
Inductive types in Coq

Wessel van Staal

November 23, 2012



Inductive types

Inductive nattree : Set :=
leaf : nat -> nattree

| node : nattree -> nattree -> nattree.

I Adds constant or function with final type Prop, Set or Type
to the context.

I An inductive type is closed under its constructors,
functions that produce the type.

I Enables computational concepts (case distinction,
recursion).

I Enables proof by induction principle.



Parametric arguments

Inductive tree (A:Set) : Set :=
| leaf : A -> tree A
| node : tree A -> tree A -> tree A.

I Parametric arguments are defined for the whole inductive
definition.

I Stability constraint: parameters must be reused in the
exact order of definition in the final term of the constructor.

I Each inductive type definition with parametric arguments
can be converted to an inductive type without parametric
arguments.

I Each parameter is pushed down to each constructor.



Parametric arguments (2)

Inductive Term (A:Set) : Type :=
| App : forall B:Set, Term (A->B) -> Term A -> Term B
.

Inductive Term : Set -> Type :=
| App : forall A:Set, forall B:Set, Term (A->B) -> Term A -> Term B
.



Constructors

Each constructor of inductive type T is of the following form:

t1 → t2 → · · · → tj → T a1 a2 · · · an

If T is a function, then n > 0. Each ti constitutes an argument
of the constructor and must be well-typed, with j ≥ 0.

I The term T a1 a2 · · · an must be well-formed and
well-typed; it must respect the stability constraint.

I The type T cannot appear among arguments a1 a2 · · · an.



Positivity constraints

t1 → t2 → · · · → tj → T a1 a2 · · · an

Each ti with 1 ≤ i ≤ j must respect the following constraints:
I If ti is a function, then the inductive type T may only occur

in the final type of the function (i.e. T must not appear left
of the arrow).

I For each occurrence of T a′
1 a′

2 · · · a′
m in ti , T must not

appear in a′
j where 1 ≤ j ≤ m.

The constructor can have a dependent type of form ∀t ∈ D,U.
In that case, D and U must respect the positivity constraints.



Well-formed or not?

Inductive T : Type := t : (T->T) -> T.

Inductive I : Type := i : forall T:Type, (T -> I) -> I.

Inductive Term : Type -> Type :=
| Abs : forall A:Type, forall B:Type, (A -> Term B) -> Term (A->B).

Inductive T2 : Type->Type := p : T2 (T2 nat).



Violating the positivity constraint

Inductive T : Set := Fn : (T->T) -> T.

Definition Iterate : T->T :=
fun (t:T) => match t with Fn f => f t.



Violating the positivity constraint (2)

Inductive T : Type := Fn : (T -> T) -> T .

Definition app : T->T->T :=
fun x:T => fun y:T => match x with Fn f => f y.

Definition t : T->T := fun x:T => app x x.

Definition omega : T := app (Fn t) (Fn t).

Simulating Ω (λx .xx)(λx .xx):
I app : λxy . x y .
I t : λx . app x x .
I omega : app t t .



Universe constraint

I Sort of the inductive type T and the sort of each
constructor type is the same up to convertibility.

I For T in sort s, for all constructor arguments in sort s′,
s′ : s.

I Prop : Set
I Set : Typei , ∀i
I Typei : Typej , if i ≤ j



Universe constraint

Inductive list (A:Set) : Set :=
| nil : list A
| cons : A -> list A -> list A.

Inductive T1 : Set :=
c1 : Set -> T.

Inductive T2 : Set :=
c2 : forall x:Set, T2.

Inductive T3 : Type :=
c3 : forall x:Type, T3.



Induction principle cookbook

For inductive type T ,
1. Header

I Universal quantification over the parameters of T
I Universal quantification over predicates ranging over

elements of T
2. Principal premises

I Predicate needs to hold for all uses of each constructor
I Induction hypothesis for each argument of with final type T

3. Epilogue
I The predicate holds for all elements of T



Header

I Universal quantification over the parameters of T
I Universal quantification over predicates ranging over

elements of T
I Predicates receive k + 1 arguments, where k is the number

of non-parametric arguments of T .
I Construct headers for the following types:

Inductive T1 (A:Set) (B:Set) : Set := t1 : T1 A B.

Inductive T2 : Set -> Set -> Set := t2 : T2 nat nat.



Principal premises

For each constructor of T ,
I Universal quantification for each argument

I Add induction hypothesis for arguments with type T
I Also add induction hypothesis if the argument is a function

with final type T
Construct principal premises for the following example:

Inductive Term : Type -> Type :=
| Val : forall A:Type, A -> Term A
| Abs : forall (A:Type) (B:Type), (A -> Term B) -> Term (A->B)
| App : forall (A:Type) (B:Type), Term (A->B) -> Term A -> Term B.


	Inductive types

