
Type Theory and Coq 2023-2024
16-01-2024
12:45-14:45

1. Consider the lambda term:

λxy. x(y(xy))

Apply the PT algorithm to this term, and determine either a principal type
for it, or the fact that this term is not typable in simple type theory. Explic-
itly give all stages of the algorithm.

We annotate all variables and applicative subterms with type variables:

λ
a
x
b
y.

a
x(

b
y(

a
x
b
y

e

)

d

)

c

: a→ b→ c

This gives rise to the following equations, which we simplify according to the
PT algorithm (we underline the relevant types that the operation acts on):

a = d→ c
b = e→ d
a = b→ e

(I)
⇐⇒

a = d→ c
b = e→ d

d→ c = b→ e

(I)
⇐⇒

a = d→ c
b = e→ d

d→ c = (e→ d)→ e

(II)
⇐⇒

a = d→ c
b = e→ d
d = e→ d
c = e

(III)
⇐⇒ FAIL

This means that the term is not typable in simple type theory.

2. Consider the following type of simple type theory:

(a→ b→ c)→ (b→ a→ c)

Now answer the following two questions:

(a) Give an inhabitant of this type.

(λx : a→ b→ c. λy : b. λz : a. xzy) : (a→ b→ c)→ (b→ a→ c)

(b) Give a type derivation that shows that this inhabitant has the appro-
priate type.

Γ := x : a→ b→ c, y : b, z : a

1

Γ ` x : a→ b→ c Γ ` z : a

Γ ` xz : b→ c Γ ` y : b

Γ ` xzy : c

x : a→ b→ c, y : b ` (λz : a. xzy) : a→ c

x : a→ b→ c ` (λy : b. λz : a. xzy) : b→ a→ c

` (λx : a→ b→ c. λy : b. λz : a. xzy) : (a→ b→ c)→ (b→ a→ c)

3. Consider the following term of λP :

λH : (Πx : D.Πy : D.Rxy). λx : D.λy : D.Hyx

In this term there are free variables

D : ∗
R : D → D → ∗

which represent the domain of quantification, and a binary relation on this
domain.

Now answer the following three questions:

(a) This term is a proof term of a proof in predicate logic. Give the state-
ment that is proved as a formula of predicate logic.

(∀x.∀y.R(x, y))→ (∀x.∀y.R(y, x))

(b) Give the natural deduction proof of this statement that corresponds to
this term. If you need to check a variable condition, indicate where this
is the case, and why it holds.

[∀x.∀y.R(x, y)H]

∀y′. R(y, y′)
E∀

R(y, x)
E∀

∀y.R(y, x)
I∀

∀x. ∀y.R(y, x)
I∀

(∀x.∀y.R(x, y))→ (∀x. ∀y.R(y, x))
I[H]→

For the I∀ rules we need to check the variable condition that x and
y are not free in any open assumption. The only open assumption at
that point is ∀x.∀y.R(x, y), and although it does contain the variables
x and y, they are not free in this.

2

There is a subtlety when substituting y in the first E∀ rule. We need
to rename the variable y in the quantifier, to prevent the free variable
y that is being substituted from being captured.

(c) Does this proof contain a detour? Explain your answer.

No, it does not. There is no introduction rule that is directly followed
by an elimination rule for the same connective. The proof term also
does not contain a beta redex.

Note that you should not give a type derivation of this term.

4. Give type derivations in λP of the following judgment:

a : ∗, x : a, y : a ` y : a

For the rules of λP see page 7.

` ∗ : �

a : ∗ ` a : ∗
` ∗ : �

a : ∗ ` a : ∗
a : ∗, x : a ` a : ∗

a : ∗, x : a, y : a ` y : a

5. An impredicative definition of the Booleans in λ2 is:

bool2 := Πa : ∗. a→ a→ a

Define three λ2 terms (where ite stands for ‘if then else’):

true2 : bool2

false2 : bool2

ite2 : Πa : ∗. bool2 → a→ a→ a

such that:

ite2A true2MN →→β M

ite2A false2MN →→β N

It is sufficient that these reductions hold, you do not need to show this
explicitly.

true2 := λa : ∗. λx : a. λy : a. x

false2 := λa : ∗. λx : a. λy : a. y

ite2 := λa : ∗. λz : bool2. λx : a. λy : a. z a x y

3

(The reductions mentioned then are:

ite2A true2MN ≡ (λa : ∗. λz : bool2. λx : a. λy : a. z a x y)A true2MN

→β (λz : bool2. λx : A. λy : A. z Ax y) true2MN

→β (λx : A. λy : A. true2Axy)MN

→β (λy : A. true2AM y)N

→β true2AM N

≡ (λa : ∗. λx : a. λy : a. x)AM N

→β (λx : A. λy : A. x)M N

→β (λy : A.M)N

→β M

ite2A false2MN ≡ (λa : ∗. λz : bool2. λx : a. λy : a. z a x y)A false2MN

→β (λz : bool2. λx : A. λy : A. z Ax y) false2MN

→β (λx : A. λy : A. false2Axy)MN

→β (λy : A. false2AM y)N

→β false2AM N

≡ (λa : ∗. λx : a. λy : a. y)AM N

→β (λx : A. λy : A. y)M N

→β (λy : A. y)N

→β N

But as stated in the exercise, these reductions do not need to be included in
an answer to get full points.)

6. We define an inductive type of lists of Booleans in Coq:

Inductive boollist : Set :=

| nil : boollist

| cons: bool -> boollist -> boollist.

The recursor of this type has type:

boollist_rec

: forall P : boollist -> Set,

P nil ->

(forall (b : bool) (l : boollist), P l -> P (cons b l)) ->

forall l : boollist, P l

Now answer the following two questions:

(a) Define a function count trues which counts the number of elements in
the list that are equal to true, using Fixpoint and match. This function
should have type:

4

count_trues

: boollist -> nat

If you like, you can abbreviate

match M with

| true => N 1
| false => N 2
end

as

if M then N 1 else N 2

Fixpoint count_trues (l : boollist) {struct l} : nat :=

match l with

| nil => O

| cons b l => if b then S (count_trues l) else count_trues l

end.

(b) Define the function count trues rec that computes the same count, by
applying boollist rec to appropriate arguments.

Definition count_trues_rec : boollist -> nat :=

boollist_rec (fun (_ : boollist) => nat)

O

(fun (b : bool) (l : boollist) (n : nat) =>

if b then S n else n).

7. We define an inductive type in Coq of :

Inductive vec (A : Set) : nat -> Set :=

| vnil : vec A O

| vcons : forall (n : nat) (x : A) (l : vec A n), vec A (S n).

Give the type of the (dependent) induction principle vec ind for this type.

vec_ind

: forall (A : Set) (P : forall n : nat, vec A n -> Prop),

P 0 (vnil A) ->

(forall (n : nat) (x : A) (v : vec A n),

P n v -> P (S n) (vcons A n x v)) ->

forall (n : nat) (v : vec A n), P n v

8. Consider the untyped lambda term:

M8 := III(II)

In this we have as always that I := (λx. x).

Now answer the following two questions:

5

(a) Give the reduction graph of this term. If there are multiple ways to
reduce a term to some other term, indicate this with multiple arrows.

III(II)

yy $$
II(II)

��))

IIII

��
I(II)

��
**

III

{{
II

��
I

In each term we have underlined the redexes.

(b) Compute M∗
8 and (M∗

8)∗ and ((M∗
8)∗)∗. Just giving the answers is

enough, you do not need to explain how you obtained them.

We have:

I∗ = I

(II)∗ = ((λx.x)I)∗ = I∗ = I

(III)∗ = (II)∗I∗ = II

and therefore:

M∗
8 = (III)∗(II)∗ = III

(M∗
8)∗ = (III)∗ = II

((M∗
8)∗)∗ = (II)∗ = I

The definition of M∗ is:

x∗ = x

(λx.M)∗ = λx.M∗

(MN)∗ =

{
P ∗[x := N∗] if M = λx. P

M∗N∗ otherwise

9. Consider the lambda term:

λx. (λf. f(f(fx))) (λy. (λz. z) y)

This term is typable in simple type theory. A typed version is:

λx : a. (λf : a→ a. f(f(fx))) (λy : a. (λz : a. z) y)

or in Coq notation:

6

fun x : a => (fun f : a -> a => f (f (f x)))

(fun y : a => (fun z : a => z) y)

Now answer the following three questions:

(a) Indicate what the redexes in this term are. You can do this either in
the untyped or in the typed version of the term.

λx. (λf. f(f(fx))) (λy. (λz. z) y)

The redexes in the typed term are in the corresponding places.

(b) For each of these redexes give its height.

The types of the lambda abstractions in the redexes of the typed term
are respectively:

λf. f(f(fx)) (a→ a)→ a
λz. z a→ a

This means that the heights of the redexes are:

(λf. f(f(fx))) (λy. (λz. z) y) 2
(λz. z) y 1

(c) Indicate which redex or redexes may be contracted according to the
reduction strategy from Turing’s proof of weak normalization for simple
type theory.

The maximal height is 2, so Turing’s strategy is to pick a redex of height
2 that does not contain another redex of height 2. In this case the only
redex that satisfies this is, is the only redex of height 2:

(λf. f(f(fx))) (λy. (λz. z) y)

(After reducing this redex the term becomes:

λx. (λy. (λz. z) y) ((λy. (λz. z) y) ((λy. (λz. z) y)x))

which has more redexes. But they are of smaller height!)

The height of a redex (λx : A.M)N is the height of the type of (λx : A.M).
The height function h is defined on types by:

h(a) = 0 for atomic types a

h(A→ B) = max(h(A) + 1, h(B))

which implies that:

h(A1 → · · · → An → a) = max(h(A1), . . . , h(An)) + 1

7

