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The Constructive Engine

Checking Type Judgements

Checking Type Judgements

I Type Judgements have shape Γ ` M : A
I M is a term claimed to have type A in context of assumptions, Γ .

I Correct judgements are specified inductively by a set of rules.
I Like other relations defined by inductive rule sets, a type

judgement can be verified by checking a derivation tree.
I Side conditions, decidability, . . .
I This is how NuPrl is checked.

I In some type theories, the information in the judgement is
enough to build a derivation.

I Intensional theories with Church-style terms (λx :A.M ):
I Calculus of Constructions, ECC, Coq, λP (LF), . . .
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Checking Type Judgements

Type Checking and Type Synthesis

I The Type Checking (TC) problem, given Γ , M and A , is to
decide Γ ` M : A .

I The Type Synthesis (TS) problem, given Γ and M is to find A s.t.
Γ ` M : A .

I . . . Or to find a principle description of all such A .

We will use TS to solve TC for a class of PTS.
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Checking Type Judgements

History of Checking PTS
I [Mar71] Martin-Löf’s theory with Type:Type (λ∗ ); feasible

abstract algorithm for checking.
I [Hue89] Coined name constructive engine, gave concrete ML

program for checking CC.
I [HP91] Proved correctness of engine, extended to universes.
I [Pol92] Extended constructive engine to λP (LF).
I [Pol] Abstract algorithm for whole λ-cube.
I [vBJMP94] Deeper study of checking for all PTS; machine

checked.
I [Pol94] Machine checked proof of correctness.
I [Pol95] Machine checked proof of correctness.
I [Bar99] Machine checked for CC with inductive types (including

normalization); working typechecker extracted from proof!
I [Sev98] Simpler proof for functional PTS.



The Constructive Engine

PTS

Outline
Checking Type Judgements

PTS

Strategy for Typechecking

Transform for Efficiency: Incremental context correctness

Making it Syntax Directed

Binding: Huet’s Concrete Constructive Engine

An Improved Constructive Engine

References



The Constructive Engine

PTS

The Language

PTS is a language and a typing relation parameterised by
(V,S, ax, rl) where:

I V is an infinite set of variables, ranged over by x , y ;
I S is a set of sorts, ranged over by s , t ;
I ax ⊆ S × S called axioms;
I rl ⊆ S × S × S called rules.
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PTS

The Language
Terms (M , N , A , B ) are given by the grammar:

atoms α ::= x | s
terms M ::= α | λx :M.M | Πx :M.M | M M

I Write A wh→→ B for β -weak-head-reduction to whnf.
I Write A ' B for β -conversion.

Contexts (Γ) are lists of variable-term pairs, written as

context Γ ::= • | Γ,x :A empty, non-empty

Typing judgement of PTS has shape Γ ` M : A .
I (Γ, M) is the subject of judgement Γ ` M : A .
I A is the predicate of the judgement.
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PTS

Typing Rules
AX

ax(s1 : s2)

• ` s1 : s2
START

Γ ` A : s x 6∈ Γ

Γ,x :A ` x : A

WEAK
Γ ` α : B Γ ` A : s x 6∈ Γ

Γ,x :A ` α : B

PI
Γ ` A : s1 Γ,x :A ` B : s2 rl(s1, s2, s3) x 6∈ Γ

Γ ` Πx :A.B : s3

LDA
Γ,x :A ` M : B Γ ` Πx :A.B : s x 6∈ Γ

Γ ` λx :A.M : Πx :A.B

APP
Γ ` M : Πx :A.B Γ ` N : A

Γ ` M N : [N/x ]B

CONV
Γ ` M : A Γ ` B : s A ' B

Γ ` M : B
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Strategy for Typechecking

Strategy for Programming
I To solve TS we want a set of rules that is syntax directed on the

subject of the judgement, Γ, M .
I Rules are read as recursion equations. For example

PI
Γ ` A : s1 Γ,x :A ` B : s2 rl(s1, s2, s3) x 6∈ Γ

Γ ` Πx :A.B : s3

is read as

TS(Γ,Πx :A.B) = let s1 = TS(Γ, A) in
let s2 = TS((Γ,x :A), B) in
if rl(s1, s2, s3) then s3 else fail

I Reason about the relation rather than the program.
I Termination must still be proved (because of side conditions).
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Strategy for Typechecking

Problems with the Strategy

I Relation may be too inefficient in practice:
I Some rules have two premises . . .
I . . . the PTS context is constructed by weakening on every branch.

Solution: Incrementally maintain context correctness instead of
repeatedly checking it.

I Rule CONV is not syntax directed:
I Structure doesn’t tell when to use the rule.

CONV
Γ ` M : A Γ ` B : s A ' B

Γ ` M : B

Solution: permute the rule to end of derivations

These are the two main ideas in the Constructive Engine.
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Strategy for Typechecking

Basic Properties for Type Synthesis

I The (raw) language of PTS is Church–Rosser.
I Conversion testing by reduction is complete, but possibly

non-terminating.
I For normalizing PTS, conversion testing is decidable on

well-typed terms.
I A TS program should only try reduction on terms already known

to be well-typed.
I Subject Reduction: If Γ ` M : A and M → M ′ then Γ ` M ′ : A .
I Type Correctness: If Γ ` M : A then ∃s . Γ ` A : s ∨ A = s .
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Strategy for Typechecking

Functional PTS
I Definition: A PTS is functional iff

ax(s1 : s2) ∧ ax(s1 : s′
2) =⇒ s2 = s′

2

rl(s1, s2, s3) ∧ rl(s1, s2, s′
3) =⇒ s3 = s′

3.

I In non-functional PTS, different instances of a rule may be used:

AX
ax(s1 : s2)

• ` s1 : s2

I Non-functional PTS may sometimes be handled using schematic
sort variables and constraints.

I E.g. universes in Coq and Lego.
I But non-functional PTS lack other good properties too, so we

ignore them in the rest of this talk.
I In functional PTS, rules AX and PI are deterministic for TS.



The Constructive Engine

Strategy for Typechecking

Decidability Issues
I Example: Consider the PTS:

S = natural numbers
ax = {(i : n) | Turing machine i , with i on its tape,

halts in exactly n steps}
rl = ∅

I ax and rl are decidable.
I The PTS is functional and strongly normalizing (there are no

well-typed redices).
I TC and TS are undecidable:

x :i ` x : i ⇐⇒ ∃n . ax(i : n) ⇐⇒ Turing machine i halts on input i .

I Definition: Sort s is a topsort iff ¬∃s′ . ax(s : s′) .
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Transform for Efficiency: Incremental context correctness

Step 1: System with Valid Contexts
Typing

AX
`vc Γ ax(s1 : s2)

Γ `vt s1 : s2
VAR

`vc Γ x :A ∈ Γ

Γ `vt x : A

PI
Γ `vt A : s1 Γ,x :A `vt B : s2 rl(s1, s2, s3) x 6∈ Γ

Γ `vt Πx :A.B : s3

LDA
Γ,x :A `vt M : B Γ `vt Πx :A.B : s x 6∈ Γ

Γ `vt λx :A.M : Πx :A.B

APP
Γ `vt M : Πx :A.B Γ `vt N : A

Γ `vt M N : [N/x ]B

CONV
Γ `vt M : A Γ `vt B : s A ' B

Γ `vt M : B
Contexts

VALNIL
`vc •

VALCONS
Γ `vt A : s x 6∈ Γ

`vc Γ,x :A
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Transform for Efficiency: Incremental context correctness

System with Valid Contexts

I `vc and `vt are mutually inductive.
I Correctness (for all PTS)

I Γ `vt M : A =⇒ Γ ` M : A
Proof by direct induction using simple properties of ` .

I Γ ` M : A =⇒ Γ `vt M : A
Proof by induction, requiring weakening for `vt to treat the WEAK
rule of ` .

I Derivations essentially isomorphic with ` .
I Efficiency

I Infeasible: checks `vc Γ on every branch.
I Still not syntax directed: CONV rule.
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Step 2: System with Locally Valid Contexts
Typing

AX
ax(s1 : s2)

Γ `lvt s1 : s2
VAR

x :A ∈ Γ

Γ `lvt x : A

PI
Γ `lvt A : s1 Γ,x :A `lvt B : s2 rl(s1, s2, s3) x 6∈ Γ

Γ `lvt Πx :A.B : s3

LDA
Γ,x :A `lvt M : B Γ `lvt Πx :A.B : s x 6∈ Γ

Γ `lvt λx :A.M : Πx :A.B

APP
Γ `lvt M : Πx :A.B Γ `lvt N : A

Γ `lvt M N : [N/x ]B

CONV
Γ `lvt M : A Γ `lvt B : s A ' B

Γ `lvt M : B
Contexts

NIL
`lvc •

CONS
Γ `lvt A : s x 6∈ Γ

`lvc Γ,x :A
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Transform for Efficiency: Incremental context correctness

System with Locally Valid Contexts

I `lvt does not depend on `lvc .
I Correctness (for all PTS)

I (Γ `lvt M : A ∧ `lvc Γ) =⇒ Γ `vt M : A
Proof by tricky induction on the sum of the heights of the
derivations of Γ `lvt M : A and `lvc Γ .

I This proof says `lvt derivations can be expanded to `vt derivations.
I Thus: Γ ` M : A ⇐⇒ (`lvc Γ ∧ Γ `lvt M : A)

I Efficiency
I Contexts are not checked on every branch . . .
I . . . so local extensions (rules PI and LDA) must be checked locally.

(Note rule LDA.)
I “The derivation tree of `vt has become a graph by identifying the

duplicate derivations of `vc Γ .”
I Derivations much smaller than ` .
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The Constructive Engine

Making it Syntax Directed

Permuting CONV Out of Derivations

I `lvt is not syntax directed: the shape of the subject doesn’t tell
where to use rule CONV.

I The idea is to permute uses of CONV to the root of derivations.
I When CONV passes through a premise of another rule, we may

need to do some computation on that premise.
I E.g. rule APP becomes

APP
Γ ` M ⇒ X X wh→→ Πx :A.B Γ ` N ⇒ A′ A ' A′

Γ ` M N ⇒ [N/x ]B

I Note, Πx :A.B is a whnf.
I Soundness depends on subject reduction and type correctness.
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Making it Syntax Directed

Syntax Directed Relation
Notation: Write Γ ` M⇒ wh→→A for (Γ ` M ⇒ X ∧ X wh→→ A) .
Typing

AX
ax(s1 : s2)

Γ ` s1 ⇒ s2
VAR

x :A ∈ Γ

Γ ` x ⇒ A

PI
Γ ` A⇒ wh→→s1 Γ,x :A ` B⇒ wh→→s2 rl(s1, s2, s3) x 6∈ Γ

Γ ` Πx :A.B ⇒ s3

LDA
Γ,x :A ` M ⇒ B Γ ` Πx :A.B ⇒ s x 6∈ Γ

Γ ` λx :A.M ⇒ Πx :A.B

APP
Γ ` M⇒ wh→→Πx :A.B Γ ` N ⇒ A′ A ' A′

Γ ` M N ⇒ [N/x ]B

Contexts

NIL
` •

CONS
Γ ` A⇒ wh→→s x 6∈ Γ

` Γ,x :A
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Making it Syntax Directed

Correctness of Syntax Directed Relation

I Soundness: For any PTS,

(` Γ ∧ Γ ` M ⇒ A) =⇒ Γ ` M : A.

I Completeness? Γ ` M : A =⇒ (Γ ` M ⇒ A′ ∧ A ' A′)
I Counterexample for non-functional PTS [Pol92].
I Source of incompleteness is rule LDA.
I Open problem for arbitrary functional PTS.

I This system is syntax directed, but is not a satisfactory TS
program!

I It may not terminate when it should.
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Making it Syntax Directed

Termination
Assume a functional, normalizing PTS.

I The rules are syntax directed, so building a putative derivation
tree does terminate.

I reduction terminates for any well-typed term.
I In rules PI and APP, we only apply reduction (conversion) to

well-typed terms.
I There is a problem with rule LDA:

LDA
Γ,x :A ` M ⇒ B Γ ` Πx :A.B ⇒ s

Γ ` λx :A.M ⇒ Πx :A.B

I The left premise must be synthesised first, to get B
I A in the extended context is not yet checked, so some reduction

may diverge.
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Making it Syntax Directed

Improve Rule LDA

I Expand the right premise:

Γ,x :A ` M ⇒ B
Γ ` A⇒ wh→→s1 Γ,x :A ` B⇒ wh→→s2 rl(s1, s2, s3)

Γ ` Πx :A.B ⇒ s
Γ ` λx :A.M ⇒ Πx :A.B

I Move the premises around:

LDA
Γ ` A⇒ wh→→s1 Γ,x :A ` M ⇒ B Γ,x :A ` B⇒ wh→→s2 rl(s1, s2, s3)

Γ ` λx :A.M ⇒ Πx :A.B
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Making it Syntax Directed

Regain Completeness for Full PTS

LDA
Γ ` A⇒ wh→→s1 Γ,x :A ` M ⇒ B Γ,x :A ` B⇒ wh→→s2 rl(s1, s2, s3)

Γ ` λx :A.M ⇒ Πx :A.B
I Definition: A PTS is full iff ∀s1, s2 . ∃s3 . rl(s1, s2, s3) .

I λ∗ , CC, ECC and CIC are full.
I For full PTS, we can omit the side condition rl(s1, s2, s3) .
I Thus there is no need to actually know s2 ; any sort will do.
I If B is not a topsort, the third premise is derivable from type

correctness on the second premise:

∃s . (Γ,x :A ` B⇒ wh→→sB) ∨ B = sB.

I In the second case, if ax(sB : s) , then Γ,x :A ` B ⇒ s .

LDA
Γ ` A⇒ wh→→s1 Γ,x :A ` M ⇒ B B not a topsort

Γ ` λx :A.M ⇒ Πx :A.B
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Abstract Constructive Engine
Sound and complete for full PTS.

AX
ax(s1 : s2)

Γ ` s1 ⇒ s2
VAR

x :A ∈ Γ

Γ ` x ⇒ A

PI
Γ ` A⇒ wh→→s1 Γ,x :A ` B⇒ wh→→s2 rl(s1, s2, s3) x 6∈ Γ

Γ ` Πx :A.B ⇒ s3

LDA
Γ ` A⇒ wh→→s1 Γ,x :A ` M ⇒ B B not a topsort x 6∈ Γ

Γ ` λx :A.M ⇒ Πx :A.B

APP
Γ ` M⇒ wh→→Πx :A.B Γ ` N ⇒ A′ A ' A′

Γ ` M N ⇒ [N/x ]B

NIL
` •

CONS
Γ ` A⇒ wh→→s x 6∈ Γ

` Γ,x :A
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Binding: Huet’s Concrete Constructive Engine

Binding
I User input is ascii, so after parsing, raw terms have strings for

variable names, x .
I Introduce a new species of checked terms, (M , A), with equality

up-to α-equivalence.
I Using de Bruijn representation, FreshOcaml, Cαml, FreshLib, . . .
I . . . with a new species of bound variable, v, w.
I Continue to use strings, x , for global variables.

terms M ::= x | s | v | λv :M.M | Πv :M.M | M M
context Γ ::= • | Γ,x :A

I A judgement form (the kernel) that does type synthesis and
translates to checked terms at the same time:

Γ ` M ⇒ M : A

I M and Γ are abstract datatypes, only constructed by the kernel.
I Only operation needed on black terms is structural decomposition.
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Huet’s Concrete Constructive Engine: Kernel

AX
ax(s1 : s2)

Γ ` s1 ⇒ s1 : s2
VAR

x :A ∈ Γ

Γ ` x ⇒ x : A

PI
Γ ` A⇒ wh→→A : s1 Γ,x :A ` B⇒ wh→→B : s2 rl(s1, s2, s3)

x 6∈ Γ
v fresh

Γ ` Πx :A.B ⇒ Πv :A.[v/x ]B : s3

LDA
Γ ` A⇒ wh→→A : s1 Γ,x :A ` M ⇒ M : B B not a topsort

x 6∈ Γ
v fresh

Γ ` λx :A.M ⇒ λv :A.[v/x ]M : Πv :A.[v/x ]B

APP
Γ ` M⇒ wh→→M : Πv :A.B Γ ` N ⇒ N : A′ A ' A′

Γ ` M N ⇒ M N : [N/v ]B

NIL
` •

CONS
Γ ` A⇒ wh→→A : s x 6∈ Γ

` Γ,x :A
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An Improved Constructive Engine

A Problem: Repeated Concrete Binding Names
I Some correct judgements are not accepted because of side

condition x 6∈ Γ on rules PI and LDA:

• ` λx :?.λx :x .x : Πx :?.Πy :x .x . (1)

I One might think these side conditions can be omitted, making
lookup in Γ block structured.

I For dependent types this is unsound:
I Running (1) in the concrete engine without these side conditions

yields the unsound judgement:
• ` λx :?.λx :x .x ⇒ λw :?.λv :w .v : Πw :?.Πv :w .v .

I Context lookup can safely be block structured . . .
I because type synthesis is directed by the syntax of the black term;

I but resolving bound variable names cannot be . . .
I because the synthesised type may have different binding

dependency than the term: e.g. equation (1) .
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An Improved Constructive Engine

A Pretty Fix for the Problem
I Ugly fix: α-convert black terms, . . .

I we don’t want to define binding opertions (e.g. α-conversion) on
black terms.

I Pretty fix: to safely allow black names (x ) to be duplicated in Γ ,
use the fresh variable names (v ) to disambiguate:

terms M ::= s | v | λv :M.M | Πv :M.M | M M
context Γ ::= • | Γ,(x ,v):A

I This only works if red terms use names for binding (e.g.
FreshOcaml, Cαml or FreshLib).

I See below a fix for de Bruijn representation.
I For good taste, we keep black names unique in the global context.

I Concrete names (x ) don’t appear in red terms, and no dummy
substitution [v/x ]M is required to fix up bound names.

I In the rules (next slide), rule VAR is split for sequential lookup.
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An Improved Constructive Engine

A Pretty Fix Using Named Binding

AX
ax(s1 : s2)

Γ ` s1 ⇒ s1 : s2

VARHD
Γ,(x ,v):A ` x ⇒ v : A

VARTL
Γ ` x ⇒ v : A x 6= y
Γ,(y ,w):B ` x ⇒ v : A

PI
Γ ` A⇒ wh→→A : s1 Γ,(x ,v):A ` B⇒ wh→→B : s2 rl(s1, s2, s3) v fresh

Γ ` Πx :A.B ⇒ Πv :A.B : s3

LDA
Γ ` A⇒ wh→→A : s1 Γ,(x ,v) :A ` M ⇒ M : B B not a topsort v fresh

Γ ` λx :A.M ⇒ λv :A.M : Πv :A.B

APP
Γ ` M⇒ wh→→M : Πv :A.B Γ ` N ⇒ N : A′ A ' A′

Γ ` M N ⇒ M N : [N/v ]B

NIL
` •

CONS
Γ ` A⇒ wh→→A : s x 6∈ Γ v fresh

` Γ,(x ,v):A
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A Fix With de Bruijn Representation

I When the red terms use de Bruijn representation, we can’t use
the “fresh” names (v ) to disambiguate Γ .

I Introduce a new concept, timestamps (notation: i , j ), to annotate
freshness:

terms M ::= i | s | v | λv :M.M | Πv :M.M | M M
context Γ ::= • | Γ,(x ,i):A

I In the rules (next slide) side condition “ i fresh” can be satisfied
by taking i = length Γ .

I This is the solution LEGO uses.
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A Fix With de Bruijn Representation

AX
ax(s1 : s2)

Γ ` s1 ⇒ s1 : s2

VARHD
Γ,(x ,i):A ` x ⇒ i : A

VARTL
Γ ` x ⇒ i : A x 6= y
Γ,(y ,j):B ` x ⇒ i : A

PI
Γ ` A⇒ wh→→A : s1 Γ,(x ,i):A ` B⇒ wh→→B : s2 rl(s1, s2, s3) v , i fresh

Γ ` Πx :A.B ⇒ Πv :A.[v/i]B : s3

LDA
Γ ` A⇒ wh→→A : s1 Γ,(x ,i):A ` M ⇒ M : B B not a topsort v , i fresh

Γ ` λx :A.M ⇒ λv :A.[v/i]M : Πv :A.[v/i]B

APP
Γ ` M⇒ wh→→M : Πv :A.B Γ ` N ⇒ N : A′ A ' A′

Γ ` M N ⇒ M N : [N/v ]B

NIL
` •

CONS
Γ ` A⇒ wh→→A : s x 6∈ Γ i fresh

` Γ,(x ,i):A
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