
Type Theory and Coq

Herman Geuvers

Lecture: Simple Type Theory à la Curry: assigning types to untyped

terms, principal type algorithm

1

Overview of todays lecture

• Simple Type Theory (λ→) à la Curry (versus à la Church)

• Principal Types algorithm

• Properties of λ→.

• Dependent Type Theory λP

• Type checking for λP.

2

Why do we want types? (programmers perspective)

• Types give a (partial) specification

• Typed terms can’t go wrong (Milner) Subject Reduction property

• Typed terms always terminate

• The type checking algorithm detects (simple) mistakes

But: The compiler should compute the type information for us! (Why

would the programmer have to type all that?)

This is called a type assignment system, or also typing à la Curry:

For M an untyped term, the type system assigns a type σ to M (or not)

3

λ→ à la Church and à la Curry

λ→ (à la Church):

x:σ ∈ Γ

Γ ⊢ x : σ

Γ ⊢ M : σ→τ Γ ⊢ N : σ

Γ ⊢ MN : τ

Γ, x:σ ⊢ P : τ

Γ ⊢ λx:σ.P : σ→τ

λ→ (à la Curry):

x:σ ∈ Γ

Γ ⊢ x : σ

Γ ⊢ M : σ→τ Γ ⊢ N : σ

Γ ⊢ MN : τ

Γ, x:σ ⊢ P : τ

Γ ⊢ λx.P : σ→τ

4

Examples

• Typed Terms:

λx : α.λy : (β→α)→α.y(λz : β.x))

has only the type α→((β→α)→α)→α

• Type Assignment:

λx.λy.y(λz.x))

can be assigned the types

– α→((β→α)→α)→α

– (α→α)→((β→α→α)→γ)→γ

– . . .

with α→((β→α)→γ)→γ being the principal type

5

Connection between Church and Curry typed λ→

Definition The erasure map | − | from λ→ à la Church to λ→ à la Curry

is defined by erasing all type information.

|x| := x

|M N | := |M | |N |

|λx : σ.M | := λx.|M |

So, e.g.

|λx : α.λy : (β→α)→α.y(λz : β.x))| = λx.λy.y(λz.x))

Theorem If M : σ in λ→ à la Church, then |M | : σ in λ→ à la Curry.

Theorem If P : σ in λ→ à la Curry, then there is an M such that

|M | ≡ P and M : σ in λ→ à la Church.

6

Connection between Church and Curry typed λ→

Definition The erasure map | − | from λ→ à la Church to λ→ à la Curry

is defined by erasing all type information.

|x| := x

|M N | := |M | |N |

|λx : σ.M | := λx.|M |

Theorem If P : σ in λ→ à la Curry, then there is an M such that

|M | ≡ P and M : σ in λ→ à la Church.

Proof: by induction on derivations.

x:σ ∈ Γ

Γ ⊢ x : σ

Γ ⊢ M : σ→τ Γ ⊢ N : σ

Γ ⊢ MN : τ

Γ, x:σ ⊢ P : τ

Γ ⊢ λx.P : σ→τ

7

Example of computing a principal type

λxα.λyβ .yβ(λzγ .yβxα)λxα.λyβ . yβ(λzγ .

δ
︷ ︸︸ ︷

yβxα)
︸ ︷︷ ︸

ε

1. Assign type vars to all variables: x : α, y : β, z : γ.

2. Assign type vars to all applicative subterms: y x : δ, y(λz.y x) : ε.

3. Generate equations between types, necessary for the term to be

typable: β = α→δ β = (γ→δ)→ε

4. Find a most general unifier (a substitution) for the type vars that

solves the equations: α := γ→δ, β := (γ→δ)→ε, δ := ε

5. The principal type of λx.λy.y(λz.yx) is now

(γ→ε)→((γ→ε)→ε)→ε

8

Exercises to compute a principal type

1. Compute the principal type of S := λx.λy.λz.x z(y z)

2. Compute the principal type of

M := λx.λy.x(y(λz.x z z))(y(λz.x z z)).

3. Consider the following two terms

• (λx.λy.x(λz.y)) (λw.w)

• (λx.λy.y(λz.y)) (λw.w)

For each of these terms, compute its principle type, if it exists.

Otherwise show that the principal type algorithm returns “reject”.

9

Principal Types: Definitions

• A type substitution (or just substitution) is a map S from type

variables to types. (Note: we can compose substitutions.)

• A unifier of the types σ and τ is a substitution that “makes σ and τ

equal”, i.e. an S such that S(σ) = S(τ)

• A most general unifier (or mgu) of the types σ and τ is the “simplest

substitution” that makes σ and τ equal, i.e. an S such that

– S(σ) = S(τ)

– for all substitutions T such that T (σ) = T (τ) there is a

substitution R such that T = R ◦ S.

All these notions generalize to lists of types σ1, . . . , σn in stead of pairs

σ, τ .

10

Computability of most general unifiers

There is an algorithm U that, when given types σ1, . . . , σn outputs

• A most general unifier of σ1, . . . , σn, if σ1, . . . , σn can be unified.

• “Fail” if σ1, . . . , σn can’t be unified.

• U(〈α = α, . . . , σn = τn〉) := U(〈σ2 = τ2, . . . , σn = τn〉).

• U(〈α = τ1, . . . , σn = τn〉) := “reject” if α ∈ FV(τ1), τ1 6= α.

• U(〈σ1 = α, . . . , σn = τn〉) := U(〈α = σ1, . . . , σn = τn〉)

• U(〈α = τ1, . . . , σn = τn〉) := [α := V (τ1), V], if α /∈ FV(τ1),

where V abbreviates

U(〈σ2[α := τ1] = τ2[α := τ1], . . . , σn[α := τ1] = τn[α := τ1]〉).

• U(〈µ→ν = ρ→ξ, . . . , σn = τn〉) := U(〈µ = ρ, ν = ξ, . . . , σn = τn〉)

11

Principal type

Definition σ is a principal type for the untyped λ-term M if

• M : σ in λ→ à la Curry

• for all types τ , if M : τ , then τ = S(σ) for some substitution S.

12

Theorem: Principal Types

There is an algorithm PT that, when given an (untyped) λ-term M ,

outputs

• A principal type σ such that M : σ in λ→ à la Curry.

• “Fail” if M is not typable in λ→ à la Curry.

13

Typical problems one would like to have an algorithm for

M : σ? Type Checking Problem TCP

M : ? Type Synthesis Problem TSP

? : σ Type Inhabitation Problem (by a closed term) TIP

For λ→, all these problems are decidable,

both for the Curry style and for the Church style presentation.

• TCP and TSP are (usually) equivalent: To solve MN : σ, one has

to solve N :? (and if this gives answer τ , solve M : τ→σ).

• For Curry systems, TCP and TSP soon become undecidable beyond

λ→.

• TIP is undecidable for most extensions of λ→, as it corresponds to

provability in some logic.

14

λP: dependent type theory

Type checking is already difficult (interesting) for the Church case:

• types contain terms: “everything depends on everything”

• β-reduction inside types

15

λP-rules: axiom, application, abstraction, product

⊢ ∗ : �

Γ ⊢ M : Πx : A.B Γ ⊢ N : A

Γ ⊢ MN : B[x := N]

Γ, x : A ⊢ M : B Γ ⊢ Πx : A.B : s

Γ ⊢ λx : A.M : Πx : A.B

Γ ⊢ A : ∗ Γ, x : A ⊢ B : s

Γ ⊢ Πx : A.B : s

16

λP-rules: weakening, variable, conversion

Γ ⊢ A : B Γ ⊢ C : s

Γ, x : C ⊢ A : B

Γ ⊢ A : s

Γ, x : A ⊢ x : A

Γ ⊢ A : B Γ ⊢ B′ : s

Γ ⊢ A : B′

with B =β B′

17

Example

Γ := A : ∗, c : A, R : A→A→∗, f : A→A,

k : Πx:A.R c x,

h : Πx, y:A.Rx y→R (f x) (f y),

r : Πx, y:A.Rx y→Rx (f y)

Construct a term N such that

Γ ⊢ N : Πx, y:A.R (f x) y→R (f(f x)) (f(f y)).

18

Curry-Howard-de Bruijn for minimal predicate logic

introduction rules versus abstraction rule

[Ax]
...

B

A → B
I [x]→

...

B

∀x.B
I∀

Γ, x : A ⊢ M : B Γ ⊢ Πx : A.B : s

Γ ⊢ λx : A.M : Πx : A.B

19

elimination rules versus application rule

...

A → B

...

A

B
E→

...

∀x.B

B[x := N]
E∀

Γ ⊢ M : Πx : A.B Γ ⊢ N : A

Γ ⊢ MN : B[x := N]

20

Example

Prove the following formula (and find an appropriate context to do so in)

(∀x. P (x) → Q(x)) → (∀x. P (x)) → ∀y.Q(y)

21

Properties of λP

• Uniqueness of types

If Γ ⊢ M : σ and Γ ⊢ M : τ , then σ=βτ .

• Subject Reduction

If Γ ⊢ M : σ and M −→β N , then Γ ⊢ N : σ.

• Strong Normalization

If Γ ⊢ M : σ, then all β-reductions from M terminate.

Proof of SN is by defining a reduction preserving map from λP to λ→.

22

Decidability Questions

Γ ⊢ M : σ? TCP

Γ ⊢ M : ? TSP

Γ ⊢? : σ TIP

For λP:

• TIP is undecidable

• TCP/TSP: simultaneously with Context checking

23

Type Checking

Define algorithms Ok(−) and Type (−) simultaneously:

• Ok(−) takes a context and returns ‘true’ or ‘false’

• Type (−) takes a context and a term and returns a term or ‘false’.

The type synthesis algorithm Type (−) is sound if

Type
Γ
(M) = A ⇒ Γ ⊢ M : A

for all Γ and M .

The type synthesis algorithm Type (−) is complete if

Γ ⊢ M : A ⇒ Type
Γ
(M) =β A

for all Γ, M and A.

24

Ok(<>) = ‘true’

Ok(Γ, x:A) = Type
Γ
(A) ∈ {∗,kind},

Type
Γ
(x) = if Ok(Γ) and x:A ∈ Γ then A else ‘false’,

Type
Γ
(type) = if Ok(Γ)then kind else ‘false’,

Type
Γ
(MN) = if Type

Γ
(M) = C and Type

Γ
(N) = D

then if C ։β Πx:A.B and A =β D

then B[x := N] else ‘false’

else ‘false’,

25

Type
Γ
(λx:A.M) = if Type

Γ,x:A(M) = B

then if Type
Γ
(Πx:A.B) ∈ {type,kind}

then Πx:A.B else ‘false’

else ‘false’,

Type
Γ
(Πx:A.B) = if Type

Γ
(A) = type and Type

Γ,x:A(B) = s

then s else ‘false’

26

Soundness and Completeness

Soundness

Type
Γ
(M) = A ⇒ Γ ⊢ M : A

Completeness

Γ ⊢ M : A ⇒ Type
Γ
(M) =β A

As a consequence:

Type
Γ
(M) = ‘false’ ⇒ M is not typable in Γ

NB 1. Completeness implies that Type terminates on all well-typed

terms. We want that Type terminates on all pseudo terms.

NB 2. Completeness only makes sense if we have uniqueness of types

(Otherwise: let Type (−) generate a set of possible types)

27

Termination

We want Type (−) to terminate on all inputs.

Interesting cases: λ-abstraction and application:

Type
Γ
(λx:A.M) = if Type

Γ,x:A(M) = B

then if Type
Γ
(Πx:A.B) ∈ {type,kind}

then Πx:A.B else ‘false’

else ‘false’,

! Recursive call is not on a smaller term!

Replace the side condition

if Type
Γ
(Πx:A.B) ∈ {type,kind}

by

if Type
Γ
(A) ∈ {type}

28

Termination

We want Type (−) to terminate on all inputs.

Interesting cases: λ-abstraction and application:

Type
Γ
(MN) = if Type

Γ
(M) = C and Type

Γ
(N) = D

then if C ։β Πx:A.B and A =β D

then B[x := N] else ‘false’

else ‘false’,

! Need to decide β-reduction and β-equality!

For this case, termination follows from soundness of Type and the

decidability of equality on well-typed terms (using SN and CR).

29

