Type Theory and Coq

Herman Geuvers

Principal Types and Type Checking

Overview of todays lecture

e Simple Type Theory a la Curry
(versus Simple Type Theory a la Church)

e Principal Types algorithm

e Type checking dependent tytpe theory: AP

Recap: Simple type theory a la Church.

Formulation with contexts to declare the free variables:
L1 :01, T2 :02,...,Lp : Op,

Is a context, usually denoted by I".
Derivation rules of A— (a la Church):

xo el I'-M:0—-7I'FN:o I'Nx:o-P:T
I'Fx:0 I'EMN :1 I'EAr:o.P:o—T

['=x_, M : o if there is a derivation using these rules with conclusion
I'-EM:o

Recap: Formulas-as-Types (Curry, Howard)

There are two readings of a judgement M : o

1. term as algorithm/program, type as specification:
M is a function of type o

2. type as a proposition, term as its proof:
M is a proof of the proposition o

e There is a one-to-one correspondence:
typable terms in A— ~ derivations in minimal proposition logic

® x| :T1,T2:T2,...,Ty . Tp — M : o can be read as
M is a proof of o from the assumptions 71,75, ..., Ty,.

Recap: Example

[a=B—=1" [o]' [a=p]" [a]

B— B
s | N Ar:a— =y \y:a—BAziaexz(yz)
a—y 5 a (a—=f—y)—=(a—0)—a—y
(a—B)—a—y

(a—=B—v)—=(a—p)—a—y

Untyped A-calculus

Untyped A-calculus

A :=Var| (AA) | (A\Var.A)

Examples:

-K: = ry.x
-S:=Xzyzxz(yz)
-w = Ar.rx

- i=ww

Q—)gQ

Untyped A-calculus

Untyped A-calculus is Turing complete
It's power lies in the fact that you can solve recursive equations:

Is there a term M such that

Mz =g xMaz?

Is there a term M such that

M x =4 if (Zerox) then 1 else Mult x (M (Pred x))?

Yes, because we have a fixed point combinator:

-Y = A (Ax.f(xx)(Ax.f(xx))
Property:

Y f=5f(Y][)

Why do we want to add types to A-calculus?

e Types give a (partial) specification
e Typed terms can’t go wrong (Milner) Subject Reduction property
e Typed terms always terminate

e The type checking algorithm detects (simple) mistakes

But: The compiler should compute the type information for us!

(Why would the programmer have to type all that?)
This is called a type assignment system, or also typing a la Curry:

For M an untyped term, the type system assigns a type o to M (or not)

STT a la Church and a la Curry

A— (a la Church):

xoel I'-M:0—-7I'FN:o I'Nx:o-P:T
I'Fx:0 I'EMN 71 I'-Xx:o.P:o—1

A— (a la Curry):

xoel I'-M:0—-7TI'FN:o I'Nx:o-P:T
I'Fx:0o I'EMN :T1 I'EAx.P:o—T

Examples

e [yped Terms:
ATy (B—a)—ay(Az: B.x)
has only the type a—((f—a)—a)—a

e Type Assignment:
Ax \y.y(Az.x)

can be assigned the types
— a—((f—a)—a)—a
— (a—a)—=((B—a—a)—vy)—y

with a—((6—a)—~)— being the principal type

10

Connection between Church and Curry typed STT

Definition The erasure map | — | from STT a la Church to STT a la

Curry is defined by erasing all type information.

x| = =«
IMN| = [M]|N|
Ax o M| = Ax.|M|

So, e.g.
Az a y - (B—a)—ay(Az : B.x))| = Az y.y(Az.x))
Theorem If M : o in STT a la Church, then [M|: o in STT a la Curry.

Theorem If P: o in STT a la Curry, then there is an M such that
(M| =P and M : o in STT a la Church.

11

Connection between Church and Curry typed STT

Definition The erasure map | — | from STT a la Church to STT a la
Curry is defined by erasing all type information.

x| = =«
M N| := |M]||N|
Ax o M| = Ax.|M|

Theorem If P: o in STT a la Curry, then there is an M such that
(M| =P and M : o in STT a la Church.

Proof: by induction on derivations.

x:o el I'-M:0—-7TI'FN:o I'Nv:oE=P:T1
I'Fx:0 I'-MN :7 I'-Ax:o.P:o—T

12

Example of computing a principal type

o
~

Az \yP .y (N7 yP)

"~

3

1. Assign type vars to all variables: x : a,y : 3,2 : 7.
2. Assign type vars to all applicative subterms: yx : 4§, y(Az.yx) : .

3. Generate equations between types, necessary for the term to be
typable: 5 = a—0d B = (y—=d)—e

4. Find a most general unifier (a substitution) for the type vars that
solves the equations: a :=vy—e, [:= (y—=e)—e, d:=¢

5. The principal type of Az. Ay.y(Az.yx) is now

(v—=e) = ((y—=e)—e)—e

13

Exercise

Compute principal types for

e S:=)\x) \yAz.xz(y2)

o M =z \yx(yAz.xz2))(y(Az.xz2)).

14

Principal Types: Preliminary Definitions

e A type substitution (or just substitution) is a map S from type
variables to types. (Note: we can compose substitutions.)

e A unifier of the types o and 7 is a substitution that “makes o and 7
equal”, i.e. an S such that S(o) = S(7)

e A most general unifier (or mgu) of the types o and 7 is the “simplest
substitution” that makes o and 7 equal, i.e. an .S such that

— S(o) = 5(7)

— for all substitutions T" such that T'(¢) = T'(7) there is a
substitution R such that 7'= Ro S.

All these notions generalize to lists of types o1,...,0, in stead of pairs

o,T.

15

Computing a most general unifier

There is an algorithm U that, when given types o1, ..., 0, outputs
e A most general unifier of 01,...,0,, if 01,...,0, can be unified.
o "“Fail" if 1,...,0, can't be unified.
e U({a= o =Tn)) =U{02 =To,...,00 =Tpn)).
o U((a= L On =Tn)) = "“reject” if @ € FV(11), 11 # «a.
o U((o = o =Tn)) =U({a=01,...,0, =Tn))
e Ula=m1,...,0, =7p)) = |la:=V(m), V], if a & FV(r),
where V' abbreviates
U((oz]a =11 = mla:=71],...,0n|a := 11| = 7o := 11])).
o U{p—=v =p=E,...,on =1n)) = U({p = p,v =&, = Tn))

Principal type: Definition

Definition o is a principal type for the closed untyped A-term M if

e M :0inSTT ala Curry

e for all types 7, if M : 7, then 7 = S(o) for some substitution S.
A principal type is unique up to renaming of type variables.

Both a« — o and 5 — (3 are principal type of A\x.x.

17

Principal Types Theorem

Theorem There is an algorithm PT that, when given a closed untyped
A-term M, outputs

A principal type o of M if M is typable in STT a la Curry,
“Fail” if M is not typable in STT a la Curry.

This can be extended to open untyped A-terms: There is an algorithm
PP that, when given an untyped A-term M, outputs

A principal pair (I'; o) of M if M is typable in STT a la Curry,
“Fail” if M is not typable in STT a la Curry.
Definition (I', o) is a principal pair for M if ' - M : o and

for every typing A = M : 7 there is a substitution S such that 7 = S(0)
and A = S(I).

18

Typical problems one would like to have an algorithm for

M : 0?7 Type Checking Problem TCP
M :7 Type Synthesis Problem TSP
Tio Type Inhabitation Problem (by a closed term) TIP

For A—, all these problems are decidable,
both for the Curry style and for the Church style presentation.

e TCP and TSP are (usually) equivalent: To solve M N : o, one has
to solve IV :7 (and if this gives answer 7, solve M : 7—0o).

e For Curry systems, TCP and TSP soon become undecidable beyond
A—.

e TIP is undecidable for most extensions of A—, as it corresponds to
provability in some logic.

19

Rules for AP: axiom, application, abstraction, product

= [

I'M:I1lx:A. B I'FN:A
I' = MN : Blx:= N]

I'Nz:A+- M:B ' -1Ilx:A.B:s

' Xe: A M :1lx: A. B

' A:x I'z:AF B:s
I'E1Ilx: A.B:s

20

Rules for AP: weakening, variable, conversion

'+ A:B I'-C:s
I'hz:CFHA:B

I'-A:s
I'Ne:AFax: A

- A:B '+ B :s

I'-A: DB

with B =5 B/

21

Properties of AP

e Uniqueness of types
fI'-M:0and I' = M : 7, then o=37.

e Subject Reduction
fI'-M:0and M —3 N, thenI'- N : 0.

e Strong Normalization
If I' = M : o, then all B-reductions from M terminate.

Proof of SN is by defining a reduction preserving map from AP to A\—.

22

Decidability Questions

I'-M:0?7 TCP
I'=M:? TSP
I'E?:0 TIP

For \P:

e TIP is undecidable
(Equivalent to provability in minimal predicate logic.)

e TCP/TSP: simultaneously with Context checking

23

Type Checking algorithm for AP

Define algorithms Ok(—) and Type_(—) simultaneously:

e Ok(—) takes a context and returns ‘true’ or ‘false’
e Type_(—) takes a context and a term and returns a term or ‘false’.
Definition. The type synthesis algorithm Type_(—) is sound if
Typer(M)=A = T'FM:A
for all I and M.

Definition. The type synthesis algorithm Type_(—) is complete if
'-M:A = Typer(M)=3A
forall I', M and A.

24

Ok(<>) = ‘true’

Ok(I',xz:A) = Typep(A) € {x,kind},
Typep(z) = if Ok(I') and x:A € T then A else ‘false’,
Typer(type) = if Ok(I') then kind else ‘false’,
Typepr(MN) = if Typepr(M) = C and Typep(N) =D

then if C =g llz:A.Band A =3 D
then Blx := N] else ‘false’

else ‘false’,

25

Typer(Az:A.M) = if Typer ,.o(M)=B

then if Typer(Ilz:A.B) € {type, kind}
then IIx:A.B else ‘false’
else ‘false’,
Typer(llz:A.B) = if Typep(A) = type and Typer ,.4(B) = s

then s else ‘false’

26

Soundness and Completeness

Soundness
Typer(M)=A = T'FM:A

Completeness

'-M:A = Typer(M)=3A
As a consequence:

Typep(M) = ‘false’ = M is not typable in T’

NB 1. Completeness only makes sense if types are uniqueness upto =g

(Otherwise: let Type_(—) generate a set of possible types)
NB 2. Completeness only implies that Type terminates on all well-typed

terms. We want that Type terminates on all pseudo terms.

27

Termination

We want Type_(—) to terminate on all inputs.
Interesting cases: A-abstraction and application:

Typep(Az:A.M) = if Typer ,.o(M)=B

then if Typep(Ilx:A.B) € {type, kind}
then Ilx:A.B else ‘false’

else ‘false’,
I Recursive call is not on a smaller term!
Replace the side condition
if Typep(Ilx:A.B) € {type, kind}
by
if Typer(A) € {type}

28

Termination

We want Type_(—) to terminate on all inputs.
Interesting cases: A-abstraction and application:
Typep(MN) = if Typepr(M) = C and Typep(N)= D
then if C' =g lla:A.Band A =3 D
then B|x := N]| else ‘false’

else ‘false’,

I Need to decide S-reduction and (-equality!

For this case, termination follows from soundness of Type and the
decidability of equality on well-typed terms (using SN and CR).

29

