
On a few open problems of the Calculus of Inductive Constructions
and on their practical consequences

Hugo Herbelin

PPS, 24 September 2009

(updated May 2010)

1



Outline

- From the Calculus of Constructions (CC) to the currently implemented Calculus of Inductive Constructions (CIC)

- On some typical features of the Calculus of Inductive Constructions

- Expressing the Calculus of Inductive Constructions

- The set-theoretic model of the Calculus of Inductive Constructions

- η-conversion

- Dependent pattern-matching

- Ensuring the termination of fixpoints

- Commutative cuts

- The Calculus of Inductive Constructions as a sequent calculus

2



The Calculus of Inductive Constructions
(at the beginning was the Calculus of Constructions)

1984: Thierry Coquand’s Ph.D: Une théorie des constructions (The Calculus of Constructions: CC or λC)

(first implemented jointly with Gérard Huet in 1984)

Two levels: Propositions and Types

A simply-typed λ-calculus in Type

A mixed (and complex) programming/logical rôle for Prop:

- a higher-order functional calculus (extending Girard’s Fω) supporting
inductively-defined types

- a higher-order predicate logic able to reason both:

- over simply-typed λ-calculus in Type (like HOL or Fω seen as a logic)

- and, in Prop, over itself when interpreted as a higher-order calculus with dependent

types (predicate logic in the style of LF/λP )

λ→ λP

λω λPω

F λP2

Fω CC

predP
1

predT
1
/funT1

∀T
1
/∀≥2

ind.
types

∀P
1
/→/⇒

... very expressive as a programming language of terminating functions (integers, infinitely-branching trees, ...)

... very weak as a logic (lacks 0 6= 1 and induction) and provably consistent in arithmetic

3



The Calculus of Inductive Constructions
(then came the hierarchy of universes)

Preliminary attempt: The Generalized Calculus of Constructions (Co-
quand’s Ph.D., 1984)

Later improvement: The Extended Calculus of Constructions (ECC) (Luo’s

Ph.D., 1990, subset of it)

The relevant part of ECC has been later on called CCω by Miquel

(first implemented in 1988)

CCω is strong:

- Melliès and Werner (1997) showed that it has ordinal strength ω2

- Miquel (2001) showed that Fω.2+ (a small subset of CCω) is equiconsistent
with Zermelo’s set theory λ→ λP

λω λPω

F λP2

Fω CC

Fω.2Fω.2 CC2

ind.
types

predT1

1
/funT1

∀T
1
/∀≥2

predP
1

funT2∀T2

1

Note: The quantification Typei over Typej for j > i is missing in the diagram (it would require an extra, orthogonal, dimension). It

is this quantification which provides dependent types in level Typej . It is similar to the horizontal arrow that provides dependent types

for types in Prop but it cannot be written horizontally as an extension of the latter arrow since it would suggest that Fω needs first

to be extended to CC to support dependent types in Typej which it is not the case.

4



The Calculus of Inductive Constructions
(then came the Set/Prop distinction)

Initially motivated by the extraction mechanism, Christine Paulin introduced a

distinction between the logical part of Prop and its programming part, from now
called Set.

λimp λP

λω λPω

F λP2

Fω CC

Fω2 CCω

λfun

λType

∀≥2

Fω.n CCn

∀P
1

→

⇒

5



The Calculus of Inductive Constructions
(then came primitive inductive types, Coquand–Paulin-Mohring, 1989)

New primitive constructions for what was formerly defined polymorphically:

Inductive nat : Type := O : nat | S : nat -> nat.

Inductive True : Prop := I : True.

Inductive False : Prop := .

Inductive eq {A:Type} (x:A) : forall y:A, Prop := refl : (eq x x).

Primitive case analysis on types that builds in any type (note a fix construction to build guarded fixpoints which
provides a better subformula property than system-T-like recursors):

Definition induction (P:nat->Prop) (a:P O) (f:forall n, P n -> P (S n)) : forall n, P n :=

fix rec n := match n return (P n) with O => a | S n’ => f n’ (rec n’) end.

Definition discriminate n :=

match n return Prop with O => True | S _ => False end.

→֒ allows to natively derive Peano-induction

→֒ allows to natively derive 0 6= 1

→֒ makes Type1 must stronger (ZF sets can be defined in Type1 if one adds unique choice – Werner, 1997)

6



The Calculus of Inductive Constructions
(other extensions)

Coinductive types

Nested inductive types

Recursively non-uniform parameters of inductive types

Sort-polymorphism for inductive types

...

7



The Calculus of Inductive Constructions
(the renouncement to impredicativity of Set)

Impredicativity of Set + excluded middle + axiom of unique choice is inconsistent

Giving priority to the ability to use these axioms, impredicativity of Set was removed in Coq 8.0.

8



The Calculus of Inductive Constructions
(towards proof-irrelevance)

Proof-irrelevance will identify any two proofs of a proposition, going one new step further in direction of a “standard”

logic and one new step further of the strong Curry-Howard spirit of the original Calculus of Constructions.

9



On some typical features of the Calculus of Inductive Constructions

10



On some typical features of the Calculus of Inductive Constructions
(support for “intensional” definitions of functions and predicates)

intensional properties of intensional properties of
predicates defined by/as functions defined by/as

axiomatic equality equivalence axioms equality axioms (e.g. predicate logic)
modern type theory funct. programs over propositions funct. programs (pure type systems)

theories “modulo” equations over propositions equations (e.g. deduction modulo, AF2)

→֒ The calculus of Inductive Constructions has a conversion rule:

Γ ⊢M : P P ≡ Q Q valid type

Γ ⊢M : Q

≡ is the congruence generated by the evaluation of programs. It is decidable because the CIC is normalising.

11



On some typical features of the Calculus of Inductive Constructions
(dependent types: an example)

Inductive listn {A:Type} : nat -> Type :=

| niln : (listn 0)

| consn n : A -> (listn n) -> (listn (S n)).

Thanks to conversion, writing programs works in practise to some extent. E.g.:

Fixpoint plus (n m:nat) {struct n} : nat :=

match n with

| O => m

| S p => S (plus p m)

end.

Fixpoint append n m (v:listn n) (w:listn m) : listn (plus n m) :=

match v with

| niln => w

| consn a n’ v’ => consn a (plus n’ m) (append n’ m v’ w)

end.

Typable because the equations (plus O m = m) and (plus (S p) m = S (plus p m)) hold

Of course, there are less artificial painful example (consider e.g. mergesort on listn).

12



On some typical features of the Calculus of Inductive Constructions
(dependent types: an example, continued)

Inductive listn {A:Type} : nat -> Type :=

| niln : (listn 0)

| consn n : A -> (listn n) -> (listn (S n)).

However, we feel quickly the limit of dependent types. E.g.:

Fixpoint plus’ (n m:nat) {struct m} : nat :=

match m with

| O => n

| S p => S (plus’ n p)

end.

Fixpoint append’ n p (v:listn n) (w:listn p) : listn (plus’ n p) :=

match v with

| niln => w

| consn a n’ v’ => consn a (plus’ n’ p) (append’ n’ p v’ w)

end. (* does not type-check! *)

Requires the equations (plus’ O p = n) and (plus’ (S n) p = S (plus’ n p)) that do not hold

Of course, there are less artificial painful example (consider e.g. mergesort on listn).

13



On some typical features of the Calculus of Inductive Constructions
(dependent types: an example, continued)

Inductive listn {A:Type} : nat -> Type :=

| niln : (listn 0)

| consn n : A -> (listn n) -> (listn (S n)).

One needs a “cast” to type append’:

Fixpoint plus’ (n m:nat) {struct m} : nat :=

match m with

| O => n

| S p => S (plus’ n p)

end.

Fixpoint append’ n p (v:listn n) (w:listn p) : listn (plus’ n p) :=

match v with

| niln => subst p (plus’ O p) (lemma_plus_O) w

| consn a n’ v’ => subst (S (plus’ n p)) (plus’ (S n) p) consn a (plus’ n’ p) (append’ n’ p v’ w)

end.

where subst t u H M replaces the type P(t) of M by P(u) using the the proof H:t=u.

Of course, there are less artificial such examples (consider e.g. mergesort on listn).

14



On some typical features of the Calculus of Inductive Constructions
(the status of extensional properties in presence of dependent types)

The CIC is called intensional: non-intensional properties (even the provable ones) are not supported by the con-
version rule

Γ ⊢M : P P ≡ Q

Γ ⊢M : Q

←− ≡ here is intensional (computational) equality

Contrastingly, extensional type theory (such as Martin-Löf Extensional Type Theory) supports the following con-
version rule:

Γ ⊢M : P Γ ⊢ N : eq P Q

Γ ⊢M : Q

←− eq here is Leibniz’ (defined) extensional equality

which would allow to type append’.

Obviously, conversion based on extensional equality is much more expressive but:

- conversion becomes as undecidable as proving an arbitrary equality statement

- some equations, even consistent ones (such as True → True = True), allows to type fixpoints, thus breaking

termination

There is a compromise to find between decidability of intensional conversion and expressiveness of extensional

conversion.

15



On some typical features of the Calculus of Inductive Constructions
(how to deal with extensional conversion rule?)

Oury’s Ph.D. (2006):

Extensional type theory can be encoded in intensional type theory (using subst) if extended with a few congruence

axioms for subst.

This means:

- unchanged type-checker

- subst-based cast inserted on the user-side

- explicit commutations for shifting away the casts that break reduction inserted on the user-side

In practise, for decidable subsets of extensional equality (e.g. equations over Presburger’s arithmetic or closed real
fields), an intermediate module in between the user and the type-checker can do the job.

Track to explore: because equations proved by an axiom-free proof are true in any reasonable model, one could

have the shifting of the corresponding subst cast supported by the type-checker (see e.g. append’ with which one
would then be able to compute).

16



Expressing the Calculus of Inductive Constructions

17



Expressing the Calculus of Inductive Constructions
(typed versus untyped reduction)

Type reduction is defined by the following rule + typed congruence rules:

Γ, x : A ⊢M : B Γ ⊢ N : A

Γ ⊢ (λx : A.M)N ≡M [x := N ] : B[x := N ]

Typed conversion is then defined from typed reduction:

Γ ⊢M : P Γ ⊢ P ≡ Q : s

Γ ⊢M : Q

Contrastingly, untyped conversion is defined by

Γ ⊢M : P P ≡ Q Q valid type

Γ ⊢M : Q

Adams, 2006: having typed or having untyped conversion is equivalent for functional Pure Type Systems

Herbelin & Siles, 2010: typed and untyped conversions are equivalent for all Pure Type Systems...

... unfortunately, the CIC has subtyping and the equivalence, though probable, is still an open question

18



Expressing the Calculus of Inductive Constructions
(is there a mismatch with the implementation?)

Type-checkers are based on syntax-directed formalisations of the type systems: conversion is implemented from
iterated weak-head reduction, it is used only when needed and glued to the user rules

Γ ⊢M : C Γ ⊢ N : A C → ∀x : A′.B A→ A′′ ← A′

Γ ⊢MN : B[x := N ]

Fortunately, the CIC has the property that its syntax-directed formalisation is equivalent to the standard one (this
is because it is full, i.e. all products exist [Jutting-McKinna-Pollack 93])

19



The set-theoretic model of the Calculus of Inductive Constructions

20



The set-theoretic model of the Calculus of Inductive Constructions

Work in progress by Gyesik Lee an Benjamin Werner

- validates proof-irrelevance

- validates classical logic in Prop

- (should) validate different forms of extensionality

- (should) validate the axiom of choice

- relies on the definition of CIC with typed reduction

21



η-conversion

22



η-conversion

Two reasons to have η-conversion:

- intuitive for the user (e.g. why sum f would be different from sum (fun i => f i) ?)

- critical to easily implement Miller’s pattern unification algorithm as part of the type-inference algorithm

23



The status of η in presence of subtyping
η-reduction

- confluence fails (Nederpelt’s example)

λx : Type1.(λy : Type2.y)x
ւη ցβ

λy : Type2.y λx : Type1.x

... solvable by making the system “domain-free” (i.e. by using pure terms λx.M)

- subject-reduction fails

if f : Type2 → Type1

λx : Type1.fx : Type1 → Type2

↓

f : Type2 → Type1

... solvable by making subtyping contravariant but then, problematic for the set-theoretic model.

Let’s then turn to η-expansion...

24



The status of η in presence of subtyping
η-expansion

η-expansion needs typing!

Γ ⊢M : ∀x : A.B

Γ ⊢M → λx : A.Mx : ∀x : A.B

Two approaches:

- reason in CIC with typed conversion: and CIC with untyped conversion...

- reason in the syntax-directed formalism and (easily) extend (untyped) conversion algorithm as follows:

M ≡ Nx

λx : A.M ≡ N

Mx ≡ N

M ≡ λx : A.N

→֒ We loose the correspondence with the standard presentation (in which η-expansion is not expressible) but we
are not further from, say, the set-theoretic model than we were before. That may be a good compromise...

25



Dependent pattern-matching

26



Dependent pattern-matching
(some limitations)

Fixpoint shift_out n (l:listn (S n)) : listn n :=

match n with

| 0 => niln

| S n’ => match l with

| niln => (* impossible *)

| consn n’’ a l’ => consn a n’ (shift_out n’ l’) (* doesn’t type-check *)

end

end.

To be able to typecheck this example, one would need to be able to use

- that for l:listn (S (S n’)), we cannot have l = niln

- that together with l’:listn n” holds S n’ = n”

Extra equations have to be inserted...

27



Dependent pattern-matching
(simulating what one expects)

Coq supports a tool (Program) that does the job of inserting equations quasi-automatically. Basically, one would

automatically get:

Fixpoint shift_out n (l:listn (S n)) : listn n :=

match n as n’ return n’=n -> listn n’ with

| 0 => fun H:0=n => niln

| S n’ => fun H:S n’=n =>

match l in listn p return p=S n -> listn p with

| niln => fun H’:0=S n => False_rec _ {a-proof-of-False}

| consn n’’ a l’ => fun H’:S n’’=S n =>

consn a n’ (shift_out n’ (subst n’’ (S n’) l’ {a-proof-of-n’’=S-n’}))

end (eq_refl (S (S n’))

end (eq_refl n).

Is this the good compromise or should we extend further the CIC so as to support writing this kind of program

exactly as we mean it (what e.g. Agda does)?

Is it worth to improve the writing of this kind of program or should we just stay with this imperfection since the

full scope of equational reasoning is after all undecidable?

28



Ensuring the termination of fixpoints

29



Ensuring the termination of fixpoints
(limitations again)

The termination evidence for fixpoints is based on structural decreasing (recursive calls must be applied to sub-
terms).

Applying depth-preserving functions to subterms breaks the structural decreasing evidences.

Commutative cuts or rewriting in a subterm breaks the termination evidence too.

These limitations can always be circumvented by using specific decreasing order on which the recursion is applied.

This obfuscates the program but it works systematically.

Should we extend the CIC to directly support more natural examples of terminating programs or should we accept
that termination is anyway undecidable and be satisfied with universal encodings?

30



Commutative cuts

31



Commutative cuts

In spite recursivity is made of pure notion of fixpoint and primitive inductive types of pure introduction/elimination

rules for a sum of dependent products, not all commutative cuts are supported.

- OK if no dependency at all in match:

Γ, x : A ⊢ E[x] : B(x) Γ, ~xi ⊢ Ni : A

Γ ⊢

E[match M with Ci(~xi) => Ni end]

=
match M with Ci(~xi) => E[N ]i end

: B(match M with Ci(~xi) => Ni end)

- would require an extended pattern-matching typing rule for supporting dependent commutative cuts

Γ, x : A(M) ⊢ E[x] : B(x) Γ, ~xi ⊢ Ni : A(Ci(~xi))

Γ ⊢

E[match M return A(x) with Ci(~xi) => Ni end]
?
=

match M return B(match M with Ci(~xi) => Ni end) with Ci(~xi) => E[N ]i end

... well-typed if the equation M = Ci(~xi) is available in the branch

- commuting with fixpoints is also difficult (unless the fixpoint is tail-recursive)

32



The Calculus of Inductive Constructions as a sequent calculus

33



The Calculus of Inductive Constructions as a sequent calculus

Presenting CIC as a sequent calculus is not trivial:

- it requires a dependent cut (to interpret dependent pattern-matching)

Γ ⊢M : A Γ; • : A ⊢ E[•] : B(•)

Γ ⊢ E[M ] : B(M)

- cofixpoints and fixpoints over a single non dependent argument are dual

- fixpoints over arguments in dependent types are turned into fixpoints over dependent subtraction.

34


