For substitution（substitute N for x in M ）one sometimes writes $M[x:=N]$ （e．g．Takahashi）and sometimes $M[N / x]$（the exercise sheet）．

$$
\begin{aligned}
& \text { Exercise Chum-Rosoer } \\
& \text { (4) } M=(1 x y \cdot x x(x y)) \text { (II) } \\
& P=\lambda x y \cdot x x(x y) \\
& J=I I \\
& \text { (a) We otis duplicates in the graph. } \\
& \text { Note that Nay. II (} x \text { 平) is just by. } I(x I) \text { eta. }
\end{aligned}
$$

$$
\begin{aligned}
& 12 \\
& \begin{array}{ll}
x \Rightarrow x \Rightarrow x \Rightarrow x \\
x x \Rightarrow x
\end{array} \quad \frac{x \Rightarrow x y y}{x y \Rightarrow x y} \quad M \Rightarrow M^{*} \\
& x x(x y) \Rightarrow x x(x y)
\end{aligned}
$$

(2) (a) Change the cases $\left(\beta 3^{*}\right)$ and $\left(\beta 3^{*}\right)$ to the follomiry $\left(\beta 5^{*}\right)$ If $M_{1}^{*} \equiv \lambda x$. P, then $\left(M_{1} M_{2}\right)^{*} \equiv P\left[x==M_{2}^{*}\right]$
(b) $\frac{M \Rightarrow \lambda x \cdot P \quad N \not N^{\prime}}{M N \Rightarrow P\left[N^{\prime}+x\right] P\left[x:=N^{\prime}\right]}$

IN $\quad \lambda x \cdot P \Rightarrow M^{*}, N^{\prime} \Rightarrow N^{*}$
To prove:

$$
P\left[x:=N^{\prime}\right] \Rightarrow(M N)^{*}
$$

From $\lambda x \cdot P \Rightarrow F^{*}$ we deduce that $M^{*}=\lambda x$. Q with $P \Rightarrow Q$
So $(M N)^{*}=Q\left[x:=N^{*}\right]$.
we have $P \Rightarrow Q$ and $N^{\prime} \Rightarrow N^{*}$ so by substitution (property,
(3) In the Takehashipapex we con dude $P\left[x:=N^{\prime}\right] \Rightarrow Q\left[x:=N^{*}\right]$

$$
(M N)^{\|}
$$

(3) (a)

$$
\frac{\frac{y \Rightarrow y}{\lambda x \cdot y x \Rightarrow y} \quad I \Rightarrow I}{(\lambda y \lambda x \cdot y x) I \Rightarrow I_{\|_{y[y:=I]}}}
$$

We don't have $\left(\lambda y \cdot \lambda_{x} \cdot y x\right) I \Rightarrow I$
because of this were derivable, a derivation has to have the following shape

$$
\frac{\frac{\otimes}{\lambda x \cdot y x \Rightarrow M^{\prime}}}{(\lambda y \cdot \lambda x y x) I \Longrightarrow I \Rightarrow I}
$$

Note $M^{\prime}[y=I] \equiv I$ can be be cans of
(i) $M^{\prime} \equiv y$
(ii) $M^{\prime} \equiv I$

In car (i) we inuit have a darnivatice $\frac{*}{\lambda x \cdot y x \Rightarrow y}$
but thant can't be, be cane a λ-abstred dion only parallel Redness to ans then λ-abstractile
In care (ii) we aunt have $\frac{\theta}{\lambda x \cdot y x \Rightarrow \lambda x \cdot x}$
and so $y x \Rightarrow x$ aloha is wot the case either.
So: We can't have such a denninatio.
(b) $(\lambda x, M)^{*}=\left\{\begin{array}{l}P^{*} \quad \text { if } M=P_{x} \text { with } x \notin \neq v(P) \\ \lambda x \cdot M^{*} \text { other wise. }\end{array}\right.$

