
Type Theory and Coq 2019-2020
24-06-2020

Propositional logic:

1. Give a proof in first order intuitionistic propositional logic of the formula:

(¬a ∨ b)→ (a→ b)

(The opposite direction of the implication is also provable, but only classi-
cally. Proving that is not part of this exercise.)

[¬a ∨ bx]

[¬az] [ay]

⊥
E→

b
E⊥

¬a→ b
I[z]→

[bw]

b→ b
I[w]→

b
E∨

a→ b
I[y]→

(¬a ∨ b)→ (a→ b)
I[x]→

2. Give both the natural deduction proof that corresponds to the proof term

(λx : a→ a. x)(λx : a. x)

as well as the normal form of that proof.

[a→ ax]

(a→ a)→ a→ a
I[x]→

[ax]

a→ a
I[x]→

a→ a
E→

[ax]

a→ a
I[x]→

Simple type theory:

3. Give the most general type in simple type theory of the term:

λxyz. x(yz)zy

You do not need to explain why this is the most general type.

λx : a→ b→ (b→ a)→ c. λy : b→ a. λz : b. x(yz)zy
:

(a→ b→ (b→ a)→ c)→ (b→ a)→ b→ c

1



4. Give a type derivation in simple type theory that shows that

λx : a→ b. λy : b→ c. λz : a. y(xz)

is a well typed term.

Γ := x : a→ b, y : b→ c, z : a

Γ ` y : b→ c

Γ ` x : a→ b Γ ` z : a

Γ ` xz : b

Γ ` y(xz) : c

x : a→ b, y : b→ c ` λz : a. y(xz) : a→ c

x : a→ b ` λy : b→ c. λz : a. y(xz) : (b→ c)→ a→ c

` λx : a→ b. λy : b→ c. λz : a. y(xz) : (a→ b)→ (b→ c)→ a→ c

Predicate logic and dependent types:

5. Give a proof in first order intuitionistic first order predicate logic of the
formula:

∀x. ((∀y. P (y))→ (∃y. P (y)))

[∀y. P (y)H ]

P (x)
E∀

∃y. P (y)
I∃

(∀y. P (y))→ (∃y. P (y))
I[H]→

∀x. ((∀y. P (y))→ (∃y. P (y)))
I∀

6. Give a full type derivation of the λP type judgment:

a : ∗ ` a→ a→ ∗ : �

For the rules of λP see page 10.

You may write recurring subderivations only once, and replace the other
occurrences with dots.

` ∗ : �

a : ∗ ` a : ∗

` ∗ : �

a : ∗ ` a : ∗

` ∗ : � ` ∗ : �

a : ∗ ` ∗ : �

` ∗ : �

a : ∗ ` a : ∗
a : ∗, y : a ` ∗ : �

a : ∗ ` a→ ∗ : �

` ∗ : �

a : ∗ ` a : ∗
a : ∗, x : a ` a→ ∗ : �

a : ∗ ` a→ a→ ∗ : �

2



Second order propositional logic and polymorphism:

7. Give a proof in intuitionistic second order propositional logic of the formula:

(∀c. ((∀a. (A→ c))→ c))→ (∃a.A)

(The opposite direction of the implication is also provable, but proving that
is not part of this exercise.)

Hint: it might be useful to instantiate the universal quantifier with the state-
ment you are trying to prove.

[∀c. ((∀a. (A→ c))→ c)x]

(∀a. (A→ ∃a.A))→ ∃a.A
E∀

[Ay]

∃a.A
I∃

A→ ∃a.A
I[y]→

∀a. (A→ ∃a.A)
I∀

∃a.A
E→

(∀c. ((∀a. (A→ c))→ c))→ ∃a.A
I[x]→

8. In λ2 we can define:

A×B := Πc : ∗. ((A→ B → c)→ c)

Now we want a projection function:

π1 : A×B → A

Define this function as a lambda term.

π1 := λz : A×B. zA (λx : A. λy : B. x)

Inductive types:

9. In Coq we can define dependently typed lists of Booleans in which the pa-
rameter of the type is the length of the list, with type:

boollist_dep

: nat -> Set

We want to use the names nil and cons for the constructors.

Give the inductive definition of this type in Coq.

Inductive boollist_dep : nat -> Set :=

| nil : boollist_dep O

| cons : forall n : nat,

bool -> boollist_dep n -> boollist_dep (S n).

3



10. In Coq can define dependently typed lists Booleans:

Inductive boollist_dep : nat -> Set :=

| nil : boollist_dep O

| cons : forall n : nat,

bool -> boollist_dep n -> boollist_dep (S n).

Now give a recursive definition using Fixpoint and match of a function:

trues

: forall n : nat, boollist_dep n

The value of trues n should be a list containing n copies the Boolean true.

Fixpoint trues (n : nat) {struct n} : boollist_dep n :=

match n return boollist_dep n with

| O => nil

| S m => cons m true (trues m)

end.

In the old Coq version in ProofWeb the annotation

return boollist_dep n

is required to make this work, but in a modern Coq it is not. This means that
the solution without this annotation is also a correct answer to the exercise.

Induction principles:

11. Give the dependent induction principle for the unit type, as defined by:

Inductive unit : Set := tt : unit.

and explain the structure of this principle.

unit_ind

: forall P : unit -> Prop,︸ ︷︷ ︸
(i)

P tt ->︸ ︷︷ ︸
(ii)

forall u : unit, P u︸ ︷︷ ︸
(iii)

The principle consists of three parts:

(i) For all predicates on the inductive type. . .

(ii) . . . if that predicate is closed under each constructor then. . .

(iii) . . . the predicate holds on the whole type.

4



12. With an appropriate definition of a predicate even, we get as the induction
principle:

even_ind

: forall P : nat -> Prop,

P 0 ->

(forall n : nat, even n -> P n -> P (S (S n))) ->

forall n : nat, even n -> P n

Now we would like to show that one is not even, so we have the goal:

~(even (S O))

When we use inversion to prove this, internally a proof term will be con-
structed that contains a subterm:

even_ind (fun n => n = S O -> False) H1 H2

Give the type of this term, as well as the types of H1 and H2. (These corre-
spond to subgoals that internally will be generated by the inversion tactic,
and then automatically processed by the discriminate and injection tac-
tics.)

this term
: forall n : nat, even n -> n = S O -> False

H1 : O = S O -> False

H2 : forall n : nat,

even n -> (n = S O -> False) -> S (S n) = S O -> False

Short explanation of why this is relevant for inversion: the formula proved
by this term has the form

. . . even n -> n = S O -> False

but this is equivalent to

. . . n = S O -> even n -> False

so we can use it to prove that

forall n : nat, n = S O -> even n -> False

But

5



forall n : nat, n = S O -> . . .

amounts to saying that the property holds for S O (like Henri Ford’s a cus-
tomer can have a car painted any color he wants as long as its black, we have
here that this property holds for any number as long as it’s one). So this is
how inversion works internally.

Correspondences:

13. Under the Curry-Howard correspondence, what corresponds with the logical
operators conjunction and disjunction? You do not need to explain why this
is a natural correspondence.

The product type and the disjoint sum type.

14. Discuss the correspondences and differences between sorts ∗ and � of the
systems of the lambda cube (like λP and λ2) on the one hand, and the Coq
universes Prop, Set and Type on the other hand.

The sort ∗ corresponds to Prop and Set, and the sort � corresponds to Type.

Differences are:

• There is not a single Type but an infinite list of universes Type(i). For
this reason the sort � does not have a type, but the Type universes do
each have a type, because Type(i) has type Type(i+ 1).

• The Coq universes are in a subtype relation to each other:

Prop ≤ Set ≤ Type(1) ≤ Type(2) ≤ . . .

• The sort ∗ is impredicative, but Set is predicative (as are the Type
universes).

Metatheory:

15. Given that we know that λ2 satisfies Strong Normalisation and Subject Re-
duction, how can that be used to show that λ2 is consistent? A type theory
containing λ2 is consistent when the type

new false := Πa : ∗. a

is not inhabited.

You may use that new false does not have a normal proof (this is proved
using a theorem about the shape of normal forms).

Suppose that new false was inhabited, so we had M : new false. Then by
Strong Normalisation we could reduce M to a normal form N , with a reduc-
tion path M →→β N . Now because of Subject Reduction we then also would
get N : new false. But that would give us a normal proof of new false, and
we were allowed to use the fact that such a proof does not exists. Therefore
we get a contradiction.

It follows that new false is not inhabited, and therefore that λ2 is consistent.

6



16. In the Strong Normalisation proof of λ→ we defined an interpretation func-
tion, that maps simple types to sets of untyped lambda terms:

[[a]] := SN

[[A→ B]] := {M | ∀N ∈ [[A]].MN ∈ [[B]]}

In this, SN is the set of all strongly normalising lambda terms.

Now one of the lemmas in the proof consists of two properties, proved with
simultaneous induction on the structure of the type. These properties are:

(a) xN1 . . . Nk ∈ [[A]] for all variables x, types A and N1, . . . , Nk ∈ SN

(b) [[A]] ⊆ SN

The exercise: write out the function type case of the proof of the first prop-
erty. (You do not need to prove the first property for the atomic type case,
nor do you need to prove the second property in either case.)

We need to prove that

xN1 . . . Nk ∈ [[A→ B]]

given the Induction Hypothesis that both properties hold for A and B. This
amounts to showing that

xN1 . . . Nk ∈ {M | ∀N ∈ [[A]].MN ∈ [[B]]}

or in other words that

∀N ∈ [[A]]. xN1 . . . NkN ∈ [[B]]

Now because of the property (b) in the Induction Hypothesis for A we know
that if N ∈ [[A]] then N ∈ SN. But then the property (a) in the Induction
Hypothesis for B gives us that for such N

xN1 . . . NkN ∈ [[B]]

Which is exactly what we need to prove.

MetaCoq:

17. An abstract description of a basic form of reflection has the following struc-
ture. One defines a type T , together with two functions:

f : T → bool

C : T → Prop

and then proves a lemma:

f correct : ∀x : T. fx = true→ Cx

7



That way one can prove a goal of type Ct with the proof term

f correct t (eq refl true) : Ct

in which the conversion rule is used to convert from true = true to ft = true.

Now in the MetaCoq paper an implementation of a tautology checker is
described that follows this structure. There are types form, seq and result,
and there are constants:

Valid : result

valid : seq→ Prop

tauto proc : nat→ seq→ result

The first argument of the last function is ‘fuel’.

The exercise: explain how the types and functions of this tautology checker
map to the abstract description, and give the statement of the counterpart
of the f correct lemma.

We have the following mapping:

T 7→ seq
f 7→ tauto proc n

bool 7→ result
true 7→ Valid
C 7→ valid

The counterpart of f correct is:

∀n : nat. ∀x : seq. tauto proc nx = Valid→ valid x

Actually, a lemma like this occurs in the MetaCoq paper on page 35 under
the name of tauto sound:

tauto_sound n s : tauto_proc n s = Valid → valid s

18. Here are some lines from the MetaCoq formalisation:

Module NoPropLevel.

Inductive t := lSet | Level (_ : string) | Var (_ : nat).

End NoPropLevel.

Module UnivExpr.

(* npe = no prop expression, +1 if true *)

Inductive t := lProp | npe (e : NoPropLevel.t * bool).

End UnivExpr.

Module UnivExprSet := MSetList.MakeWithLeibniz UnivExpr.

Module Universe.

8



Record t := { t_set : UnivExprSet.t ;

t_ne : UnivExprSet.is_empty t_set = false }.

End Universe.

Definition ident := string.

Inductive name : Set :=

| nAnon

| nNamed (_ : ident).

Inductive term : Type :=

| tRel (n : nat)

| tVar (id : ident) (* For free variables (e.g. in a goal) *)

| tEvar (ev : nat) (args : list term)

| tSort (s : Universe.t)

| tCast (t : term) (kind : cast_kind) (v : term)

| tProd (na : name) (ty : term) (body : term)

| tLambda (na : name) (ty : term) (body : term)

| tLetIn (na : name) (def : term) (def_ty : term) (body : term)

| tApp (f : term) (args : list term)

| tConst (c : kername) (u : Instance.t)

| tInd (ind : inductive) (u : Instance.t)

| tConstruct (ind : inductive) (idx : nat) (u : Instance.t)

| tCase (ind_and_nbparams: inductive*nat) (type_info:term)

(discr:term) (branches : list (nat * term))

| tProj (proj : projection) (t : term)

| tFix (mfix : mfixpoint term) (idx : nat)

| tCoFix (mfix : mfixpoint term) (idx : nat).

The module MSetList.MakeWithLeibniz represents finite sets as lists, so
UnivExprSet.t is just ‘list UnivExpr.t’. De Bruijn variables count from
zero.

You may imagine that you are in the string scope, so you can type strings
as ‘"a"’. A one element list is written as ‘x::nil’. You can write an element
of a record type as

‘{| t set := . . . ; t ne := . . . |}’

An appropriate proof of the t ne field in a Universe.t is ‘eq refl false’.

The exercise: give a term in term that corresponds to the polymorphic iden-
tity:

λa : ∗. λx : a. x

and a term in term that corresponds to its type:

Πa : ∗. a→ a

Define s as:

9



tSort {| t_set :=

(UnivExpr.npe (NoPropLevel.lSet,false))::nil;

t_ne := eq_refl false

|}

then the two required terms are:

tLambda (nNamed "a") s
(tLambda (nNamed "x") (tRel 0) (tRel 0))

tProd (nNamed "a") s
(tProd nAnon (tRel 0) (tRel 1))

10


