inductive types

Freek Wiedijk

Type Theory \& Coq
2023-2024
Radboud University Nijmegen
September 29, 2023

introduction

today
minimal propositional logic STT $=$ simple type theory minimal predicate logic $\quad \lambda P=$ dependent types
full Coq logic CIC $=$ Calculus of Inductive Constructions
$\mathrm{CIC}=\lambda \mathrm{C}+$ inductive types + coinductive types + universes $+\ldots$

- free type variables

STT = simple type theory

- in the context

PTSs $=$ pure type systems $\quad \lambda \rightarrow \lambda \mathrm{P} \quad \lambda 2 \lambda \mathrm{C}$

$$
\text { nat }: *, O: \text { nat, } S: \text { nat } \rightarrow \text { nat } \vdash \mathrm{S}(\mathrm{~S}(\mathrm{~S} O)): \text { nat }
$$

- definitions
$\mathrm{CIC}=$ Calculus of Inductive Constructions

```
Inductive nat : Set :=
| 0 : nat
| S : nat -> nat.
```

- axioms
environment used like the context in $\lambda \mathrm{C}$ disadvantage: reductions will get stuck

Axiom Parameter

- definitions of constants

Definition

Lemma
Qed

- inductive definitions

Inductive

CIC

variants

$$
\begin{gathered}
\mathrm{CIC}=\text { Calculus of Inductive Constructions } \\
= \\
\lambda \mathrm{C}=\text { Calculus of Constructions } \\
+ \\
\text { MLTT }=\text { Martin-Löf type theory }
\end{gathered}
$$

different systems have different variants of CIC:

- Coq
- Agda
- Lean
- ...

typing rules

STT
3 rules

$$
\Gamma \vdash M: A
$$

PTSs
7 rules

$$
\begin{gathered}
\Gamma \vdash M: A \\
M={ }_{\beta} N
\end{gathered}
$$

CIC
many rules
chapter 2.1 of the Coq manual

$$
\begin{gathered}
\mathcal{W} \mathcal{F}(E)[\Gamma] \\
E[\Gamma] \vdash M: A \\
E[\Gamma] \vdash M={ }_{\beta \delta \iota \eta \zeta} N \\
E[\Gamma] \vdash M \leq_{\beta \delta \iota \eta \zeta} N
\end{gathered}
$$

$$
\left\{\begin{array}{l}
\operatorname{Ind}[p]\left(\Gamma_{I}:=\Gamma_{C}\right) \in E \\
\left(E[] \vdash q_{l}: P_{l}^{\prime}\right)_{l=1 \ldots r}, \ldots \\
\left(E[] \vdash P_{l}^{\prime} \leq{ }_{\beta \delta \iota \zeta \eta} P_{l}\left\{p_{u} / q_{u}\right\}_{u=1 \ldots l-1}\right)_{l=1 \ldots r} \\
1 \leq j \leq k
\end{array} \qquad \begin{array}{c}
E[] \vdash I_{j} q_{1} \ldots q_{r}: \forall\left[p_{r+1}: P_{r+1} ; \ldots ; p_{p}: P_{p}\right],\left(A_{j}\right)_{/ s_{j}} \\
E[\Gamma] \vdash c:\left(I q_{1} \ldots q_{r} t_{1} \ldots t_{s}\right) \\
E[\Gamma] \vdash P: B \\
{\left[\left(I q_{1} \ldots q_{r}\right) \mid B\right]} \\
\left(E[\Gamma] \vdash f_{i}:\left\{\left(c_{p_{i}} q_{1} \ldots q_{r}\right)\right\}^{P}\right)_{i=1 \ldots l} \\
\frac{E[\Gamma] \vdash \operatorname{case}\left(c, P, f_{1}|\ldots| f_{l}\right):\left(P t_{1} \ldots t_{s} c\right)}{}
\end{array}\right.
$$

$$
E[\Gamma] \vdash M: A
$$

- E is the environment of axioms and definitions
- Γ is the context of local variables
example of context versus environment

```
Parameter a : Prop.
Definition I : a -> a :=
    fun x : a => x.
```

the typing judgment for the subterm x :

$$
(a: *)[x: a] \vdash x: a
$$

a is in the environment
x is in the context
after these three lines the environment is:

STT

$$
\begin{aligned}
A, B:: & =a \mid A \rightarrow B \\
M, N:: & =x|M N| \lambda x: A . M
\end{aligned}
$$

λC

$$
\begin{aligned}
M, N, A, B & ::=x|M N| \lambda x: A . M|\Pi x: A . B| s \\
& s:=* \mid \square
\end{aligned}
$$

CIC

$$
\begin{aligned}
M, N, A, B::= & x|M N| \lambda x: A . M|\Pi x: A . B| s \mid \\
& \text { let } x:=N: A \text { in } M \mid \\
& \text { fix } \ldots \mid \text { match } \ldots \mid \ldots \\
s::= & \text { Set } \mid \text { Prop } \mid \text { SProp } \mid \text { Type }(i)
\end{aligned}
$$

the universe levels i are explicit natural numbers

CIC

$$
\{\text { Set, Prop, SProp }\} \text { : Type(1) : Type(2) : Type(3) : ... }
$$

in λC the sort \square does not have a type
in CIC every term has a type
the universe Type(1) is often used like $*$ too
the universe levels i are generally inferred by the system
SProp is a proof irrelevant version of Prop

$$
\text { Prop } \leq \text { Set } \leq \text { Type }(1) \leq \text { Type }(2) \leq \text { Type }(3) \leq \ldots
$$

Check True.
Check (True : Set).
Check (True : Type).
Check nat.
Check (nat : Type).
Check (nat : Prop).
Check (Type : Type).
conversion rule:

$$
\frac{E[\Gamma] \vdash M: A \quad E[\Gamma] \vdash A^{\prime}: s \quad E[\Gamma] \vdash A \leq_{\beta \delta \iota \zeta \eta} A^{\prime}}{E[\Gamma] \vdash M: A^{\prime}}
$$

fun	$\beta \eta$
Definition	δ
fix match	ι
let	ζ

$$
\begin{aligned}
(\lambda x: A . M) N & \rightarrow_{\beta} M[x:=N] \\
\lambda x: A .(F x) & \rightarrow_{\eta} F \quad \text { when } F:(\Pi x: A . B)
\end{aligned}
$$

$$
\text { let } x:=N: A \text { in } M \rightarrow_{\zeta} M[x:=N]
$$

why let-in definitions when we have beta redexes?

$$
\text { let } \begin{aligned}
A:= & \text { nat }: \text { Set in }(\lambda x: A \cdot x) \mathrm{O} \\
& \text { is well-typed }
\end{aligned}
$$

$$
\begin{gathered}
(\lambda A: \operatorname{Set} .((\lambda x: A \cdot x) \mathrm{O})) \text { nat } \\
\text { is not well-typed }
\end{gathered}
$$

because the subterm
$\lambda A: \operatorname{Set} .((\lambda x: A . x) \mathrm{O})$
is not well-typed
defining constants in Coq

Definition two : nat := S (S 0).
Print two.

Definition two' : nat.
apply S .
apply S .
apply 0.
Defined.
Print two'.

Lemma eq_two : two = two'. reflexivity. Qed.
delta reduction:

$$
\begin{array}{lll}
\text { two } \rightarrow_{\delta} & \mathrm{S}(\mathrm{~S} \mathrm{O}) \\
\text { two }^{\prime} & \rightarrow_{\delta} & \mathrm{S}(\mathrm{~S} \mathrm{O})
\end{array}
$$

the natural numbers

defining an inductive type
Inductive nat : Set :=
| 0 : nat
| S : nat -> nat.

$$
\text { nat }=\{0, S \text { O, S (S O), S (S (S O)), ... }\}
$$

what is a type?

- syntax
- string over some alphabet
- semantics: 'something like a set'
- function types
- inductive types
an inductive type 'consists of'
the terms you can make with the constructors
more precisely: the closed terms in normal form
closed $=$ no free variables
normal form = does not reduce any further normal forms are unique ($\mathrm{CR}=$ Church-Rosser)
every well-typed term has a normal form (SN = Strong Normalization)

Bishop-style constructive mathematics ($\approx \mathrm{Coq}$)

classical mathematics
$\forall x \in \mathbb{R} .(x>0) \vee \neg(x>0)$
discontinuous functions
intuitionistic mathematics
$\neg \forall x \in \mathbb{R} .(x>0) \vee \neg(x>0)$
all functions continuous
the ur-intuition of time (synthetic a priori):
This intuition of two-oneness, the basal intuition of mathematics, creates not only the numbers one and two, but also all finite ordinal numbers, inasmuch as one of the elements of the two-oneness may be thought of as a new two-oneness, which process may be repeated indefinitely.

L.E.J. Brouwer
natural numbers in Coq

Inductive nat : Set :=
| 0 : nat
| S : nat -> nat.

Check nat.
Check 0.
Check S.
Check nat_ind.
Check nat_sind.
Check nat_rec.
Check nat_rect.

Print nat.
Print 0.
Print S.
Print nat_ind.
Print nat_rect.

```
nat_rect =
fun (P : nat -> Type) (f : P 0)
        (f0 : forall n : nat,
            P n -> P (S n)) =>
fix F (n : nat) : P n :=
    match n as n0 return (P n0) with
    | O => f
    | S n0 => f0 n0 (F n0)
    end
            : forall P : nat -> Type,
            P O ->
            (forall n : nat,
            P n -> P (S n)) ->
            forall n : nat, P n
Arguments nat_ind _%function_scope
    _ _%function_scope
```

the constants defined by an inductive type definition
Inductive nat : Set :=
| 0 : nat
| S : nat -> nat.
makes three kinds of constants available:
\rightarrow the type primitive
nat : Set

- the constructors primitive

$$
\begin{aligned}
& \mathrm{O}: \text { nat } \\
& \mathrm{S}: \text { nat } \rightarrow \text { nat }
\end{aligned}
$$

- the destructors
$=$ eliminators $=$ induction principles
$=$ recursors $=$ recursion principles
defined using 'fix' and 'match'
induction / recursion principles

$$
\begin{aligned}
\text { nat_ind }: & \ldots \\
\text { nat_sind } & : \\
\text { nat_rec } & : \\
\text { nat_rect } & \text { : }
\end{aligned}
$$

correspond to predicates in \{Prop, SProp, Set, Type\}
two variants:

- dependent principle (looks more complicated, easier to understand)
- non-dependent principle (can be derived from the dependent principle)
inductive types in Prop with more than two constructors: program extraction $\longrightarrow \quad$ only the first two, non-dependent inductive types in Set or Type: all four, dependent

defining addition

```
Fixpoint add (n m : nat) : nat :=
    match n with
    | O => m
    | S n' => S (add n' m)
    end.
```

structural recursion: recursive call has to be on a smaller term

Definition add' (n m : nat) : nat.
induction n as [|n' r].

- apply m.
- apply S. apply r.

Defined.

Definition add', (n m : nat) : nat := nat_rec (fun _ => nat) m (fun n' r => S r) n.

```
recursive definitions in Coq
Fixpoint add (n m : nat) =S (S 0)
        : nat :=
    : nat
    match n with
    | 0 => m
    | S n' => S (add n' m)
    end.
Print add.
Lemma add_1_1 :
    add (S O) (S O) = S (S O).
simpl.
reflexivity.
Qed.
Eval compute in
    add (S O) (S O).
```

iota reduction

Lemma add_n_0 (n : nat) : add' ' is defined

$$
\text { add } \mathrm{n} 0=\mathrm{n} .
$$

induction n as [|n' IH].

- reflexivity.
- simpl. rewrite IH. reflexivity.
Qed.

Definition add' (n m : nat)
: nat.
induction n as [|n' r].

- apply m.
- apply S. apply r.

Defined.
Print add'.

Definition add', (n m : nat)
: nat :=
elimination tactics

```
elim
destruct
intros + patterns
induction
inversion \longleftarrow details next week
```

induction principle
nat_ind
: forall P : nat \rightarrow Prop, P O ->
(forall n : nat, $P n \rightarrow P(S n)$) \rightarrow forall n : nat, $P n$
structure of an induction principle: for all parameters of the type, for all predicates over the type, if the predicate is preserved by the constructors, then the predicate holds on the full type
the induction tactic applies this
recursion principle

```
nat_rec
    : forall A : nat -> Set,
    A O ->
    (forall n : nat, A n -> A (S n)) ->
    forall n : nat, A n
```

$$
\begin{aligned}
& f(0)=g \\
& f(n+1)=h n(f n) \\
& f=\text { nat_rec } A g h \\
& g: A O \\
& h: \Pi n: \text { nat. } A n \rightarrow A(\mathrm{~S} n) \\
& f: \Pi n: \text { nat. } A n
\end{aligned}
$$

$$
\text { induction }=\text { recursion }
$$

```
nat_rec
    : forall A : nat -> Set,
    A O ->
    (forall n : nat, A n -> A (S n)) ->
    forall n : nat, A n
nat_ind
    : forall P : nat -> Prop,
        P O ->
    (forall n : nat, P n -> P (S n)) ->
    forall n : nat, P n
```

non-dependent principle from dependent principle

```
nat_rec_dep
    : forall A : nat -> Set,
        A O ->
        (forall n : nat, A n -> A (S n)) ->
        forall n : nat, A n
```

nat_rec_nondep
: forall A : Set,
A ->
(forall n : nat, A \rightarrow A) ->
forall n : nat, A
nat_rec_nondep
: forall A : Set,
A \rightarrow Inductive nat : Prop :=
(nat \rightarrow A \rightarrow A) \rightarrow
nat $->$ A
| 0 : nat
| S : nat -> nat.

Check nat_ind.

$$
\begin{aligned}
f(0) & =g \\
f(n+1) & =h n(f n) \\
f & =\text { nat_rec } A g h
\end{aligned}
$$

$$
\begin{gathered}
\text { nat_rec } A g h \mathrm{O} \rightarrow_{\beta \delta \iota} g \\
\text { nat_rec } A g h(\mathrm{~S} n) \rightarrow_{\beta \delta \iota} h n(f n)
\end{gathered}
$$

examples of inductive types

Curry-Howard

$\left.\begin{array}{ccc}\begin{array}{c}\text { datatypes } \\ \text { Set }\end{array} & & \text { logic } \\ \text { Prop }\end{array}\right)$
unit and empty types

Inductive unit : Set :=
| tt : unit.

Inductive True : Prop :=
| I : True.

Inductive Empty_set : Set :=.

Inductive False : Prop := .
product and sum types

```
Inductive prod (A B : Set) : Set :=
| pair : A -> B -> prod A B.
Inductive and (A B : Prop) : Prop :=
| conj : A -> B -> and A B.
Inductive sum (A B : Set) : Set :=
| inl : A -> sum A B
| inr : B -> sum A B.
Inductive or (A B : Prop) : Prop :=
| or_introl : A >> or A B
| or_intror : B -> or A B.
Inductive sumbool (A B : Prop) : Set :=
| left : A -> or A B
| right : B -> or A B.
```

Sigma types and the existential quantifier

```
Inductive prod (A B : Set) : Set :=
| pair : A -> B -> prod A B.
Inductive sigT (A : Set) (B : A -> Set) : Set :=
| existsT : forall x : A, B x -> sigT A B.
Inductive sig (A : Set) (B : A -> Prop) : Set :=
| exist : forall x : A, B x -> sig A B.
Inductive ex (A : Set) (B : A -> Prop) : Prop :=
| ex_intro : forall x : A, B x -> ex A B.
```

notation:

$$
\begin{array}{ccl}
A \times B & \mathrm{~A} * \mathrm{~B} & \text { prod A B } \\
A+B & \mathrm{~A}+\mathrm{B} & \text { sum A B } \\
\Sigma_{x: A} B & \{\mathrm{x}: \mathrm{A} \& \mathrm{~B}\} & \text { @sigT A (fun } \mathrm{x}: \mathrm{A} \Rightarrow \mathrm{~B}) \\
\{x: A \mid B\} & \{\mathrm{x}: \mathrm{A} \mid \mathrm{B}\} & \text { @sig A (fun } \mathrm{x}: \mathrm{A} \Rightarrow \mathrm{~B}) \\
\exists x: A . B & \text { exists } \mathrm{x}: \mathrm{A}, \mathrm{~B} & \text { @ex A (fun } \mathrm{x}: \mathrm{A} \Rightarrow \mathrm{~B})
\end{array}
$$

proof rules
logical connectives as inductive types:

$$
\begin{array}{cl}
\text { the proposition } \longleftrightarrow \text { the type } \\
\text { introduction rules } \longleftrightarrow \text { the constructors } \\
\text { elimination rule } \longleftrightarrow \text { the eliminator } \\
=\text { the induction principle }
\end{array}
$$

example: disjunction elimination

```
Inductive or (A B : Prop) : Prop :=
| or_introl : A -> or A B
| or_intror : B -> or A B.
```

 for all parameters of the type,
 for all predicates over the type,
 if the predicate is preserved by the constructors,
then the predicate holds on the full type
or_ind
: forall A B
P : Prop,
($\mathrm{A} \rightarrow \mathrm{P}$) $->$
($\mathrm{B} \rightarrow \mathrm{P}$) $->$
or $A B \rightarrow P$

$$
\frac{A}{A \vee B} I l \vee \quad \frac{B}{A \vee B} I r \vee
$$

$$
\frac{A \vee B \quad A \rightarrow P \quad B \rightarrow P}{P} E \vee
$$

propositions versus Booleans
two very different types for truth values:

- Prop
elements are types, does not support if-then-else predicates map to Prop
- bool
elements are data, supports if-then-else decision procedures map to bool

Prop : Type
True: Prop
False : Prop
I: True
bool : Set
true : bool
false : bool

datatypes: lists and vectors

```
Inductive blist : Set :=
| bnil : blist
| bcons : bool -> blist -> blist.
Inductive list (A : Set) : Set :=
| nil : list A
| cons : A -> list A -> list A.
Inductive vec (A : Set) : nat -> Set :=
| vnil : vec A O
| vcons : forall n : nat, A -> vec A n -> vec A (S n).
Arguments vcons {A} {n}.
Fixpoint vappend {A : Set} {n m : nat}
    (v : vec A n) (w : vec A m) : vec A (add n m) :=
    match v in vec _ n return vec A (add n m) with
    | vnil _ => w
    | vcons h t => vcons h (vappend t w)
    end.
```

```
match ... as y in I\mp@subsup{x}{1}{}\ldots\mp@subsup{x}{n}{}}\mathrm{ return }A\mathrm{ with
    (ci...) => M M
end
```

for all i :

$$
\begin{aligned}
\left(c_{i} \ldots\right): & I N_{1} \ldots N_{1} \\
& \Downarrow \\
M_{i}: & A\left[x_{1}:=N_{1}, \ldots, x_{n}:=N_{n}, y:=\left(c_{i} \ldots\right)\right]
\end{aligned}
$$

```
Inductive bintree : Set :=
| node : bintree -> bintree -> bintree
| leaf : bintree.
node (node leaf leaf) leaf
```


W-types
Inductive W (A : Set) (B : A \rightarrow Set) : Set :=
| sup : forall x : A, (B x \rightarrow W A B) \rightarrow W A B.
nodes are labeled with elements of A
edges are labeled with elements of $B x$ (with x the label of the node)

inductive predicates

rules
Coq formalization of any system of rules of the form:

$$
\frac{\text { hyp }_{1} \quad \ldots \quad \text { hyp }_{n}}{\text { conclusion }}
$$

- logics: proof rules
- type systems: typing rules
- programming language semantics
- ...
examples
Inductive even : nat -> Prop :=
| even_0 : even 0
| even_SS : forall n : nat, even $\mathrm{n} \rightarrow$ even (S (S n)).
$\overline{\text { even } 0} \quad \frac{\text { even } n}{\text { even }(n+2)}$

Inductive le : nat -> nat $->$ Prop :=
| le_n : forall n : nat, le n n
| le_S : forall $n \mathrm{~m}$: nat, le $\mathrm{n} m$ \rightarrow le n (S m).

Inductive le (n : nat) : nat -> Prop :=
| le_n : le n n
| le_S : forall m : nat, le n m -> le n (S m).

$$
\overline{n \leq n} \quad \frac{n \leq m}{n \leq m+1}
$$

proving that four is even

```
Inductive even even_4 = even_SS (S (S O))
        : nat -> Prop :=
| even_0 : even O
| even_SS n :
    even n ->
    even (S (S n)).
Lemma even_4 :
    even (S (S (S (S O)))).
apply even_SS.
apply even_SS.
apply even_0.
Qed.
Print even_4.
\(\frac{\frac{\text { even } 0}{\text { even }(0+2)}}{\text { even }((0+2)+2)}\)
Print even_4.
```

proving that three is not even: inversion

```
Inductive even
        : nat -> Prop :=
| even_0 : even 0
| even_SS n :
    even n ->
    even (S (S n)).
Ltac my_inversion H :=
    inversion H; clear H; subst.
Lemma odd_3 :
    ~ even (S (S (S O))).
intro H.
my_inversion H.
my_inversion H1.
Qed.
```

exercise: figure out the induction principle of even
dependent induction principle of nat
nat_ind
: forall P : nat $->$ Prop, P O ->
(forall n : nat, $P n \rightarrow P(S n)$) $->$
forall n : nat, $P n$
non-dependent induction principle of even
even_ind
: forall P : nat -> Prop, P O ->
(forall n : nat, even $n \rightarrow P n \rightarrow P(S(S n))$) \rightarrow forall n : nat, even $n \rightarrow P n$
equality
Inductive le (n : nat) : nat -> Prop :=
| le_n : le n n
| le_S : forall m : nat, le n m -> le n (S m).

Inductive eq_nat (n : nat) : nat -> Prop := | eq_n : eq_nat n n.

Inductive eq (A : Type) (x : A) : A \rightarrow Prop := | eq_refl : eq A x x.
eq_ind

```
: forall (A : Type) (x : A)
        (P : A -> Prop)
    P x ->
    forall (y : A), eq A x y -> P y
```

Leibniz equality

$$
\frac{P(x) \quad x=y}{P(y)}
$$

conclusion

overview

- CIC (it's complicated)
- universes: Prop, Set, Type
- reduction: $\rightarrow_{\beta \delta \iota \zeta \eta}$
- inductive types
- constructors
- induction/recursion principles
- Coq
- Inductive
- Fixpoint and match
- induction
- inversion (more next week)
- examples
- logical operators
- datatypes
- inductive predicates
- Leibniz equality

table of contents

contents
introduction

CIC
the natural numbers
examples of inductive types
inductive predicates
conclusion
table of contents

