
The Constructive Engine

The Constructive Engine

Randy Pollack

LFCS, University of Edinburgh

Version of December 30, 2006

The Constructive Engine

Outline
Checking Type Judgements

PTS

Strategy for Typechecking

Transform for Efficiency: Incremental context correctness

Making it Syntax Directed

Binding: Huet’s Concrete Constructive Engine

An Improved Constructive Engine

References

The Constructive Engine

Checking Type Judgements

Outline
Checking Type Judgements

PTS

Strategy for Typechecking

Transform for Efficiency: Incremental context correctness

Making it Syntax Directed

Binding: Huet’s Concrete Constructive Engine

An Improved Constructive Engine

References

The Constructive Engine

Checking Type Judgements

Checking Type Judgements

I Type Judgements have shape Γ ` M : A
I M is a term claimed to have type A in context of assumptions, Γ .

I Correct judgements are specified inductively by a set of rules.
I Like other relations defined by inductive rule sets, a type

judgement can be verified by checking a derivation tree.
I Side conditions, decidability, . . .
I This is how NuPrl is checked.

I In some type theories, the information in the judgement is
enough to build a derivation.

I Intensional theories with Church-style terms (λx :A.M):
I Calculus of Constructions, ECC, Coq, λP (LF), . . .

The Constructive Engine

Checking Type Judgements

Type Checking and Type Synthesis

I The Type Checking (TC) problem, given Γ , M and A , is to
decide Γ ` M : A .

I The Type Synthesis (TS) problem, given Γ and M is to find A s.t.
Γ ` M : A .

I . . . Or to find a principle description of all such A .

We will use TS to solve TC for a class of PTS.

The Constructive Engine

Checking Type Judgements

History of Checking PTS
I [Mar71] Martin-Löf’s theory with Type:Type (λ∗); feasible

abstract algorithm for checking.
I [Hue89] Coined name constructive engine, gave concrete ML

program for checking CC.
I [HP91] Proved correctness of engine, extended to universes.
I [Pol92] Extended constructive engine to λP (LF).
I [Pol] Abstract algorithm for whole λ-cube.
I [vBJMP94] Deeper study of checking for all PTS; machine

checked.
I [Pol94] Machine checked proof of correctness.
I [Pol95] Machine checked proof of correctness.
I [Bar99] Machine checked for CC with inductive types (including

normalization); working typechecker extracted from proof!
I [Sev98] Simpler proof for functional PTS.

The Constructive Engine

PTS

Outline
Checking Type Judgements

PTS

Strategy for Typechecking

Transform for Efficiency: Incremental context correctness

Making it Syntax Directed

Binding: Huet’s Concrete Constructive Engine

An Improved Constructive Engine

References

The Constructive Engine

PTS

The Language

PTS is a language and a typing relation parameterised by
(V,S, ax, rl) where:

I V is an infinite set of variables, ranged over by x , y ;
I S is a set of sorts, ranged over by s , t ;
I ax ⊆ S × S called axioms;
I rl ⊆ S × S × S called rules.

The Constructive Engine

PTS

The Language
Terms (M , N , A , B) are given by the grammar:

atoms α ::= x | s
terms M ::= α | λx :M.M | Πx :M.M | M M

I Write A wh→→ B for β -weak-head-reduction to whnf.
I Write A ' B for β -conversion.

Contexts (Γ) are lists of variable-term pairs, written as

context Γ ::= • | Γ,x :A empty, non-empty

Typing judgement of PTS has shape Γ ` M : A .
I (Γ, M) is the subject of judgement Γ ` M : A .
I A is the predicate of the judgement.

The Constructive Engine

PTS

Typing Rules
AX

ax(s1 : s2)

• ` s1 : s2
START

Γ ` A : s x 6∈ Γ

Γ,x :A ` x : A

WEAK
Γ ` α : B Γ ` A : s x 6∈ Γ

Γ,x :A ` α : B

PI
Γ ` A : s1 Γ,x :A ` B : s2 rl(s1, s2, s3) x 6∈ Γ

Γ ` Πx :A.B : s3

LDA
Γ,x :A ` M : B Γ ` Πx :A.B : s x 6∈ Γ

Γ ` λx :A.M : Πx :A.B

APP
Γ ` M : Πx :A.B Γ ` N : A

Γ ` M N : [N/x]B

CONV
Γ ` M : A Γ ` B : s A ' B

Γ ` M : B

The Constructive Engine

Strategy for Typechecking

Outline
Checking Type Judgements

PTS

Strategy for Typechecking

Transform for Efficiency: Incremental context correctness

Making it Syntax Directed

Binding: Huet’s Concrete Constructive Engine

An Improved Constructive Engine

References

The Constructive Engine

Strategy for Typechecking

Strategy for Programming
I To solve TS we want a set of rules that is syntax directed on the

subject of the judgement, Γ, M .
I Rules are read as recursion equations. For example

PI
Γ ` A : s1 Γ,x :A ` B : s2 rl(s1, s2, s3) x 6∈ Γ

Γ ` Πx :A.B : s3

is read as

TS(Γ,Πx :A.B) = let s1 = TS(Γ, A) in
let s2 = TS((Γ,x :A), B) in
if rl(s1, s2, s3) then s3 else fail

I Reason about the relation rather than the program.
I Termination must still be proved (because of side conditions).

The Constructive Engine

Strategy for Typechecking

Problems with the Strategy

I Relation may be too inefficient in practice:
I Some rules have two premises . . .
I . . . the PTS context is constructed by weakening on every branch.

Solution: Incrementally maintain context correctness instead of
repeatedly checking it.

I Rule CONV is not syntax directed:
I Structure doesn’t tell when to use the rule.

CONV
Γ ` M : A Γ ` B : s A ' B

Γ ` M : B

Solution: permute the rule to end of derivations

These are the two main ideas in the Constructive Engine.

The Constructive Engine

Strategy for Typechecking

Basic Properties for Type Synthesis

I The (raw) language of PTS is Church–Rosser.
I Conversion testing by reduction is complete, but possibly

non-terminating.
I For normalizing PTS, conversion testing is decidable on

well-typed terms.
I A TS program should only try reduction on terms already known

to be well-typed.
I Subject Reduction: If Γ ` M : A and M → M ′ then Γ ` M ′ : A .
I Type Correctness: If Γ ` M : A then ∃s . Γ ` A : s ∨ A = s .

The Constructive Engine

Strategy for Typechecking

Functional PTS
I Definition: A PTS is functional iff

ax(s1 : s2) ∧ ax(s1 : s′
2) =⇒ s2 = s′

2

rl(s1, s2, s3) ∧ rl(s1, s2, s′
3) =⇒ s3 = s′

3.

I In non-functional PTS, different instances of a rule may be used:

AX
ax(s1 : s2)

• ` s1 : s2

I Non-functional PTS may sometimes be handled using schematic
sort variables and constraints.

I E.g. universes in Coq and Lego.
I But non-functional PTS lack other good properties too, so we

ignore them in the rest of this talk.
I In functional PTS, rules AX and PI are deterministic for TS.

The Constructive Engine

Strategy for Typechecking

Decidability Issues
I Example: Consider the PTS:

S = natural numbers
ax = {(i : n) | Turing machine i , with i on its tape,

halts in exactly n steps}
rl = ∅

I ax and rl are decidable.
I The PTS is functional and strongly normalizing (there are no

well-typed redices).
I TC and TS are undecidable:

x :i ` x : i ⇐⇒ ∃n . ax(i : n) ⇐⇒ Turing machine i halts on input i .

I Definition: Sort s is a topsort iff ¬∃s′ . ax(s : s′) .

The Constructive Engine

Transform for Efficiency: Incremental context correctness

Outline
Checking Type Judgements

PTS

Strategy for Typechecking

Transform for Efficiency: Incremental context correctness

Making it Syntax Directed

Binding: Huet’s Concrete Constructive Engine

An Improved Constructive Engine

References

The Constructive Engine

Transform for Efficiency: Incremental context correctness

Step 1: System with Valid Contexts
Typing

AX
`vc Γ ax(s1 : s2)

Γ `vt s1 : s2
VAR

`vc Γ x :A ∈ Γ

Γ `vt x : A

PI
Γ `vt A : s1 Γ,x :A `vt B : s2 rl(s1, s2, s3) x 6∈ Γ

Γ `vt Πx :A.B : s3

LDA
Γ,x :A `vt M : B Γ `vt Πx :A.B : s x 6∈ Γ

Γ `vt λx :A.M : Πx :A.B

APP
Γ `vt M : Πx :A.B Γ `vt N : A

Γ `vt M N : [N/x]B

CONV
Γ `vt M : A Γ `vt B : s A ' B

Γ `vt M : B
Contexts

VALNIL
`vc •

VALCONS
Γ `vt A : s x 6∈ Γ

`vc Γ,x :A

The Constructive Engine

Transform for Efficiency: Incremental context correctness

System with Valid Contexts

I `vc and `vt are mutually inductive.
I Correctness (for all PTS)

I Γ `vt M : A =⇒ Γ ` M : A
Proof by direct induction using simple properties of ` .

I Γ ` M : A =⇒ Γ `vt M : A
Proof by induction, requiring weakening for `vt to treat the WEAK
rule of ` .

I Derivations essentially isomorphic with ` .
I Efficiency

I Infeasible: checks `vc Γ on every branch.
I Still not syntax directed: CONV rule.

The Constructive Engine

Transform for Efficiency: Incremental context correctness

Step 2: System with Locally Valid Contexts
Typing

AX
ax(s1 : s2)

Γ `lvt s1 : s2
VAR

x :A ∈ Γ

Γ `lvt x : A

PI
Γ `lvt A : s1 Γ,x :A `lvt B : s2 rl(s1, s2, s3) x 6∈ Γ

Γ `lvt Πx :A.B : s3

LDA
Γ,x :A `lvt M : B Γ `lvt Πx :A.B : s x 6∈ Γ

Γ `lvt λx :A.M : Πx :A.B

APP
Γ `lvt M : Πx :A.B Γ `lvt N : A

Γ `lvt M N : [N/x]B

CONV
Γ `lvt M : A Γ `lvt B : s A ' B

Γ `lvt M : B
Contexts

NIL
`lvc •

CONS
Γ `lvt A : s x 6∈ Γ

`lvc Γ,x :A

The Constructive Engine

Transform for Efficiency: Incremental context correctness

System with Locally Valid Contexts

I `lvt does not depend on `lvc .
I Correctness (for all PTS)

I (Γ `lvt M : A ∧ `lvc Γ) =⇒ Γ `vt M : A
Proof by tricky induction on the sum of the heights of the
derivations of Γ `lvt M : A and `lvc Γ .

I This proof says `lvt derivations can be expanded to `vt derivations.
I Thus: Γ ` M : A ⇐⇒ (`lvc Γ ∧ Γ `lvt M : A)

I Efficiency
I Contexts are not checked on every branch . . .
I . . . so local extensions (rules PI and LDA) must be checked locally.

(Note rule LDA.)
I “The derivation tree of `vt has become a graph by identifying the

duplicate derivations of `vc Γ .”
I Derivations much smaller than ` .

The Constructive Engine

Making it Syntax Directed

Outline
Checking Type Judgements

PTS

Strategy for Typechecking

Transform for Efficiency: Incremental context correctness

Making it Syntax Directed

Binding: Huet’s Concrete Constructive Engine

An Improved Constructive Engine

References

The Constructive Engine

Making it Syntax Directed

Permuting CONV Out of Derivations

I `lvt is not syntax directed: the shape of the subject doesn’t tell
where to use rule CONV.

I The idea is to permute uses of CONV to the root of derivations.
I When CONV passes through a premise of another rule, we may

need to do some computation on that premise.
I E.g. rule APP becomes

APP
Γ ` M ⇒ X X wh→→ Πx :A.B Γ ` N ⇒ A′ A ' A′

Γ ` M N ⇒ [N/x]B

I Note, Πx :A.B is a whnf.
I Soundness depends on subject reduction and type correctness.

The Constructive Engine

Making it Syntax Directed

Syntax Directed Relation
Notation: Write Γ ` M⇒ wh→→A for (Γ ` M ⇒ X ∧ X wh→→ A) .
Typing

AX
ax(s1 : s2)

Γ ` s1 ⇒ s2
VAR

x :A ∈ Γ

Γ ` x ⇒ A

PI
Γ ` A⇒ wh→→s1 Γ,x :A ` B⇒ wh→→s2 rl(s1, s2, s3) x 6∈ Γ

Γ ` Πx :A.B ⇒ s3

LDA
Γ,x :A ` M ⇒ B Γ ` Πx :A.B ⇒ s x 6∈ Γ

Γ ` λx :A.M ⇒ Πx :A.B

APP
Γ ` M⇒ wh→→Πx :A.B Γ ` N ⇒ A′ A ' A′

Γ ` M N ⇒ [N/x]B

Contexts

NIL
` •

CONS
Γ ` A⇒ wh→→s x 6∈ Γ

` Γ,x :A

The Constructive Engine

Making it Syntax Directed

Correctness of Syntax Directed Relation

I Soundness: For any PTS,

(` Γ ∧ Γ ` M ⇒ A) =⇒ Γ ` M : A.

I Completeness? Γ ` M : A =⇒ (Γ ` M ⇒ A′ ∧ A ' A′)
I Counterexample for non-functional PTS [Pol92].
I Source of incompleteness is rule LDA.
I Open problem for arbitrary functional PTS.

I This system is syntax directed, but is not a satisfactory TS
program!

I It may not terminate when it should.

The Constructive Engine

Making it Syntax Directed

Termination
Assume a functional, normalizing PTS.

I The rules are syntax directed, so building a putative derivation
tree does terminate.

I reduction terminates for any well-typed term.
I In rules PI and APP, we only apply reduction (conversion) to

well-typed terms.
I There is a problem with rule LDA:

LDA
Γ,x :A ` M ⇒ B Γ ` Πx :A.B ⇒ s

Γ ` λx :A.M ⇒ Πx :A.B

I The left premise must be synthesised first, to get B
I A in the extended context is not yet checked, so some reduction

may diverge.

The Constructive Engine

Making it Syntax Directed

Improve Rule LDA

I Expand the right premise:

Γ,x :A ` M ⇒ B
Γ ` A⇒ wh→→s1 Γ,x :A ` B⇒ wh→→s2 rl(s1, s2, s3)

Γ ` Πx :A.B ⇒ s
Γ ` λx :A.M ⇒ Πx :A.B

I Move the premises around:

LDA
Γ ` A⇒ wh→→s1 Γ,x :A ` M ⇒ B Γ,x :A ` B⇒ wh→→s2 rl(s1, s2, s3)

Γ ` λx :A.M ⇒ Πx :A.B

The Constructive Engine

Making it Syntax Directed

Regain Completeness for Full PTS

LDA
Γ ` A⇒ wh→→s1 Γ,x :A ` M ⇒ B Γ,x :A ` B⇒ wh→→s2 rl(s1, s2, s3)

Γ ` λx :A.M ⇒ Πx :A.B
I Definition: A PTS is full iff ∀s1, s2 . ∃s3 . rl(s1, s2, s3) .

I λ∗ , CC, ECC and CIC are full.
I For full PTS, we can omit the side condition rl(s1, s2, s3) .
I Thus there is no need to actually know s2 ; any sort will do.
I If B is not a topsort, the third premise is derivable from type

correctness on the second premise:

∃s . (Γ,x :A ` B⇒ wh→→sB) ∨ B = sB.

I In the second case, if ax(sB : s) , then Γ,x :A ` B ⇒ s .

LDA
Γ ` A⇒ wh→→s1 Γ,x :A ` M ⇒ B B not a topsort

Γ ` λx :A.M ⇒ Πx :A.B

The Constructive Engine

Making it Syntax Directed

Abstract Constructive Engine
Sound and complete for full PTS.

AX
ax(s1 : s2)

Γ ` s1 ⇒ s2
VAR

x :A ∈ Γ

Γ ` x ⇒ A

PI
Γ ` A⇒ wh→→s1 Γ,x :A ` B⇒ wh→→s2 rl(s1, s2, s3) x 6∈ Γ

Γ ` Πx :A.B ⇒ s3

LDA
Γ ` A⇒ wh→→s1 Γ,x :A ` M ⇒ B B not a topsort x 6∈ Γ

Γ ` λx :A.M ⇒ Πx :A.B

APP
Γ ` M⇒ wh→→Πx :A.B Γ ` N ⇒ A′ A ' A′

Γ ` M N ⇒ [N/x]B

NIL
` •

CONS
Γ ` A⇒ wh→→s x 6∈ Γ

` Γ,x :A

The Constructive Engine

Binding: Huet’s Concrete Constructive Engine

Outline
Checking Type Judgements

PTS

Strategy for Typechecking

Transform for Efficiency: Incremental context correctness

Making it Syntax Directed

Binding: Huet’s Concrete Constructive Engine

An Improved Constructive Engine

References

The Constructive Engine

Binding: Huet’s Concrete Constructive Engine

Binding
I User input is ascii, so after parsing, raw terms have strings for

variable names, x .
I Introduce a new species of checked terms, (M , A), with equality

up-to α-equivalence.
I Using de Bruijn representation, FreshOcaml, Cαml, FreshLib, . . .
I . . . with a new species of bound variable, v, w.
I Continue to use strings, x , for global variables.

terms M ::= x | s | v | λv :M.M | Πv :M.M | M M
context Γ ::= • | Γ,x :A

I A judgement form (the kernel) that does type synthesis and
translates to checked terms at the same time:

Γ ` M ⇒ M : A

I M and Γ are abstract datatypes, only constructed by the kernel.
I Only operation needed on black terms is structural decomposition.

The Constructive Engine

Binding: Huet’s Concrete Constructive Engine

Huet’s Concrete Constructive Engine: Kernel

AX
ax(s1 : s2)

Γ ` s1 ⇒ s1 : s2
VAR

x :A ∈ Γ

Γ ` x ⇒ x : A

PI
Γ ` A⇒ wh→→A : s1 Γ,x :A ` B⇒ wh→→B : s2 rl(s1, s2, s3)

x 6∈ Γ
v fresh

Γ ` Πx :A.B ⇒ Πv :A.[v/x]B : s3

LDA
Γ ` A⇒ wh→→A : s1 Γ,x :A ` M ⇒ M : B B not a topsort

x 6∈ Γ
v fresh

Γ ` λx :A.M ⇒ λv :A.[v/x]M : Πv :A.[v/x]B

APP
Γ ` M⇒ wh→→M : Πv :A.B Γ ` N ⇒ N : A′ A ' A′

Γ ` M N ⇒ M N : [N/v]B

NIL
` •

CONS
Γ ` A⇒ wh→→A : s x 6∈ Γ

` Γ,x :A

The Constructive Engine

An Improved Constructive Engine

Outline
Checking Type Judgements

PTS

Strategy for Typechecking

Transform for Efficiency: Incremental context correctness

Making it Syntax Directed

Binding: Huet’s Concrete Constructive Engine

An Improved Constructive Engine

References

The Constructive Engine

An Improved Constructive Engine

A Problem: Repeated Concrete Binding Names
I Some correct judgements are not accepted because of side

condition x 6∈ Γ on rules PI and LDA:

• ` λx :?.λx :x .x : Πx :?.Πy :x .x . (1)

I One might think these side conditions can be omitted, making
lookup in Γ block structured.

I For dependent types this is unsound:
I Running (1) in the concrete engine without these side conditions

yields the unsound judgement:
• ` λx :?.λx :x .x ⇒ λw :?.λv :w .v : Πw :?.Πv :w .v .

I Context lookup can safely be block structured . . .
I because type synthesis is directed by the syntax of the black term;

I but resolving bound variable names cannot be . . .
I because the synthesised type may have different binding

dependency than the term: e.g. equation (1) .

The Constructive Engine

An Improved Constructive Engine

A Pretty Fix for the Problem
I Ugly fix: α-convert black terms, . . .

I we don’t want to define binding opertions (e.g. α-conversion) on
black terms.

I Pretty fix: to safely allow black names (x) to be duplicated in Γ ,
use the fresh variable names (v) to disambiguate:

terms M ::= s | v | λv :M.M | Πv :M.M | M M
context Γ ::= • | Γ,(x ,v):A

I This only works if red terms use names for binding (e.g.
FreshOcaml, Cαml or FreshLib).

I See below a fix for de Bruijn representation.
I For good taste, we keep black names unique in the global context.

I Concrete names (x) don’t appear in red terms, and no dummy
substitution [v/x]M is required to fix up bound names.

I In the rules (next slide), rule VAR is split for sequential lookup.

The Constructive Engine

An Improved Constructive Engine

A Pretty Fix Using Named Binding

AX
ax(s1 : s2)

Γ ` s1 ⇒ s1 : s2

VARHD
Γ,(x ,v):A ` x ⇒ v : A

VARTL
Γ ` x ⇒ v : A x 6= y
Γ,(y ,w):B ` x ⇒ v : A

PI
Γ ` A⇒ wh→→A : s1 Γ,(x ,v):A ` B⇒ wh→→B : s2 rl(s1, s2, s3) v fresh

Γ ` Πx :A.B ⇒ Πv :A.B : s3

LDA
Γ ` A⇒ wh→→A : s1 Γ,(x ,v) :A ` M ⇒ M : B B not a topsort v fresh

Γ ` λx :A.M ⇒ λv :A.M : Πv :A.B

APP
Γ ` M⇒ wh→→M : Πv :A.B Γ ` N ⇒ N : A′ A ' A′

Γ ` M N ⇒ M N : [N/v]B

NIL
` •

CONS
Γ ` A⇒ wh→→A : s x 6∈ Γ v fresh

` Γ,(x ,v):A

The Constructive Engine

An Improved Constructive Engine

A Fix With de Bruijn Representation

I When the red terms use de Bruijn representation, we can’t use
the “fresh” names (v) to disambiguate Γ .

I Introduce a new concept, timestamps (notation: i , j), to annotate
freshness:

terms M ::= i | s | v | λv :M.M | Πv :M.M | M M
context Γ ::= • | Γ,(x ,i):A

I In the rules (next slide) side condition “ i fresh” can be satisfied
by taking i = length Γ .

I This is the solution LEGO uses.

The Constructive Engine

An Improved Constructive Engine

A Fix With de Bruijn Representation

AX
ax(s1 : s2)

Γ ` s1 ⇒ s1 : s2

VARHD
Γ,(x ,i):A ` x ⇒ i : A

VARTL
Γ ` x ⇒ i : A x 6= y
Γ,(y ,j):B ` x ⇒ i : A

PI
Γ ` A⇒ wh→→A : s1 Γ,(x ,i):A ` B⇒ wh→→B : s2 rl(s1, s2, s3) v , i fresh

Γ ` Πx :A.B ⇒ Πv :A.[v/i]B : s3

LDA
Γ ` A⇒ wh→→A : s1 Γ,(x ,i):A ` M ⇒ M : B B not a topsort v , i fresh

Γ ` λx :A.M ⇒ λv :A.[v/i]M : Πv :A.[v/i]B

APP
Γ ` M⇒ wh→→M : Πv :A.B Γ ` N ⇒ N : A′ A ' A′

Γ ` M N ⇒ M N : [N/v]B

NIL
` •

CONS
Γ ` A⇒ wh→→A : s x 6∈ Γ i fresh

` Γ,(x ,i):A

The Constructive Engine

References

Outline
Checking Type Judgements

PTS

Strategy for Typechecking

Transform for Efficiency: Incremental context correctness

Making it Syntax Directed

Binding: Huet’s Concrete Constructive Engine

An Improved Constructive Engine

References

The Constructive Engine

References

References
[Bar99] Bruno Barras. Auto-validation d’un système de preuves avec familles inductives.

Thèse de doctorat, Université Paris 7, November 1999.

[HP91] Robert Harper and Robert Pollack. Type checking with universes.
Theoretical Computer Science, 89:107–136, 1991.

[Hue89] Gérard Huet. The constructive engine.
In R. Narasimhan, editor, A Perspective in Theoretical Computer Science. World Scientific Publishing, 1989.

[Mar71] Per Martin-Löf. A theory of types.
Technical Report 71-3, Univ. of Stockholm, 1971.

[Pol] Erik Poll. A typechecker for bijective pure type systems.
Computing Science Note (93/22), Eindhoven University of Technology.

[Pol92] R. Pollack. Typechecking in Pure Type Systems.
In Informal Proceedings of the 1992 Workshop on Types for Proofs and Programs, Båstad, Sweden.

[Pol94] Robert Pollack. The Theory of LEGO: A Proof Checker for the Extended Calculus of Constructions.
PhD thesis, Univ. of Edinburgh, 1994.

[Pol95] Robert Pollack. A verified typechecker.
In M.Dezani-Ciancaglini and G.Plotkin, editors, Proceedings of the Second International Conference on Typed
Lambda Calculi and Applications, TLCA’95, Edinburgh, volume 902 of LNCS. Springer-Verlag, April 1995.

[Sev98] Paula Severi. Type inference for pure type systems.
INFCTRL: Information and Computation (formerly Information and Control), 143, 1998.

[vBJMP94] L.S. van Benthem Jutting, J. McKinna, and R. Pollack. Checking algorithms for Pure Type Systems.
In Barendregt and Nipkow, editors, TYPES’93: Workshop on Types for Proofs and Programs, Selected Papers,
volume 806 of LNCS, pages 19–61. Springer-Verlag, 1994.

	Checking Type Judgements
	PTS
	Strategy for Typechecking
	Transform for Efficiency: Incremental context correctness
	Making it Syntax Directed
	Binding: Huet's Concrete Constructive Engine
	An Improved Constructive Engine
	References

