
Type Theory and Coq 2022-2023
16-11-2022
10:30-13:00

Write your name and student number on each paper that you hand in.
This exam consists of 12 exercises. Each exercise is worth 15 points. The first

20 points are free. The final mark is the number of points divided by 20.
Write all natural deduction proofs and type derivations using the notation from

Femke’s course notes.
Good luck!

The next four exercises are concerned with simple type theory and propositional
logic.

1. Give a type derivation in Church-style simple type theory of the judgment:

x : (a→ b)→ a→ b, y : a→ b ` x (λz : a. xyz) : a→ b

You may abbreviate contexts in the style:

Γ1 := x : (a→ b)→ a→ b, y : a→ b

2. Consider the following Coq script:

Parameter a b c : Prop.

Lemma S : (a -> b -> c) -> (a -> b) -> a -> c.

intros x y z. apply x.

- apply z.

- apply y. apply z.

Qed.

Give the (Church-style) term that Coq builds with this script, i.e., the term
that will be printed by the command:

Print S.

You may write this term both in mathematical style or using Coq syntax,
whatever you prefer.

3. Apply the PT algorithm to determine whether the following lambda term is
typable in Curry-style simple type theory:

λxy.x (λz.zyx)

Give all intermediate steps of the algorithm. If the term is typable, then
explicitly give a principal type.

1

4. Consider the following formula of propositional logic:

(a ∧ b) ∧ c→ a ∧ (b ∧ c)

(a) Give a natural deduction proof of this formula.

(b) Give the proof term that corresponds to this proof. In this term you
may use the constants:

a : ∗
b : ∗
c : ∗
and : ∗ → ∗ → ∗
conj : Π a : ∗. Π b : ∗. a→ b→ and a b
π1 : Π a : ∗. Π b : ∗. and a b→ a
π2 : Π a : ∗. Π b : ∗. and a b→ b

Or, in Coq syntax:

a : Prop

b : Prop

c : Prop

and : Prop -> Prop -> Prop

conj : forall a b : Prop, a -> b -> and a b

proj1 : forall a b : Prop, and a b -> a

proj2 : forall a b : Prop, and a b -> b

You may write this term both in mathematical style or using Coq syn-
tax, whatever you prefer.

The next two exercises are concerned with dependent types and predicate logic.

5. Consider the following natural deduction proof in minimal predicate logic:

[∀y. p(y)→ q(y)H2]

p(y)→ q(y)
E∀

[∀y. p(y)H1]

p(y)
E∀

q(y)
E→

∀y. q(y)
I∀

q(f(x, g(x)))
E∀(

∀y. p(y)→ q(y)
)
→ q(f(x, g(x)))

I[H2]→(
∀y. p(y)

)
→
(
∀y. p(y)→ q(y)

)
→ q(f(x, g(x)))

I[H1]→

∀x.
((
∀y. p(y)

)
→
(
∀y. p(y)→ q(y)

)
→ q(f(x, g(x))

)) I∀
This proof contains a detour.

(a) Explain what the detour in this proof is.

2

(b) Give the λP proof term that corresponds to this proof, in which you
may use the constants:

D : ∗
p : D → ∗
q : D → ∗
f : D → D → D
g : D → D

Or, in Coq syntax:

D : Set

p : D -> Prop

q : D -> Prop

f : D -> D -> D

g : D -> D

You may write this term both in mathematical style or using Coq syn-
tax, whatever you prefer.

(c) Indicate the subterm that is the redex that corresponds to the detour.

(d) Give the normal form of the proof.

6. Give derivations of the following two typing judgments. See page 6 for the
typing rules of λP .

(a)
a : ∗, x : a ` a→ ∗ : �

(b)
a : ∗, x : a, b : a→ ∗ ` b x : ∗

In this second derivation you may replace instances of the first deriva-
tion by dots.

The next two exercises are concerned with polymorphic types and second order
propositional logic.

7. Give a proof in second order propositional logic of the formula:

a→ or2 a b

where we defined the impredicative version or2 of disjunction by:

or2 AB := ∀c. (A→ c)→ (B → c)→ c

8. In the context b : ∗, t : b consider the Church-style λ2 type:

∀a. a→ b

3

(a) Write this type using PTS syntax, i.e., according to the grammar:

M ::= x |MM | λx : M.M | Πx : M.M | s
s ::= ∗ | �

(b) Give the λ2 type of this type (its kind).

(c) Give an inhabitant of this type, in the given context.

(d) Give the typing judgment of this inhabitant. (Note that you only need
to state the judgment, and do not need to derive it.)

The next two exercises are concerned with inductive types.

9. In Coq the natural numbers are defined by:

Inductive nat : Set :=

| O : nat

| S : nat -> nat.

Its dependent recursion principle nat_rec has type:

nat_rec :

forall A : nat -> Set,

A O ->

(forall n : nat, A n -> A (S n)) ->

forall n : nat, A n

We want to define the predecessor function pred with type:

pred : nat -> nat

The recursion equations that we want to capture are:

pred O = O

pred (S m) = m

In other words, for this function we define the predecessor of zero to be zero.

(a) Define this function pred using Fixpoint and match.

(b) Define this function pred as an application of the recursor nat_rec.

10. (a) Define an inductive type list of polymorphic lists, with constructors
nil and cons.

(b) Give the type of the dependent induction principle list_ind of this
type.

4

(c) Give the type of the non-dependent recursor list_rec_nondep of this
type.

The next exercise is concerned with the Church-Rosser proof by Takahashi.

11. Consider the untyped lambda term:

(λx.xII)(II)

where we abbreviate, as always:

I := λx.x

(a) Give the full reduction graph for this term.

(b) For each term M in this graph, give the result of the full development
M∗, as defined by:

x∗ := x

(λx.M)∗ := λx.M∗

(MN)∗ :=

{
P ∗[x := N∗] if M = λx.P

M∗N∗ otherwise

The next exercise is concerned with the strong normalization proof using saturated
sets.

12. (a) Give the recursive definition of the semantics [[A]]ρ from the strong nor-
malization proof for λ2.

(b) Explain what A, ρ and [[A]]ρ are in this definition.

5

Typing rules of λP

axiom

` ∗ : �

variable
Γ ` A : s

Γ, x : A ` x : A

weakening
Γ ` A : B Γ ` C : s

Γ, x : C ` A : B

application
Γ ` M : Πx : A.B Γ ` N : A

Γ ` MN : B[x := N]

abstraction
Γ, x : A ` M : B Γ ` Πx : A.B : s

Γ ` λx : A.M : Πx : A.B

product
Γ ` A : ∗ Γ, x : A ` B : s

Γ ` Πx : A.B : s

conversion
Γ ` A : B Γ ` B′ : s

Γ ` A : B′
when B =β B

′

6

