introduction \& lambda calculus

Freek Wiedijk

Type Theory \& Coq
2023-2024
Radboud University Nijmegen

September 8, 2023

organization

coordinates

$$
\begin{gathered}
\text { https://www.cs.ru.nl/~freek/courses/tt-2023/ } \\
+ \\
\text { Brightspace }
\end{gathered}
$$

teachers:

- Freek Wiedijk
freek@cs.ru.nl
- Herman Geuvers
herman@cs.ru.nl
- Robbert Krebbers
robbert@cs.ru.nl
- Marc Hermes
marc.hermes@ru.nl
first half:
- five lectures on the type theory of Coq, by Freek (Fridays)
- three lectures on metatheory, by Herman (Fridays)
- Coq practicum (Mondays)
\longrightarrow required, not graded
- three hour written exam
\longrightarrow one third of the final grade
second half:
- student presentations (Mondays \& Fridays)

45 minutes, in pairs
\longrightarrow one third of the final grade

- Coq project
\longrightarrow one third of the final grade
- Femke van Raamsdonk, VU Amsterdam Logical Verification Course Notes, 2008
- course notes
- slides
- Coq practicum files
- Herman Geuvers Introduction to Type Theory, 2008
- summer school lecture notes
- slides
- some exercises
- reading list papers
- some supporting documents
- Jules Jacobs: Coq cheat sheet
- examples of induction/recursion principles
- many old exams, all with answers
course is self-contained, but...
we will presuppose some basic familiarity with:
- context-free grammars

NWI-IPC002 Languages and Automata

- mathematical logic: natural deduction NWI-IPI004 Logic and Applications
- functional programming NWI-IBC040 Functional Programming
- lambda calculus

NWI-IBC025 Semantics and Rewriting
as well as some mathematical maturity

introduction

what is a type?

- an attribute of expressions in a language
\longleftarrow this!

```
int i;
float pi = 3.14;
i = 2 * pi;
```

- something like a set

$$
\begin{aligned}
\text { int } & =\left\{-2^{31},-2^{31}+1, \ldots,-1,0,1, \ldots 2^{31}-1\right\} \\
\text { nat } & =\{0,1,2,3, \ldots\}
\end{aligned}
$$

introduction

what is a type?

- an attribute of expressions in a language
\longleftarrow this!

```
int i;
float pi = 3.14;
i = 2 * pi;
```

- something like a set

$$
\begin{aligned}
\text { int } & =\left\{-2^{31},-2^{31}+1, \ldots,-1,0,1, \ldots 2^{31}-1\right\} \\
\text { nat } & =\{0,1,2,3, \ldots\}
\end{aligned}
$$

but: types do not overlap the 0 of nat is different from the 0 of int
also: an object has a type
a type has a kind
... but there it stops

introduction

what is a type?

- an attribute of expressions in a language

$$
\begin{aligned}
& \text { int i; } \\
& \text { float pi }=3.14 ; \\
& \text { i }=2 \text { * pi; }
\end{aligned}
$$

- something like a set

$$
\begin{aligned}
\text { int } & =\left\{-2^{31},-2^{31}+1, \ldots,-1,0,1, \ldots 2^{31}-1\right\} \\
\text { nat } & =\{0,1,2,3, \ldots\}
\end{aligned}
$$

but: types do not overlap the 0 of nat is different from the 0 of int
also: an object has a type a type has a kind
... but there it stops
what is type theory?

- typed lambda calculus
\neq untyped lambda calculus (today: recap)
- logic encoded as a formal system of datatypes

Curry-Howard correspondence
pairs in $A \times B$ correspond to proofs of $A \wedge B$ functions in $A \rightarrow B$ correspond to proofs of $A \rightarrow B$

- one of the logical foundations for mathematics
- set theory
- HOL = Higher Order Logic = simple type theory
- ZFC $=$ Zermelo-Fraenkel set theory + AC (Axiom of Choice)
- type theory
- Martin-Löf type theory
- CIC $=$ Calculus of Inductive Constructions
- category theory
\checkmark topoi $\longrightarrow \infty$-topoi

$$
\begin{aligned}
& \lambda \rightarrow=\text { STT } \\
&=\text { simple type theory } \\
&=\text { simply typed lambda calculus } \\
& \lambda \mathrm{P}=\text { dependent type theory } \\
& \begin{aligned}
& \lambda 2=\text { system } \mathrm{F} \\
&=\text { polymorphic type theory } \\
& \begin{aligned}
\lambda \mathrm{C} & =\mathrm{CC} \\
& =\text { Calculus of Constructions } \\
& \text { CIC } \\
& =\text { Calculus of Inductive Constructions } \\
& =\text { the type theory of Coq }
\end{aligned}
\end{aligned} . \begin{array}{l}
\\
\lambda
\end{array} \\
&
\end{aligned}
$$

implementations of dependent type theory

Coq

INRIA, 1989 ■
Thierry Coquand, Gérard Huet, Christine PaulinMohring, Hugo Herbelin, Matthieu Sozeau

Agda
Chalmers, 1999 톱
Catarina Coquand, Ulf Norell \longrightarrow Cubical Agda

- $\lfloor\exists \forall N$ Lean 4

Microsoft Research, 2013
Leonardo de Moura, Sebastian Ullrich

- other implementations

Automath, Cubical, Dedukti, Epigram, Idris, Lego, Matita, Nuprl, Plastic, Twelf, ...
applications of type theory

- advanced functional programming

Lisp \longrightarrow ML \longrightarrow Haskell \longrightarrow Agda, Coq
types are dependent: carry more information 'correct by construction'

- proof formalization
- verification of programs and other systems
- verification of theoretical computer science
- verification of mathematics

CompCert

- CompCert $=$ verified C compiler Xavier Leroy, INRIA ■
compiles C to assembly, implemented in Coq similar optimization as gcc -01 formal semantics for C and assembly + correctness proof

CompCert

- CompCert $=$ verified C compiler Xavier Leroy, INRIA ■
compiles C to assembly, implemented in Coq similar optimization as gcc -01 formal semantics for C and assembly + correctness proof

- VST = Verified Software Toolchain Andrew Appel, Princeton 䝂
separation logic, based on CompCert
 Jacques-Henri Jourdan, Paris ח【, Derek Dreyer, Saarbrücken Lars Birkedal, Aarhus $\boldsymbol{E}^{\text {E }}$
- IrÎ́s separation logic in Coq extension of Hoare logic pointers in a heap, ownership, concurrency
$l \mapsto v \quad$ memory at location l has value v
$P * Q \quad P$ and Q hold for separate parts of heap programming language independent

RustBelt
proof (using Iris) of safety and data race freedom of Rust + some unsafe Rust libraries
\longrightarrow Robbert Krebbers
mathematical components

Ssreflect proof language for Coq math-comp mathematical library

- four color theorem (2005)
every planar graph is four colorable proof contains a huge computer check
- Feit-Thompson theorem $=$ odd order theorem (2012)
every simple group of odd order is cyclic original proof was 255 pages
\longrightarrow two full books formalized

HoTT

Homotopy Type Theory
Vladimir Voevodsky (Fields medal 2002), 2006, $\dagger 2017$

$$
\begin{array}{rl}
\text { type } & \sim \text { topological space } \\
\text { function } & \sim \text { continuous function } \\
\text { equality between points } & \sim \text { path between points } \\
\text { equality between types } & \sim \text { equivalence of spaces } \\
A=B & A \simeq B
\end{array}
$$

- $\mathrm{UA}=$ Univalence Axiom

$$
(A=B) \simeq(A \simeq B)
$$

- HITs = Higher Inductive Types
$=$ types with constructors for equalities
\longrightarrow Niels van der Weide, Herman Geuvers

Leonardo de Moura, Microsoft Research \longrightarrow Amazon 鿥
 Jeremy Avigad, CMU

$$
\begin{aligned}
\text { Lean } & =\text { 'Coq\#' }=\text { Microsoft's Coq clone } \\
& =\mathrm{Coq}+\text { Isabelle }
\end{aligned}
$$

- simpler and slightly different type theory extra conveniences: proof irrelevance, quotient types convertibility not transitive, no Subject Reduction
- implemented in Lean itself (+ small core in C++) serious compiler
- very nice interface based on VS Code
- very different user community: mathematicians!

Lean mathematical library over a million lines of code well organized, constantly refactored aims to include all undergraduate mathematics (Imperial College)
large projects:

- formal definition of perfectoid spaces
- liquid tensor experiment (2020-2022)
challenge by Peter Scholze (Fields medal 2018)
- working towards a proof of Fermat's Last Theorem
\longrightarrow Michail Karatarakis, Freek Wiedijk

untyped lambda calculus

lambda abstraction and function application
lambda abstraction defines an unnamed function:

$$
\lambda x \cdot x^{2}
$$

untyped lambda calculus

lambda abstraction and function application
lambda abstraction defines an unnamed function:

$$
\begin{array}{lrl}
\lambda x \cdot x^{2} & \text { input: } & x \\
\text { output: } & x^{2}
\end{array}
$$

untyped lambda calculus

lambda abstraction and function application
lambda abstraction defines an unnamed function:

$$
\begin{array}{lrl}
\text { sqr }:=\lambda x \cdot x^{2} & \text { input: } & x \\
\text { output: } & x^{2}
\end{array}
$$

untyped lambda calculus

lambda abstraction and function application
lambda abstraction defines an unnamed function:

$$
\begin{aligned}
\text { sqr } & :=\lambda x \cdot x^{2} & \begin{aligned}
& \text { input: } x \\
& \text { output: }
\end{aligned} & x^{2} \\
\operatorname{sqr}(3) & =9 & & \\
\operatorname{sqr} 3 & =9 & &
\end{aligned}
$$

untyped lambda calculus

lambda abstraction and function application
lambda abstraction defines an unnamed function:

$$
\begin{aligned}
\text { sqr } & :=\lambda x \cdot x^{2} & \begin{aligned}
\text { input: } & x \\
\text { output: } & x^{2} \\
\operatorname{sqr}(3) & =9 \\
\text { sqr } 3 & =9
\end{aligned} &
\end{aligned}
$$

$$
\left(\lambda x \cdot x^{2}\right) 3=9
$$

untyped lambda calculus

lambda abstraction and function application
lambda abstraction defines an unnamed function:

$$
\begin{aligned}
\text { sqr } & :=\lambda x \cdot x^{2} & \begin{aligned}
\text { input: } & x \\
\text { output: } & x^{2} \\
\operatorname{sqr}(3) & =9 \\
\text { sqr } 3 & =9
\end{aligned} &
\end{aligned}
$$

lambda abstraction
$(\overbrace{\lambda x \cdot x^{2}}) 3=9$

untyped lambda calculus

lambda abstraction and function application
lambda abstraction defines an unnamed function:

$$
\begin{array}{rlrl}
\text { sqr } & :=\lambda x \cdot x^{2} & \begin{aligned}
\text { input: } \\
\text { output: }
\end{aligned} & x \\
\text { sqr }(3) & =9 \\
\text { sqr } 3 & =9 & &
\end{array}
$$

$$
\lambda x \cdot x \quad \text { a string of six symbols }
$$

$$
\begin{aligned}
& \lambda x \cdot x \quad \text { a string of six symbols } \\
& (\lambda \times \cdot x)
\end{aligned}
$$

$$
\begin{array}{cl}
\begin{array}{l}
\lambda x \cdot x \\
(\lambda \times \cdot \mathrm{x})
\end{array} & \text { a string of six symbols } \\
\llbracket \lambda x \cdot x \rrbracket & \text { a function (the identity function) }
\end{array}
$$

$$
\begin{array}{cl}
\lambda x \cdot x & \text { a string of six symbols } \\
(\lambda \times \cdot \mathrm{x}) & \\
\llbracket \lambda x \cdot x \rrbracket & \text { a function (the identity function) }
\end{array}
$$

no semantics of untyped lambda calculus in this course not trivial!
\longrightarrow NWI-IMC011 Semantics and Domain Theory

x	$\lambda n f x . f(n f x)$
$x x$	$\lambda m n f x . m f(n f x)$
$x y$	$\lambda m n f x . m(n f) x$
$\lambda x . x$	$\lambda m n f x . n m f x$
$\lambda x . y$	$\lambda x . x x$
$\lambda x y . x$	$(\lambda x . x x)(\lambda x . x x)$
$\lambda x y . y$	$(\lambda x . f(x x))(\lambda x . f(x x))$
$\lambda x y z . x z(y z)$	$\lambda f .(\lambda x . f(x x))(\lambda x . f(x x))$
$\lambda f x y . f y x$	$\lambda x f . f(x x f)$
$\lambda f x . f x x$	$(\lambda x f . f(x x f))(\lambda x f . f(x x f))$
$\lambda f g x . f(g x)$	$\lambda x . x(\lambda x y z . x z(y z))(\lambda x y . x)$
$\lambda f x . x$	
$\lambda f x . f x$	
$\lambda f x . f(f x)$	
$\lambda f x . f(f(f x))$	
\vdots	

the set of variables is called Var
it does not matter what this set is, as long as it is countably infinite
for the formal definition of untyped lambda terms we will take

$$
\operatorname{Var}=\left\{x, x^{\prime}, x^{\prime \prime}, x^{\prime \prime \prime}, \ldots\right\}
$$

but we will write these as

$$
\begin{aligned}
& x, \\
& x^{\prime}, x^{\prime \prime}, x^{\prime \prime \prime}, \ldots \\
& x_{0}, x_{1}, x_{2}, x_{3}, \ldots \\
& y, z, u, v, w, n, m, f, g, h, \ldots \\
& y^{\prime}, y^{\prime \prime}, y^{\prime \prime \prime}, \ldots \\
& y_{0}, y_{1}, y_{2}, y_{3}, \ldots
\end{aligned}
$$

$$
\begin{aligned}
& \lambda x \cdot x^{2} \not \equiv \lambda y \cdot y^{2} \\
& \lambda x \cdot x^{2}={ }_{\alpha} \lambda y \cdot y^{2}
\end{aligned}
$$

$$
\begin{gathered}
M \equiv N \\
M \text { and } N \text { are equal as strings }
\end{gathered}
$$

$$
M={ }_{\alpha} N
$$

'names of variables bound by lambdas do not matter'
in practice we only consider lambda terms modulo $={ }_{\alpha}$
alpha equivalence

$$
\begin{aligned}
\lambda x \cdot x^{2} & \not \equiv \lambda y \cdot y^{2} \\
\lambda x \cdot x^{2} & ={ }_{\alpha} \lambda y \cdot y^{2} \\
x^{2} & \neq y^{2} \\
x^{2} & \neq{ }_{\alpha} y^{2}
\end{aligned}
$$

in the first case the variables x and y are bound in the second case the variables x and y are free $\mathrm{FV}(M)$ is the set of free variables in the term M

$$
\begin{gathered}
M \equiv N \\
M \text { and } N \text { are equal as strings }
\end{gathered}
$$

$$
M={ }_{\alpha} N
$$

'names of variables bound by lambdas do not matter'
in practice we only consider lambda terms modulo $={ }_{\alpha}$
formal definition of untyped lambda terms
the set of untyped lambda terms Λ is the smallest set which

- contains all variables

$$
\text { if } x \in \operatorname{Var} \text { then } x \in \Lambda
$$

- is closed under function application

$$
\text { if } F, M \in \Lambda \text { then also }(F M) \in \Lambda
$$

- is closed under lambda abstraction

$$
\text { if } x \in \operatorname{Var} \text { and } M \in \Lambda \text { then }(\lambda x . M) \in \Lambda
$$

the set of variables Var and the set of untyped lambda terms Λ are sets of strings over the alphabet

$$
\left\{\lambda, .,(,), x,^{\prime}\right\}
$$

$$
\begin{aligned}
x & :: \\
M & =\mathrm{x} \mid x^{\prime} \\
M & =x|(M M)|(\lambda x . M)
\end{aligned}
$$

Var

$$
\lambda f x y \cdot f y x
$$

is the $={ }_{\alpha}$-equivalence class of the 28 -symbol string

$$
\left(\lambda x \cdot\left(\lambda x^{\prime} \cdot\left(\lambda x^{\prime \prime} \cdot\left(\left(x x^{\prime \prime}\right) x^{\prime}\right)\right)\right)\right) \in \Lambda
$$

abstract syntax trees
the parentheses in the grammar are for non-ambiguity

$$
\begin{gathered}
\lambda f x y \cdot f y x \\
(\lambda f \cdot(\lambda x \cdot(\lambda y \cdot((f y) x)))) \\
\left(\lambda \mathrm{x}^{\prime \prime} \cdot\left(\lambda \mathrm{x} \cdot\left(\lambda \mathrm{x}^{\prime} \cdot\left(\left(\mathrm{x}^{\prime \prime} \mathrm{x}^{\prime}\right) \mathrm{x}\right)\right)\right)\right)
\end{gathered}
$$

- parentheses may be omitted or added
- lambda abstraction binds more weakly than application:

$$
\lambda x \cdot y z \equiv \quad((\lambda x . y) z) \quad \text { or } \quad(\lambda x .(y z))
$$

- application associates to the left:

$$
x y z \equiv \quad((x y) z) \quad \text { or } \quad(x(y z))
$$

- parentheses may be omitted or added
- lambda abstraction binds more weakly than application:

$$
\lambda x \cdot y z \equiv \quad((\lambda x \cdot y) z) \quad \text { or } \quad(\lambda x \cdot(y z))
$$

- application associates to the left:

$$
x y z \equiv \quad((x y) z) \quad \text { or } \quad(x(y z))
$$

- parentheses may be omitted or added
- lambda abstraction binds more weakly than application:

$$
\lambda x \cdot y z \equiv \quad((\lambda x \cdot y) z) \quad \text { or } \quad(\lambda x \cdot(y z))
$$

- application associates to the left:

$$
x y z \equiv \quad((x y) z) \quad \text { or } \quad(x(y z))
$$

- parentheses may be omitted or added
- lambda abstraction binds more weakly than application:

$$
\lambda x \cdot y z \equiv((\lambda x . y) z) \quad \text { or } \quad(\lambda x .(y z))
$$

- application associates to the left:

$$
x y z \equiv \quad((x y) z) \quad \text { or } \quad(x(y z))
$$

Curried function with three arguments applied to three values:

$$
\begin{gathered}
(\lambda x y z \cdot M) a b c \\
\text { III } \\
((((\lambda x \cdot(\lambda y \cdot(\lambda z \cdot M))) a) b) c)
\end{gathered}
$$

what is this x^{2} anyway?
in untyped lambda calculus everything is a function there is only lambda abstraction and function application
what is this x^{2} anyway?
in untyped lambda calculus everything is a function there is only lambda abstraction and function application

- numbers are functions

$$
\begin{aligned}
0 & =\lambda f x \cdot x \\
7 & =\lambda f x \cdot f(f(f(f(f(f(f x)))))) \\
x^{2} & =\lambda y z \cdot x(x y) z
\end{aligned}
$$

- Booleans are functions

$$
\begin{aligned}
\text { false } & =\lambda x y \cdot y \\
\text { true } & =\lambda x y \cdot x
\end{aligned}
$$

- in untyped lambda calculus the elements of all datatypes are coded as functions

computation

beta reduction
'compute' the value of

$$
\left(\lambda x \cdot x^{2}\right)(y+1)
$$

substitute $(y+1)$ for the x under the lambda:

$$
\left(\lambda x \cdot x^{2}\right)(y+1) \rightarrow_{\beta}(y+1)^{2}
$$

computation

beta reduction
'compute' the value of

$$
\left(\lambda x \cdot x^{2}\right)(y+1)
$$

substitute $(y+1)$ for the x under the lambda:

$$
\left(\lambda x \cdot x^{2}\right)(y+1) \rightarrow_{\beta}(y+1)^{2}
$$

general form of the beta rule:

$$
\underbrace{(\lambda x . M) N}_{\text {redex }} \rightarrow_{\beta} M[x:=N]
$$

substitution operation on terms comes later:

$$
M[x:=N]
$$

three relations between terms

$$
M \rightarrow_{\beta} N
$$

one-step reduction
subterms also can be redexes

$$
\begin{gathered}
M \rightarrow_{\beta} N \\
M \rightarrow_{\beta} M_{1} \rightarrow_{\beta} M_{2} \rightarrow_{\beta} \cdots \rightarrow_{\beta} N
\end{gathered}
$$

many-step reduction
zero, one or more steps

$$
M={ }_{\beta} N
$$

convertible $=$ computationally equal zero, one or more steps in both directions

$$
\begin{aligned}
& I=\lambda x . x \\
& K=\lambda x y . x \\
& \omega=\lambda x . x x \\
& \Omega=\omega \omega \\
& \text { III } \\
& (\lambda x y . x)(\lambda z . z) \Omega \\
& \downarrow \\
& (\lambda y \cdot(\lambda z . z)) \Omega \\
& \text { III } \\
& (\lambda y z . z) \Omega \\
& \lambda z . z \\
& \text { III } \\
& \text { I }
\end{aligned}
$$

example reduction

$$
\begin{array}{lc}
I=\lambda x \cdot x & \\
K=\lambda x y \cdot x & K I \Omega \\
\omega=\lambda x \cdot x x & \|\| \\
\Omega=\omega \omega & (\lambda x y \cdot x)(\lambda z \cdot z) \Omega \\
& \downarrow \\
& (\lambda y \cdot(\lambda z \cdot z)) \Omega \\
& \|\| \\
& (\lambda y z . z) \Omega \\
& \downarrow \\
& \lambda z . z \\
& \|\| \\
& I
\end{array}
$$

$K I \Omega \rightarrow{ }_{\beta} I$
example reduction

$$
\begin{array}{lc}
I=\lambda x \cdot x & \\
K=\lambda x y \cdot x & K I \Omega \\
\omega=\lambda x \cdot x x & \|\| \\
\Omega=\omega \omega & (\lambda x y \cdot x)(\lambda z . z) \Omega \\
& \downarrow \\
& (\lambda y \cdot(\lambda z \cdot z)) \Omega \\
& (\lambda y z . z) \Omega \\
& \downarrow \\
& \lambda z . z \\
& I \| \\
& I \\
& \\
& K I \Omega \rightarrow{ }_{\beta} I
\end{array}
$$

beware of the brackets!

$$
(\lambda x y \cdot x)(\lambda z . z) \Omega
$$

beware of the brackets!

$$
(\lambda x y . x) \underbrace{(\lambda z . z) \Omega}_{\text {beta redex? }}
$$

$$
(\lambda x y . x) \underbrace{(\lambda z . z) \Omega}_{\text {beta redex? }}
$$

$$
((\lambda x y \cdot x) \underbrace{(\lambda z . z)) \Omega}_{\text {not a beta redex! }}
$$

$$
(\lambda x y \cdot x) \underbrace{(\lambda z . z) \Omega}_{\text {beta redex? }}
$$

avoiding variable capture by renaming

$$
\begin{aligned}
& \omega=\lambda x . x x \\
& 1=\lambda f x . f x \\
& \omega 1 \rightarrow{ }_{\beta} 1
\end{aligned}
$$

avoiding variable capture by renaming

$$
\begin{aligned}
& \omega=\lambda x . x x \\
& 1=\lambda f x . f x \\
& \omega 1 \rightarrow_{\beta} 1
\end{aligned}
$$

avoiding variable capture by renaming

$$
\begin{aligned}
& \omega=\lambda x . x x \\
& 1=\lambda f x . f x \\
& \omega 1 \rightarrow_{\beta} 1
\end{aligned}
$$

avoiding variable capture by renaming

$$
\begin{aligned}
& \omega=\lambda x . x x \\
& 1=\lambda f x . f x \\
& \omega 1 \rightarrow_{\beta} 1
\end{aligned}
$$

avoiding variable capture by renaming

$$
\begin{aligned}
& \omega=\lambda x . x x \\
& 1=\lambda f x . f x \\
& \omega 1 \rightarrow_{\beta} 1
\end{aligned}
$$

example with more than one reduction path

$$
I=\lambda x . x \quad \underline{I M} \equiv(\lambda x . x) M \rightarrow_{\beta} M
$$

the red lines are not part of the syntax they just indicate where the redexes are
example with more than one reduction path

$$
I=\lambda x . x \quad \underline{I M} \equiv(\lambda x . x) M \rightarrow_{\beta} M
$$

the red lines are not part of the syntax they just indicate where the redexes are

$$
I I(I I) \rightarrow_{\beta} I
$$

wrapping up

Currying revisited

- traditional mathematics:

$$
\begin{gathered}
f(x) \\
f(g(x)) \\
h(x, y) \\
h: A \times B \rightarrow C
\end{gathered}
$$

- lambda calculus and type theory:

$$
\begin{aligned}
& f x \\
& f(g x) \\
& h x y \quad \equiv(h x) y \\
& h: A \rightarrow B \rightarrow C \\
& h x: B \rightarrow C \\
& h x y: C
\end{aligned}
$$

$$
\begin{aligned}
& \qquad \begin{aligned}
\text { add } & =\lambda x y \cdot x+y=\lambda x \cdot(\lambda y \cdot x+y) \\
\text { add } 3 & =\lambda y \cdot 3+y \\
\text { add } 34 & =3+4=7 \\
\text { add }: & : \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{N} \\
& \mathbb{N} \rightarrow(\mathbb{N} \rightarrow \mathbb{N})
\end{aligned}
\end{aligned}
$$

substitution more formally
recursive definition of substitution the terms are modulo $={ }_{\alpha}$

$$
\begin{aligned}
x[x:=N] & \equiv N \\
y[x:=N] & \equiv y \\
\left(M_{1} M_{2}\right)[x:=N] & \equiv\left(M_{1}[x:=N] M_{2}[x:=N]\right) \\
(\lambda x \cdot M)[x:=N] & \equiv(\lambda x \cdot M) \\
\left(\lambda y^{\prime} \cdot M\right)[x:=N] & \equiv\left(\lambda y^{\prime} \cdot M[x:=N]\right) \quad y^{\prime} \neq x, y^{\prime} \notin \mathrm{FV}(N)
\end{aligned}
$$

if you want to be specific, you can let y^{\prime} be the first variable from $\operatorname{Var} \backslash(\{x\} \cup \mathrm{FV}(M) \cup \mathrm{FV}(N))$
in practice, we always work in $\Lambda /={ }_{\alpha}$

$$
\begin{aligned}
& x::=\mathrm{x} \mid x^{\prime} \\
& M::=x|(M M)|(\lambda x . M) \\
& M, N::=x|M N| \lambda x . M
\end{aligned}
$$

in this course from now on:

- no parentheses in grammars
imagine them being there or imagine Λ to consist of abstract syntax trees
- no grammar rules for the variables
imagine them being there
or consider sets like Var to be a parameter of the definition
- multiple names for the same non-terminal
- a set of lambda terms as strings called Λ
$>$ relations $\equiv,={ }_{\alpha}, \rightarrow_{\beta}, \rightarrow_{\beta},={ }_{\beta}$
- Curried functions
- fast-and-loose context-free grammars
- a set of lambda terms as strings called Λ
$>$ relations $\equiv,={ }_{\alpha}, \rightarrow_{\beta}, \rightarrow_{\beta},={ }_{\beta}$
- Curried functions
- fast-and-loose context-free grammars
homework for next Monday:
- install Coq on your computer
\rightarrow download the Coq practicum files

T-shirt

a lambda calculus evaluator

$$
\begin{aligned}
U_{k}^{i} & \equiv \lambda x_{1} \ldots x_{k} \cdot x_{i} \\
\left\langle M_{1}, \ldots, M_{k}\right\rangle & \equiv \lambda z \cdot z M_{1} \ldots M_{k} \\
\langle\langle\mathrm{~K}, \mathrm{~S}, \mathrm{C}\rangle & \ulcorner M\urcorner \rightarrow M \\
\ulcorner x\urcorner & \equiv \lambda e . e U_{3}^{1} x e \\
\ulcorner P Q\urcorner & \equiv \lambda e \cdot e U_{3}^{2}\ulcorner P\ulcorner Q\urcorner e \\
\left\ulcorner\lambda x . P^{\urcorner}\right. & \equiv \lambda e . e U_{3}^{3}(\lambda x .\ulcorner P) e \\
\mathrm{K} & \equiv \lambda x y \cdot x \\
\mathrm{~S} & \equiv \lambda x y z \cdot x z(y z) \\
\mathrm{C} & \equiv \lambda x y z \cdot x z y
\end{aligned}
$$

table of contents

contents
organization
introduction
untyped lambda calculus
computation
wrapping up

T-shirt
table of contents

