
Type theory and Coq

Herman Geuvers

Lecture Principal types and Type Checking

Overview of todays lecture

▶ Recap of Simple Type Theory a la Church

▶ Simple Type Theory a la Curry (versus a la Church)
A programmers view on type theory

▶ Principal Types algorithm

▶ Type checking dependent type theory: λP

Recap: Simple type theory a la Church.

Formulation with contexts to declare the free variables:

x1 : σ1, x2 : σ2, . . . , xn : σn

is a context, usually denoted by Γ.
Derivation rules of λ→ (à la Church):

x :σ ∈ Γ

Γ ⊢ x : σ

Γ ⊢ M : σ→τ Γ ⊢ N : σ

Γ ⊢ MN : τ

Γ, x :σ ⊢ P : τ

Γ ⊢ λx :σ.P : σ→τ

Γ ⊢λ→ M : σ if there is a derivation using these rules with
conclusion Γ ⊢ M : σ

Recap: Formulas-as-Types (Curry, Howard)

There are two readings of a judgement M : σ

1. term as algorithm/program, type as specification:
M is a function of type σ

2. type as a proposition, term as its proof:
M is a proof of the proposition σ

▶ There is a one-to-one correspondence:

typable terms in λ→ ≃ derivations in minimal proposition
logic

▶ x1 : τ1, x2 : τ2, . . . , xn : τn ⊢ M : σ can be read as
M is a proof of σ from the assumptions τ1, τ2, . . . , τn.

Recap: Example

[α→β→γ]3 [α]1

β→γ

[α→β]2 [α]1

β

γ
1

α→γ
2

(α→β)→α→γ
3

(α→β→γ)→(α→β)→α→γ

≃ λx :α→β→γ.λy :α→β.λz :α.xz(yz)
: (α→β→γ)→(α→β)→α→γ

Why do we want types?

▶ Types give a (partial) specification

▶ Typed terms can’t go wrong (Milner)
Subject Reduction property: If M : A and M ↠β N, then
N : A.

▶ Typed terms always terminate

▶ The type checking algorithm detects (simple) mistakes

But:

▶ The compiler should compute the type information for us!
(Why would the programmer have to type all that?)

▶ This is called a type assignment system, or also typing à la
Curry:

▶ For M an untyped term, the type system assigns a type σ to
M (or not)

Simple Type Theory (λ→) à la Church and à la Curry

λ→ (à la Church):

x :σ ∈ Γ

Γ ⊢ x : σ

Γ ⊢ M : σ→τ Γ ⊢ N : σ

Γ ⊢ MN : τ

Γ, x :σ ⊢ P : τ

Γ ⊢ λx :σ.P : σ→τ

λ→ (à la Curry):

x :σ ∈ Γ

Γ ⊢ x : σ

Γ ⊢ M : σ→τ Γ ⊢ N : σ

Γ ⊢ MN : τ

Γ, x :σ ⊢ P : τ

Γ ⊢ λx .P : σ→τ

Typed Terms versus Type Assignment:

▶ With typed terms also called typing à la Church, we have
terms with type information in the λ-abstraction

λx : α.x : α→α

As a consequence:
▶ Terms have unique types,
▶ The type is directly computed from the type info in the

variables.

▶ With typed assignment also called typing à la Curry, we assign
types to untyped λ-terms

λx .x : α→α

As a consequence:
▶ Terms do not have unique types,
▶ A principal type can be computed using unification.

Examples

▶ Typed Terms:

λx : α.λy : (β→α)→α.y(λz : β.x)

has only the type α→((β→α)→α)→α

▶ Type Assignment:
λx .λy .y(λz .x)

can be assigned the types
▶ α→((β→α)→α)→α
▶ (α→α)→((β→α→α)→γ)→γ
▶ . . .

with α→((β→α)→γ)→γ being the principal type

Connection between Church and Curry typed λ→
Definition The erasure map | − | from λ→ à la Church to λ→ à la
Curry is defined by erasing all type information.

|x | := x

|M N| := |M| |N|
|λx : σ.M| := λx .|M|

So, e.g.

|λx : α.λy : (β→α)→α.y(λz : β.x)| = λx .λy .y(λz .x)

Theorem If M : σ in λ→ à la Church, then |M| : σ in λ→ à la
Curry.
Theorem If P : σ in λ→ à la Curry, then there is an M such that
|M| ≡ P and M : σ in λ→ à la Church.

Example of computing a principal type

λx .λy .y (λz .y x)
1. Assign type vars to all variables: x : α, y : β, z : γ:

λxα.λyβ.yβ(λzγ .yβxα)

2. Assign type vars to all applicative subterms: y x and
y(λz .y x):

λxα.λyβ. yβ(λzγ .

δ︷ ︸︸ ︷
yβxα)︸ ︷︷ ︸

ε

3. Generate equations between types, necessary for the term to
be typable:β = α→δ β = (γ→δ)→ε

4. Find a most general unifier (a substitution) for the type vars
that solves the equations: α := γ→ε, β := (γ→ε)→ε, δ := ε

5. The principal type of λx .λy .y(λz .yx) is now

(γ→ε)→((γ→ε)→ε)→ε

Example of computing a principal type (ctd)

λx .λy .x y x

Which of these terms is typable?
▶ M1 := λx .x (λy .y x)
▶ M2 := λx .λy .x (x y)
▶ M3 := λx .λy .x (λz .y x)

Poll:

A M1 is not typable, M2 and M3 are typable.
B M2 is not typable, M1 and M3 are typable.
C M3 is not typable, M1 and M2 are typable.

Principal Types: Definitions

▶ A type substitution (or just substitution) is a map S from type
variables to types with a finite domain and such that variables
that occur in the range of S are not in the domain of S .

▶ We write S as [α1 := σ1, . . . , αn := σn] with αi /∈ σj (∀i , j).
▶ We can compose substitutions: S ;T . We write τ S for

substitution S applied to τ . (So we have τ (S ;T) = (τ S)T .)

▶ A unifier of the types σ and τ is a substitution that “makes
σ = τ hold, i.e. an S such that σ S = τ S

▶ A most general unifier (or mgu) of the types σ and τ is the
“simplest substitution” that makes σ = τ hold, i.e. an S such
that
▶ σ S = τ S
▶ for all substitutions T such that σT = τ T there is a

substitution R such that T = S ;R.

All these notions generalize to lists of equations
⟨σ1 = τ1, . . . , σn = τn⟩ instead of a single equation σ = τ .

Computability of most general unifiers

There is an algorithm U that, when given a list
⟨σ1 = τ1, . . . , σn = τn⟩ outputs
▶ A most general unifier of ⟨σ1 = τ1, . . . , σn = τn⟩ if these types

can be unified.

▶ “Fail” if ⟨σ1 = τ1, . . . , σn = τn⟩ can’t be unified.

▶ U(⟨α = α, . . . , σn = τn⟩) := U(⟨σ2 = τ2, . . . , σn = τn⟩).
▶ U(⟨α = τ1, . . . , σn = τn⟩) := “reject” if α ∈ FV(τ1), τ1 ̸= α.

▶ U(⟨σ1 = α, . . . , σn = τn⟩) := U(⟨α = σ1, . . . , σn = τn⟩)
▶ U(⟨α = τ1, . . . , σn = τn⟩) := [α := V (τ1),V], if α /∈ FV(τ1),

where V abbreviates
U(⟨σ2[α := τ1] = τ2[α := τ1], . . . , σn[α := τ1] = τn[α :=
τ1]⟩).

▶ U(⟨µ→ν = ρ→ξ, . . . , σn = τn⟩) := U(⟨µ = ρ, ν = ξ, . . . , σn =
τn⟩)

Principal type

Definition σ is a principal type for the untyped closed λ-term M if

▶ M : σ in λ→ à la Curry

▶ for all types τ , if M : τ , then τ = σ S for some substitution S .

Theorem: Principal Types

There is an algorithm PT that, when given an (untyped) closed
λ-term M, outputs

▶ A principal type σ such that M : σ in λ→ à la Curry.

▶ “Fail” if M is not typable in λ→ à la Curry.

Typical problems one would like to have an algorithm for

M : σ? Type Checking Problem TCP
M : ? Type Synthesis Problem TSP
? : σ Type Inhabitation Problem (by a closed term) TIP

For λ→, all these problems are decidable,
both for the Curry style and for the Church style presentation.

▶ TCP and TSP are (usually) equivalent: To solve MN : σ, one
has to solve N :? (and if this gives answer τ , solve M : τ→σ).

▶ For Curry systems, TCP and TSP soon become undecidable
beyond λ→.

▶ TIP is undecidable for most extensions of λ→, as it
corresponds to provability in some logic.

Rules for λP: axiom, application, abstraction, product

⊢ ∗ : □

Γ ⊢ M : Πx : A.B Γ ⊢ N : A

Γ ⊢ MN : B[x := N]

Γ, x : A ⊢ M : B Γ ⊢ Πx : A.B : s

Γ ⊢ λx : A.M : Πx : A.B

Γ ⊢ A : ∗ Γ, x : A ⊢ B : s

Γ ⊢ Πx : A.B : s

Rules for λP: weakening, variable, conversion

Γ ⊢ A : B Γ ⊢ C : s

Γ, x : C ⊢ A : B

Γ ⊢ A : s

Γ, x : A ⊢ x : A

Γ ⊢ A : B Γ ⊢ B ′ : s

Γ ⊢ A : B ′ with B =β B ′

Properties of λP

▶ Uniqueness of types
If Γ ⊢ M : σ and Γ ⊢ M : τ , then σ=βτ .

▶ Subject Reduction
If Γ ⊢ M : σ and M −→β N, then Γ ⊢ N : σ.

▶ Strong Normalization
If Γ ⊢ M : σ, then all β-reductions from M terminate.

Proof of SN is by defining a reduction preserving map from λP to
λ→.

Decidability Questions

Γ ⊢ M : σ? TCP
Γ ⊢ M : ? TSP
Γ ⊢? : σ TIP

For λP:

▶ TIP is undecidable
(Equivalent to provability in minimal predicate logic.)

▶ TCP/TSP: simultaneously with Context checking

Type Checking algorithm for λP

Define algorithms Ok(−) and Type (−) simultaneously:

▶ Ok(−) takes a context and returns ‘true’ or ‘false’

▶ Type (−) takes a context and a term and returns a term or
‘false’.

Definition. The type synthesis algorithm Type (−) is sound if

TypeΓ(M) = A =⇒ Γ ⊢ M : A

for all Γ and M.
Definition. The type synthesis algorithm Type (−) is complete if

Γ ⊢ M : A =⇒ TypeΓ(M) =β A

for all Γ, M and A.

Ok(<>) = ‘true’

Ok(Γ, x :A) = TypeΓ(A) ∈ {∗,□},

TypeΓ(x) = if Ok(Γ) and x :A ∈ Γ then A else ‘false’,

TypeΓ(∗) = if Ok(Γ) then □ else ‘false’,

TypeΓ(MN) = if TypeΓ(M) = C and TypeΓ(N) = D

then if C ↠β Πx :A.B and A =β D
then B[x := N] else ‘false’

else ‘false’,

TypeΓ(λx :A.M) = if TypeΓ,x :A(M) = B

then if TypeΓ(Πx :A.B) ∈ {∗,□}
then Πx :A.B else ‘false’

else ‘false’,

TypeΓ(Πx :A.B) = if TypeΓ(A) = ∗ and TypeΓ,x :A(B) = s

then s else ‘false’

Soundness and Completeness

Soundness
TypeΓ(M) = A =⇒ Γ ⊢ M : A

Completeness

Γ ⊢ M : A =⇒ TypeΓ(M) =β A

As a consequence:

TypeΓ(M) = ‘false’ =⇒ M is not typable in Γ

NB 1. Completeness only makes sense if types are unique upto =β

(Otherwise: let Type (−) generate a set of possible types)
NB 2. Completeness only implies that Type terminates on all
well-typed terms. We want that Type terminates on all pseudo
terms.

Termination

We want Type (−) to terminate on all inputs.
Interesting cases: λ-abstraction and application:

TypeΓ(λx :A.M) = if TypeΓ,x :A(M) = B

then if TypeΓ(Πx :A.B) ∈ {∗,□}
then Πx :A.B else ‘false’

else ‘false’,

! Recursive call is not on a smaller term!
Replace the side condition

if TypeΓ(Πx :A.B) ∈ {∗,□}

by
if TypeΓ(A) ∈ {∗}

Termination

We want Type (−) to terminate on all inputs.
Interesting cases: λ-abstraction and application:

TypeΓ(MN) = if TypeΓ(M) = C and TypeΓ(N) = D

then if C ↠β Πx :A.B and A =β D
then B[x := N] else ‘false’

else ‘false’,

! Need to decide β-reduction and β-equality!
For this case, termination follows from soundness of Type and the
decidability of equality on well-typed terms (using SN and CR).

