Please make sure that you are registered for this course in Brightspace, as it will be used to send email and keep track of results.
The course consists of five parts:
We use a course by Femke van Raamsdonk of the Free University Amsterdam. This will be taught by Freek using the following schedule:
29 January | propositional logic & simple type theory | chapters 1 & 2 |
4 February | predicate logic & dependent types | chapters 4 & 6 |
11 February | second-order logic & polymorphism | chapters 7 & 8 |
18 February | inductive types & recursion | chapter 3 |
25 February | inductive predicates & inversion | chapters 5 & 9 |
The students will be expected to have studied the chapters listed, and the material will be discussed then. You are welcome to ask for help at any time if you have any questions, either by email or by walking into our offices.
The practical work in Coq corresponding to Femke's course will be done using the ProofWeb system on the machine prover.cs.ru.nl. Each participant will get a login to the course page on this machine, and will get his/her password during the lectures.
The relevant links are:
Next we will go through another (slightly more advanced) introduction to Type Theory. This will be taught by Herman, using the following schedule:
11 March | principal types and type checking | sections 4.1–4.3, 6.4 slides, exercises |
8 April | Church-Rosser property | section 3.1 exercises |
15 April | normalization of λ→ and λ2 | sections 4.4, 5.6 slides, exercises |
This material overlaps with Femke's course, and therefore not all sections of the course notes will be discussed in the lectures in detail. (But you do have to know them for the test!)
The relevant links are:
After the May vacation the course will be taught by Dan, Herman and Freek together. A research paper will be read, together with extra material needed to understand it. The research paper for this year will be on guarded type theory:
As preparation for the research paper, we will read a chapter from a book and four other papers first:
Each paper will presented by two students for the group for 45 minutes. Slides are not required, but are allowed. Everything should be explained through examples (if possible), and you should be understand and explain the proofs (for example in a proof by induction you could present one of the interesting cases in more detail). If time permits, after the presentations the teachers will expand on what has been presented.
The current schedule for the presentations is:
23 April | 13.30 | Coq'Art, Ch 13.1–13.3 | Erik Voogd + Jan Heemstra | |
23 April | 14.30 | Coq'Art, Ch 13.4–13.5 | Cas Spaans + Margot Albers | |
23 April | 15.30 | Coq'Art, Ch 13.6–13.7 | Koen Timmermans + Marnix Suilen + coq | |
7 May | 13.30 | Atkey-McBride, sec 1 | Ilse Pool + Jeroen Slot + text | |
7 May | 14.30 | Atkey-McBride, sec 2 | Frank Gerlings + Serena Rietbergen | |
7 May | 15.30 | Atkey-McBride, sec 3 | Flip van Spaendonck + Joep Veldhoven | |
14 May | 13.30 | Clouston et al., sec 1 | Kasper Hagens + Nikki Jaspers | |
21 May | 13.30 | Abel, sec 1–2 | Loes Habermehl + Luuk Verkleij | |
21 May | 14.30 | Abel, sec 3–4 | Edoardo Putti + Lorena Yunes Arriaga | |
28 May | 13.30 | Abel et al., sec 1–2 | Bas Hofmans + Joris den Elzen | |
28 May | 14.30 | Abel et al., sec 3–4 | Folkert de Vries + Stephen Ellis | |
4 June | 13.30 | Veltri-vdWeide, sec 1+3 | Jonathan Moerman + Jos Craaijo | |
4 June | 14.30 | Veltri-vdWeide, sec 4 (+ intro Kripke semantics) | Dirk van Bree + Marein Könings + Timo Maarse | |
4 June | 15.30 | Veltri-vdWeide, sec 5 | Coen Borghans + Frank van Hoof |
If you want help with preparing your presentation (recommended!), contact one of the teachers in time.
Each student will be doing a small Coq formalization assignment. This assignment will be chosen by the student from the following list of suggestions.
The test covers both the contents of the courses by Femke and Herman, as well as the contents of the presentations. The final test will be:
Some old tests:
See the "paper exercises" above too, which are also exercises from old tests.
Each participant will get three grades: one for the presentation in the second half of the course, one for the individual Coq exercise, and one for the test. The final grade will be the average of these three grades.
There will be no grade for the practical work for Femke's course in ProofWeb, but this work will need to be finished to be allowed to pass the course.