quad rl(s_{1},s_{2},s_{3}) \quad v,i \text{ fresh}}{\Gamma \vdash \Pi x:A.B \Rightarrow \Pi v:A.[v/i]B:s_{3}}$$

$$LDA \quad \frac{\Gamma \vdash A \Rightarrow \stackrel{wh}{\longrightarrow} A:s_{1} \quad \Gamma,(x,i):A \vdash M \Rightarrow M:B \quad B \text{ not a topsort} \quad v,i \text{ fresh}}{\Gamma \vdash \lambda x:A.M \Rightarrow \lambda v:A.[v/i]M:\Pi v:A.[v/i]B}$$

$$APP \quad \frac{\Gamma \vdash M \Rightarrow \stackrel{wh}{\longrightarrow} M:\Pi v:A.B \quad \Gamma \vdash N \Rightarrow N:A' \quad A \simeq A'}{\Gamma \vdash M N \Rightarrow M N:[N/v]B}$$

$$NIL \quad - \quad CONS \quad \frac{\Gamma \vdash A \Rightarrow \stackrel{wh}{\longrightarrow} A:s \quad x \notin \Gamma \quad i \text{ fresh}}{\vdash \Gamma,(x,i):A}$$

Outline

- **Checking Type Judgements**
- PTS
- Strategy for Typechecking
- Transform for Efficiency: Incremental context correctness
- Making it Syntax Directed
- Binding: Huet's Concrete Constructive Engine
- An Improved Constructive Engine

References

References

References

[Bar99]	Bruno Barras. Auto-validation d'un système de preuves avec familles inductives. Thèse de doctorat, Université Paris 7, November 1999.
[HP91]	Robert Harper and Robert Pollack. Type checking with universes. Theoretical Computer Science, 89:107–136, 1991.
[Hue89]	Gérard Huet. The constructive engine. In R. Narasimhan, editor, A Perspective in Theoretical Computer Science. World Scientific Publishing, 1989.
[Mar71]	Per Martin-Löf. A theory of types. Technical Report 71-3, Univ. of Stockholm, 1971.
[Pol]	Erik Poll. A typechecker for bijective pure type systems. Computing Science Note (93/22), Eindhoven University of Technology.
[Pol92]	R. Pollack. Typechecking in Pure Type Systems. In Informal Proceedings of the 1992 Workshop on Types for Proofs and Programs, Bastad, Sweden.
[Pol94]	Robert Pollack. The Theory of LEGO: A Proof Checker for the Extended Calculus of Constructions. PhD thesis, Univ. of Edinburgh, 1994.
[Pol95]	Robert Pollack. A verified typechecker. In M.Dezani-Ciancaglini and G.Plotkin, editors, Proceedings of the Second International Conference on Typed Lambda Calculi and Applications, TLCA'95, Edinburgh, volume 902 of LNCS. Springer-Verlag, April 1995.
[Sev98]	Paula Severi. Type inference for pure type systems. INFCTRL: Information and Computation (formerly Information and Control), 143, 1998.
[vBJMP94]	L.S. van Benthem Jutting, J. McKinna, and R. Pollack. Checking algorithms for Pure Type Systems. In Barendregt and Nipkow, editors, <i>TYPES'93: Workshop on Types for Proofs and Programs, Selected Papers</i> , volume 806 of <i>LNCS</i> , pages 19–61. Springer-Verlag, 1994.
	シクク 所 ・ 4 回 ト 4 団 ト 4 回 ト 4 回 ト 4 回 ト 4 回 ト