Type Theory and Coq

Herman Geuvers

Lecture: Simple Type Theory a la Curry: assigning types to untyped
terms, principal type algorithm

Overview of todays lecture

e Simple Type Theory (A—) a la Curry (versus a la Church)
e Principal Types algorithm

e Properties of A\—.

e Dependent Type Theory AP

e Type checking for AP.

Why do we want types? (programmers perspective)

e Types give a (partial) specification
e Typed terms can't go wrong (Milner) Subject Reduction property
e Typed terms always terminate

e The type checking algorithm detects (simple) mistakes

But: The compiler should compute the type information for us! (Why
would the programmer have to type all that?)

This is called a type assignment system, or also typing a la Curry:

For M an untyped term, the type system assigns a type o to M (or not)

A— a la Church and a la Curry

A— (3 la Church):

x:o el I'-M:0—-7I'FN:o I'Nev:oEP:T
I'Fx:0 I'EMN :T1 I'-Ax:o.P:o—1

A— (a la Curry):

x:oel I'-M:0—-7I'FN:o I'x:oEP:T1
I'Fx:0 I'EMN :T1 I'EAx.P:o—t1

Examples

e [yped Terms:
Ax Y (B—a)—ay(Az : B.x))

has only the type a—((f—a)—a)—a

e Type Assignment:
AT AY.y(Az.x))

can be assigned the types

— a—((f—a)—a)—a

— (a—a)=((f—a—a)—y)—y

with a—((8—a)—~)— being the principal type

Connection between Church and Curry typed A—

Definition The erasure map | — | from A— a la Church to A— a la Curry
is defined by erasing all type information.

x| = =z
M N[= |M[|N|
Az o M| = Ax.|M|

So, e.g.
Az a Ay (B—a)—ay(Az: B.o))| = Az y.y(Az.x))

Theorem If M : o in A— a la Church, then |M|: o in A— a la Curry.

Theorem If P : o in A— a la Curry, then there is an M such that
(M| =P and M : o in A= a la Church.

Connection between Church and Curry typed A—

Definition The erasure map | — | from A— a la Church to A— a la Curry
is defined by erasing all type information.

x| = =z
IMN| = [M]|N|
Ax:o. M| = Ax.|M|

Theorem If P : o in A— a la Curry, then there is an M such that
(M| =P and M : o in A= a la Church.
Proof: by induction on derivations.

x:o el I'-M:0—-7I'FN:o I'Nv:oEP:T
I'Fx:0 I'EMN :T1 I'EXe.P:o—r

Example of computing a principal type

.
o Ny (A2)

S

1. Assign type vars to all variables: x : a,y: 3,2 : 7.
2. Assign type vars to all applicative subterms: yx : 4, y(Az.yx) : €.

3. Generate equations between types, necessary for the term to be
typable: 5 = a—9d B = (y—d)—e

4. Find a most general unifier (a substitution) for the type vars that
solves the equations: a :=y—d, B := (y—d)—e, d:=¢

5. The principal type of Az. Ay.y(Az.yx) is now

(y—=e)—=((y—e)—e)—e

Exercises to compute a principal type

1. Compute the principal type of S := Az.\y.Az.x z(y 2)

2. Compute the principal type of
M = x) \y.x(y(Az.xz2))(y(Az.x 2 2)).

3. Consider the following two terms

o (Ax) y.x(Az.y)) (Aw.w)
o Az \y.y(Az.y)) A\w.w)

For each of these terms, compute its principle type, if it exists.
Otherwise show that the principal type algorithm returns “reject”.

Principal Types: Definitions

e A type substitution (or just substitution) is a map S from type
variables to types. (Note: we can compose substitutions.)

e A unifier of the types o and 7 is a substitution that “makes o and 7
equal”’, i.e. an S such that S(o) = S(7)

e A most general unifier (or mgu) of the types o and 7 is the “simplest
substitution” that makes ¢ and 7 equal, i.e. an .S such that

— S(o) = 5(7)

— for all substitutions T" such that T'(c) = T'(7) there is a
substitution R such that 7'= Ro S.

All these notions generalize to lists of types o1,...,0, in stead of pairs

o,T.

10

Computability of most general unifiers

There is an algorithm U that, when given types o4, ..., 0, outputs
A most general unifier of o1,...,0,, if 01,...,0, can be unified.
“Fail" if 1,...,0, can't be unified.

U({a = o on=Tn)) =U{02=Ta,...,00 = Tn)).

o1 = ’O'n:’rn)::U(<Oé:O'17...,0-n:Tn>>

)

Tn)) := "reject” if a € FV(11), 11 # a.
)
)

V], if a & FV(1),

11

Principal type

Definition o is a principal type for the untyped A-term M if

e M :o0in A— ala Curry

e for all types 7, if M : 7, then 7 = S(o) for some substitution S

12

Theorem: Principal Types

There is an algorithm PT that, when given an (untyped) A-term M,
outputs

e A principal type o such that M : o in A— a la Curry.

e “Fail” if M is not typable in A— a la Curry.

13

Typical problems one would like to have an algorithm for

M :o? Type Checking Problem TCP
M :7 Type Synthesis Problem TSP
7i0 Type Inhabitation Problem (by a closed term) TIP

For A—, all these problems are decidable,
both for the Curry style and for the Church style presentation.

e TCP and TSP are (usually) equivalent: To solve M N : o, one has
to solve NV :7 (and if this gives answer 7, solve M : 7—0).

e For Curry systems, TCP and TSP soon become undecidable beyond
A—.

e TIP is undecidable for most extensions of A—, as it corresponds to
provability in some logic.

14

AP: dependent type theory

Type checking is already difficult (interesting) for the Church case:

e types contain terms: “everything depends on everything”

e (-reduction inside types

15

AP-rules: axiom, application, abstraction, product

= [

I'-M:1lx:A. B I'N:A
' = MN : Blx := N]

I'z:A+- M:B ' -1lx:A.B:s

' Xe: A M :1lx: A. B

I' = A:x I'z:AF B:s
' 1lx: A.B:s

16

AP-rules: weakening, variable, conversion

' A:B I'C:s
I'x:CFA:B

I'-A:s
INez:AFax: A

I'-A:B I' = B':s

' A:DB

with B =3 B’

17

Example

I' = A:x, ¢c: A, R:A—>A—x, f:A-A,
k:1lxz:A.Rcx,
h:llz,y:A.Rvy—R(fx)(fy),

r: 1z, y: A Rxy—Rx (fy)

Construct a term N such that

IEN -z, gy AR(fx)y—=R(f(f)) (f(fy)).

18

Curry-Howard-de Bruijn for minimal predicate logic

introduction rules versus abstraction rule

[A7]
B B
I|x]— Iv
A— B Vax. B

I'z: A+ M:B ' -1lz:A. B:s
' = Xe:AM:1lz: A B

19

elimination rules versus application rule

A— B A Vx. B

' M:1lx:A. B I'N: A
[' - MN : Bz := N]

20

Example

Prove the following formula (and find an appropriate context to do so in)

(Vz. P(x) — Q(x)) — (Vz. P(x)) — Vy. Q(y)

21

Properties of AP

e Uniqueness of types
fI'-M:0and I'= M : 7, then o=47.

e Subject Reduction
fI'-M:0and M —3 N, thenI'= N : 0.

e Strong Normalization
If I' = M : o, then all 8-reductions from M terminate.

Proof of SN is by defining a reduction preserving map from AP to A—.

22

Decidability Questions

I'-M:0?7 TCP
I'M:? TSP
I'E?: 0 TIP

For AP:

e TIP is undecidable

e TCP/TSP: simultaneously with Context checking

23

Type Checking

Define algorithms Ok(—) and Type_(—) simultaneously:

e Ok(—) takes a context and returns ‘true’ or ‘false’
e Type (—) takes a context and a term and returns a term or ‘false’.
The type synthesis algorithm Type_(—) is sound if
Typep(M)=A = TI'FM:A
for all I' and M.

The type synthesis algorithm Type_(—) is complete if
'-M:A = Typepr(M)=5A
forall I', M and A.

24

Ok(<>) = ‘true’

Ok(I',z:A) = Typerp(A) € {*,kind},
Typep(z) = if Ok(I') and 2:A € I then A else ‘false’,
Typer(type) = if Ok(I')then kind else ‘false’,
Typep(MN) = if Typepr(M) = C and Typep(N) =D

then if C —gllz:A.Band A =5 D
then B|x := N]| else ‘false’

else ‘false’,

25

Typer(Az:A.M) = if Typer .o(M)=DB

then if Typer(Ilz:A.B) € {type, kind}
then IIx:A.B else ‘false’
else ‘false’,
Typer(llz:A.B) = if Typep(A) = type and Typer ,.4(B) = s

then s else ‘false’

26

Soundness and Completeness

Soundness
Typer(M)=A = TTFM:A

Completeness

I'-M:A = Typer(M)=5A
As a consequence:
Typep (M) = ‘false’ = M is not typable in I’

NB 1. Completeness implies that Type terminates on all well-typed
terms. We want that Type terminates on all pseudo terms.

NB 2. Completeness only makes sense if we have uniqueness of types
(Otherwise: let Type_(—) generate a set of possible types)

27

Termination

We want Type_(—) to terminate on all inputs.
Interesting cases: A-abstraction and application:

Typer(Az:A.M) = if Typer ,.o(M)=DB
then if Typer(Ilz:A.B) € {type, kind}
then IIx:A.B else ‘false’

else ‘false’,
I Recursive call is not on a smaller term!
Replace the side condition
if Typerp(Ilz:A.B) € {type, kind}
by
if Typep(A) € {type}

28

Termination

We want Type_(—) to terminate on all inputs.
Interesting cases: A-abstraction and application:
then if C' =g llx:A.Band A =3 D
then Blx := N] else ‘false’

else ‘false’,

| Need to decide -reduction and (-equality!

For this case, termination follows from soundness of Type and the
decidability of equality on well-typed terms (using SN and CR).

29

