# Type Theory and Coq 

Herman Geuvers

Lecture: Normalization for $\lambda \rightarrow$ and $\lambda 2$

Properties of $\lambda \rightarrow$

- Subject Reduction If $\Gamma \vdash M: \sigma$ and $M \longrightarrow_{\beta} N$, then $\Gamma \vdash N: \sigma$.
- Strong Normalization

If $\Gamma \vdash M: \sigma$, then all $\beta$-reductions from $M$ terminate.

These are proved using the following basic properties of $\lambda \rightarrow$

- Substitution property

If $\Gamma, x: \tau, \Delta \vdash M: \sigma, \Gamma \vdash P: \tau$, then $\Gamma, \Delta \vdash M[P / x]: \sigma$.

- Thinning

If $\Gamma \vdash M: \sigma$ and $\Gamma \subseteq \Delta$, then $\Delta \vdash M: \sigma$.

Normalization of $\beta$ for $\lambda \rightarrow$
Note:

- Terms may get larger under reduction

$$
(\lambda f \cdot \lambda x \cdot f(f x)) P \longrightarrow_{\beta} \lambda x \cdot P(P x)
$$

- Redexes may get multiplied under reduction.

$$
(\lambda f \cdot \lambda x \cdot f(f x))((\lambda y \cdot M) Q) \longrightarrow_{\beta} \lambda x \cdot((\lambda y \cdot M) Q)(((\lambda y \cdot M) Q) x)
$$

- New redexes may be created under reduction. $(\lambda f . \lambda x . f(f x))(\lambda y . N) \longrightarrow_{\beta} \lambda x .(\lambda y . N)((\lambda y . N) x)$

First: Weak Normalization

- Weak Normalization: there is a reduction sequence that terminates,
- Strong Normalization: all reduction sequences terminate.


## Weak Normalization

There are three ways in which a "new" $\beta$-redex can be created.

- Creation

$$
(\lambda x \ldots x P \ldots)(\lambda y . Q) \longrightarrow_{\beta} \ldots(\lambda y . Q) P \ldots
$$

- Multiplication

$$
(\lambda x \ldots x \ldots x \ldots)((\lambda y . Q) R) \longrightarrow_{\beta} \ldots(\lambda y \cdot Q) R \ldots(\lambda y \cdot Q) R \ldots
$$

- Identity

$$
(\lambda x \cdot x)(\lambda y \cdot Q) R \longrightarrow_{\beta}(\lambda y \cdot Q) R
$$

## Weak Normalization

Proof originally from Turing, first published by Gandy (1980).

## Definition

The height (or order) of a type $h(\sigma)$ is defined by

- $h(\alpha):=0$
- $h\left(\sigma_{1} \rightarrow \ldots \rightarrow \sigma_{n} \rightarrow \alpha\right):=\max \left(h\left(\sigma_{1}\right), \ldots, h\left(\sigma_{n}\right)\right)+1$.

NB [Exercise] This is the same as defining

- $h(\sigma \rightarrow \tau):=\max (h(\sigma)+1, h(\tau))$.


## Definition

The height of a redex $(\lambda x: \sigma . P) Q$ is the height of the type of $\lambda x: \sigma . P$

## Weak Normalization

## Definition

We give a measure $m$ to the terms by defining $m(N):=(h(N), \# N)$ with

- $h(N)=$ the maximum height of a redex in $N$,
- $\# N=$ the number of redexes of height $h(N)$ in $N$.

The measures of terms are ordered lexicographically:

$$
\left(h_{1}, x\right)<_{l}\left(h_{2}, y\right) \text { iff } h_{1}<h_{2} \text { or }\left(h_{1}=h_{2} \text { and } x<y\right)
$$

Theorem: Weak Normalization
If $P$ is a typable term in $\lambda \rightarrow$, then there is a terminating reduction starting from $P$.

Proof
Pick a redex of height $h(P)$ inside $P$ that does not contain any other redex of height $h(P)$. [Note that this is always possible!]
Reduce this redex, to obtain $Q$. This does not create a new redex of height $h(P)$. [This is the important step. Exercise: check this; use the three ways in which new redexes can be created.]
So $m(Q)<_{l} m(P)$
As there are no infinitely decreasing $<_{l}$ sequences, this process must terminate and then we have arrived at a normal form.

Strong Normalization for $\lambda \rightarrow$ à la Curry
This is proved by constructing a model of $\lambda \rightarrow$.
Method originally due to Tait (1967); also direct "arithmetical" methods exist, that use a decreasing ordering (David 2001, David \& Nour) Definition

- $\llbracket \alpha \rrbracket:=\mathrm{SN}$ (the set of strongly normalizing $\lambda$-terms).
- $\llbracket \sigma \rightarrow \tau \rrbracket:=\{M \mid \forall N \in \llbracket \sigma \rrbracket(M N \in \llbracket \tau \rrbracket)\}$.

Lemma

1. $x N_{1} \ldots N_{k} \in \llbracket \sigma \rrbracket$ for all $x, \sigma$ and $N_{1}, \ldots, N_{k} \in \mathrm{SN}$.
2. $\llbracket \sigma \rrbracket \subseteq \mathrm{SN}$
3. If $M[N / x] \vec{P} \in \llbracket \sigma \rrbracket, N \in \mathrm{SN}$, then $(\lambda x . M) N \vec{P} \in \llbracket \sigma \rrbracket$.

Strong Normalization for $\lambda \rightarrow$ à la Curry
Lemma

1. $x N_{1} \ldots N_{k} \in \llbracket \sigma \rrbracket$ for all $x, \sigma$ and $N_{1}, \ldots, N_{k} \in \mathrm{SN}$.
2. $\llbracket \sigma \rrbracket \subseteq \mathrm{SN}$
3. If $M[N / x] \vec{P} \in \llbracket \sigma \rrbracket, N \in \mathrm{SN}$, then $(\lambda x . M) N \vec{P} \in \llbracket \sigma \rrbracket$.

Proof: By induction on $\sigma$; the first two are proved simultaneously. NB for the proof of (2): We need that $\llbracket \sigma \rrbracket$ is non-empty, which is guaranteed by the induction hypothesis for (1).
Also, use that $M N \in \mathrm{SN} \Rightarrow M \in \mathrm{SN}$. Think of it a bit and see it's true.

Proposition

$$
\left.\begin{array}{l}
x_{1}: \tau_{1}, \ldots, x_{n}: \tau_{n} \vdash M: \sigma \\
N_{1} \in \llbracket \tau_{1} \rrbracket, \ldots, N_{n} \in \llbracket \tau_{n} \rrbracket
\end{array}\right\} \Rightarrow M\left[N_{1} / x_{1}, \ldots N_{n} / x_{n}\right] \in \llbracket \sigma \rrbracket
$$

Proof By induction on the derivation of $\Gamma \vdash M: \sigma$. (Using (3) of the previous Lemma.)

Corollary $\lambda \rightarrow$ is SN
Proof By taking $N_{i}:=x_{i}$ in the Proposition. (That can be done, because $x_{i} \in \llbracket \tau_{i} \rrbracket$ by (1) of the Lemma.)
Then $M \in \llbracket \sigma \rrbracket \subseteq$ SN, using (2) of the Lemma. QED
Exercise Verify the details of the Strong Normalization proof. (That is, prove the Lemma and the Proposition.)

A little bit on semantics
$\lambda \rightarrow$ has a simple set-theoretic model. Given sets $\llbracket \alpha \rrbracket$ for type variables $\alpha$, define

$$
\left.\llbracket \sigma \rightarrow \tau \rrbracket:=\llbracket \tau \rrbracket^{\llbracket \rrbracket \rrbracket} \text { ( set theoretic function space } \llbracket \sigma \rrbracket \rightarrow \llbracket \tau \rrbracket\right)
$$

If any of the base sets $\llbracket \alpha \rrbracket$ is infinite, then there are higher and higher (uncountable) cardinalities among the $\llbracket \sigma \rrbracket$

There are smaller models, e.g.

$$
\llbracket \sigma \rightarrow \tau \rrbracket:=\{f \in \llbracket \sigma \rrbracket \rightarrow \llbracket \tau \rrbracket \mid f \text { is definable }\}
$$

where definability means that it can be constructed in some formal system. This restricts the collection to a countable set.
For example

$$
\llbracket \sigma \rightarrow \tau \rrbracket:=\{f \in \llbracket \sigma \rrbracket \rightarrow \llbracket \tau \rrbracket \mid f \text { is } \lambda \text {-definable }\}
$$

Properties of $\lambda 2$.

- Uniqueness of types

If $\Gamma \vdash M: \sigma$ and $\Gamma \vdash M: \tau$, then $\sigma=\tau$.

- Subject Reduction

If $\Gamma \vdash M: \sigma$ and $M \longrightarrow_{\beta \eta} N$, then $\Gamma \vdash N: \sigma$.

- Strong Normalization

If $\Gamma \vdash M: \sigma$, then all $\beta \eta$-reductions from $M$ terminate.

Strong Normalization of $\beta$ for $\lambda 2$.
Note:

- There are two kinds of $\beta$-reductions

$$
\begin{aligned}
& -(\lambda x: \sigma \cdot M) P \longrightarrow_{\beta} M[P / x] \\
& -(\lambda \alpha \cdot M) \tau \longrightarrow_{\beta} M[\tau / \alpha]
\end{aligned}
$$

- The second doesn't do any harm, so we can just look at $\lambda 2$ à la Curry

Recall the proof for $\lambda \rightarrow$ :

- $\llbracket \alpha \rrbracket:=\mathrm{SN}$.
- $\llbracket \sigma \rightarrow \tau \rrbracket:=\{M \mid \forall N \in \llbracket \sigma \rrbracket(M N \in \llbracket \tau \rrbracket)\}$.

Question:
How to define $\llbracket \forall \alpha . \sigma \rrbracket ? ?$

$$
\llbracket \forall \alpha . \sigma \rrbracket:=\Pi_{X \in U} \llbracket \sigma \rrbracket_{\alpha:=X} ? ?
$$

Strong Normalization of $\beta$ for $\lambda 2$.
Question:
How to define $\llbracket \forall \alpha . \sigma \rrbracket ? ?$

$$
\llbracket \forall \alpha \cdot \sigma \rrbracket:=\Pi_{X \in U} \llbracket \sigma \rrbracket_{\alpha:=X} ? ?
$$

- What should be $U$ ?

The collection of "all possible interpretations" of types (?)

- $\Pi_{X \in U} \llbracket \sigma \rrbracket_{\alpha:=X}$ gets too big: $\operatorname{card}\left(\Pi_{X \in U} \llbracket \sigma \rrbracket_{\alpha:=X}\right)>\operatorname{card}(U)$

Girard:

- $\llbracket \forall \alpha . \sigma \rrbracket$ should be small

$$
\bigcap_{X \in U} \llbracket \sigma \rrbracket_{\alpha:=X}
$$

- Characterization of $U$.
$U:=$ SAT, the collection of saturated sets of (untyped) $\lambda$-terms.
$X \subset \Lambda$ is saturated if
- $x P_{1} \ldots P_{n} \in X$ (for all $x \in \operatorname{Var}, P_{1}, \ldots, P_{n} \in \mathrm{SN}$ )
- $X \subseteq \mathrm{SN}$
- If $M[N / x] \vec{P} \in X$ and $N \in \mathrm{SN}$, then $(\lambda x . M) N \vec{P} \in X$.

Let $\rho:$ TVar $\rightarrow$ SAT be a valuation of type variables.
Define the interpretation of types $\llbracket \sigma \rrbracket_{\rho}$ as follows.

- $\llbracket \alpha \rrbracket_{\rho}:=\rho(\alpha)$
- $\llbracket \sigma \rightarrow \tau \rrbracket_{\rho}:=\left\{M \mid \forall N \in \llbracket \sigma \rrbracket_{\rho}\left(M N \in \llbracket \tau \rrbracket_{\rho}\right)\right\}$
- $\llbracket \forall \alpha . \sigma \rrbracket_{\rho}:=\cap_{X \in S A T} \llbracket \sigma \rrbracket_{\rho, \alpha:=X}$

Proposition

$$
x_{1}: \tau_{1}, \ldots, x_{n}: \tau_{n} \vdash M: \sigma \Rightarrow M\left[P_{1} / x_{1}, \ldots, P_{n} / x_{n}\right] \in \llbracket \sigma \rrbracket_{\rho}
$$

for all valuations $\rho$ and $P_{1} \in \llbracket \tau_{1} \rrbracket_{\rho}, \ldots, P_{n} \in \llbracket \tau_{n} \rrbracket_{\rho}$

Proof
By induction on the derivation of $\Gamma \vdash M: \sigma$.

Corollary $\lambda 2$ is SN
(Proof: take $P_{1}$ to be $x_{1}, \ldots, P_{n}$ to be $x_{n}$.)

A little bit on semantics

$$
\lambda 2 \text { does not have a set-theoretic model! [Reynolds] }
$$

Theorem: If

$$
\llbracket \sigma \rightarrow \tau \rrbracket:=\llbracket \tau \rrbracket^{\llbracket \sigma \rrbracket} \text { ( set theoretic function space ) }
$$

then $\llbracket \sigma \rrbracket$ is a singleton set for every $\sigma$.

So: in a $\lambda 2$-model, $\llbracket \sigma \rightarrow \tau \rrbracket$ must be 'small'.

