Type Theory and Coq

Herman Geuvers

Lecture: Normalization for A— and A2



Properties of A\—

e Subject Reduction
fI'-M:0and M —3 N, thenI'= N : 0.

e Strong Normalization
If I' = M : o, then all 8-reductions from M terminate.

These are proved using the following basic properties of A—

e Substitution property
f,x: 7 AFM:o, 'FP:7,thenl', A+ M[P/x]: 0.

e Thinning
fI'EM:0and ' C A, then A+ M : 0.



Normalization of 3 for A—

Note:

e Terms may get larger under reduction
(Af Xz f(fx))P — 5 A\x.P(Px)

e Redexes may get multiplied under reduction.

(Af Az f(f2)(Ay-M)Q) —p Ax.((Ay-M)Q)(((A\y-M)Q)x)

e New redexes may be created under reduction.
(Af Az f(fx))(Ay.N) —g Ax.(Ay.N)((Ay.N)x)

First: Weak Normalization

e Weak Normalization: there is a reduction sequence that terminates,

e Strong Normalization: all reduction sequences terminate.



Weak Normalization

There are three ways in which a “new” [-redex can be created.

e Creation
(Az....x P..)(A\y.Q) —p ... (\y.Q)P...

e Multiplication

e |dentity



Weak Normalization

Proof originally from Turing, first published by Gandy (1980).
Definition
The height (or order) of a type h(o) is defined by

e hia):=0

e hic1—...—op—a) :=max(h(o1),...,h(o,)) + 1.
NB [Exercise] This is the same as defining

e hic—7):=max(h(o)+ 1,h(7)).

Definition
The height of a redex (Az:0.P)Q is the height of the type of \z:0.P



Weak Normalization

Definition
We give a measure m to the terms by defining m(N) := (h(N),#N)
with

e h(N) = the maximum height of a redex in N,

e #N = the number of redexes of height A(N) in N.

The measures of terms are ordered lexicographically:

(h1,x) <; (ha,y) iff hy < hg or (hy = hy and = < y)



Theorem: Weak Normalization

If P is a typable term in A—, then there is a terminating reduction

starting from P.

Proof

Pick a redex of height h(P) inside P that does not contain any other
redex of height h(P). [Note that this is always possible!]

Reduce this redex, to obtain (). This does not create a new redex of
height h(P). [This is the important step. Exercise: check this; use the
three ways in which new redexes can be created.]

So m(Q) <; m(P)

As there are no infinitely decreasing <; sequences, this process must
terminate and then we have arrived at a normal form.



Strong Normalization for A— a la Curry

This is proved by constructing a model of A—-.
Method originally due to Tait (1967); also direct “arithmetical” methods

exist, that use a decreasing ordering (David 2001, David & Nour)
Definition

e [a] := SN (the set of strongly normalizing A-terms).
o [o—=7]:={M |VN € [o](MN € [1])}.
Lemma
1. xNy... Ny € o] for all , 0 and Ny,..., Nx € SN.
2. [¢] €SN

3. If M[N/z]P € [o], N € SN, then (Az.M)NP € [o].



Strong Normalization for A— a la Curry

Lemma

1. Ny ... Ny € [o] for all x, o and Ny,..., N € SN.

2. [o] €SN

3. If M[N/z]P € [o], N € SN, then (A\z.M)NP € [o].

Proof: By induction on o; the first two are proved simultaneously.

NB for the proof of (2): We need that [o] is non-empty, which is

guaranteed by the induction hypothesis for (1).
Also, use that M N € SN = M & SN. Think of it a bit and see it's true.



Proposition

X1l T Tn E M 0

Ny € [11],..., N, € [1a] = M|Ny/x1,... Ny /x,] € [o]

Proof By induction on the derivation of I' = M : 0. (Using (3) of the
previous Lemma.)

Corollary A— is SN

Proof By taking IV; := z; in the Proposition. (That can be done,
because x; € [7;] by (1) of the Lemma.)
Then M € [o] C SN, using (2) of the Lemma. QED

Exercise Verify the details of the Strong Normalization proof. (That is,
prove the Lemma and the Proposition.)
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A little bit on semantics

A— has a simple set-theoretic model. Given sets [«] for type variables

«, define
lo—T7] = [7] o] ( set theoretic function space [o] — [7])

If any of the base sets [«] is infinite, then there are higher and higher

(uncountable) cardinalities among the [o]

There are smaller models, e.g.
[c—7] :={f € [o] — [7]|f is definable}

where definability means that it can be constructed in some formal

system. This restricts the collection to a countable set.

For example

lo—=7] :={f € [o] — [7]|f is A\-definable}
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Properties of \2.

e Uniqueness of types
fI'-M:0and ' M : 7, then 0 = 7.

e Subject Reduction
fI'=M:0and M —3, N, then ' = N : 0.

e Strong Normalization
If I' = M : o, then all Sn-reductions from M terminate.
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Strong Normalization of 3 for A\2.
Note:

e There are two kinds of 3-reductions

— (Az:o.M )P — 3 M|P/x]
— (Aa.M)T —5 M|7/0q]

e [he second doesn’'t do any harm, so we can just look at A2 a la

Curry
Recall the proof for A—:

e [a] :=SN.

o [o—=7]:={M |VN € [o](MN € [1])}.
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Question:
How to define [Va.o] 77

[[VO&.O’]] = HXEU[[O-]]@;:X??



Strong Normalization of 3 for A\2.
Question:
How to define [Va.o] 77

[Va.o] :==1xer|o],,._ 77

e What should be U7
The collection of “all possible interpretations” of types (7)

o IIxcyo],._ gets too big: card(Ilxerr[o],,._ ) > card(U)

Girard:

e [Va.o] should be small

ﬂ lo].—x

XeU

e Characterization of U.
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U := SAT, the collection of saturated sets of (untyped) A-terms.
X C A is saturated if

e xP...P, € X (forall x € Var, P,..., P, € SN)
e X CSN
o If M[N/z]P € X and N € SN, then (A\z.M)NP € X.

Let p: TVar — SAT be a valuation of type variables.
Define the interpretation of types [o] ) as follows.

o [of, :=pla)
o [o—=7],:={M|VN € [o] ,(MN € [7],)}

¢ \V/OZO']]p = ﬁ_XES/A\-F[[O-]]p,oz::)(
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Proposition

T1:Tlyee oy Ty Tn M :0= M[P/xq,...

for all valuations p and P; € [[Tl]]p, oy Py o€ 1]

Proof
By induction on the derivation of I' - M : 0.

Corollary A2 is SN

(Proof: take P; to be x1, ..., P, to be z,.)

P

, Pn/xn] € o]

P
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A little bit on semantics
A2 does not have a set-theoretic model! [Reynolds]

Theorem: If
lo—7] = [7] o] ( set theoretic function space )

then [o] is a singleton set for every o.

So: in a A2-model, [o—7] must be ‘small’.
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