
Type Theory and Coq 2023-2024
Resit

2024-04-03
12:45–14:45

1. Consider the lambda term:

λxyz. xy(z(zy))

Use the PT algorithm to either find a principal type for this term, or to
establish that it is not typable in simple type theory. Explicitly give all the
intermediate steps of the algorithm.

We annotate all variables and applicative subterms with type variables:

λ
a
x
b
y
c
z.

a
x
b
y

d

(
c
z(

f

c
z
b
y)

e

)

g

: a→ b→ c→ g

We then get the following equations, applying the operations of the PT
algorithm:

a = b→ d
c = f → e
c = b→ f
d = e→ g

(I)
⇐⇒


a = b→ d
c = f → e

f → e = b→ f
d = e→ g

(II)
⇐⇒


a = b→ d
c = f → e
f = b
e = f
d = e→ g

(I)
⇐⇒


a = b→ d
c = b→ e
f = b
e = b
d = e→ g

(I)
⇐⇒


a = b→ d
c = b→ b
f = b
e = b
d = b→ g

(I)
⇐⇒


a = b→ b→ g
c = b→ b
f = b
e = b
d = b→ g

Therefore a principal type is:

(b→ b→ g)→ b→ (b→ b)→ g

2. Consider the following proof of minimal propositional logic:

[a→ b→ cH1 ] [aH3 ]

b→ c
E→

[bH2 ]

c
E→

a→ c
I[H3]→

b→ a→ c
I[H2]→

(a→ b→ c)→ (b→ a→ c)
I[H1]→

1



Give the corresponding proof term in Church-style simple type theory. Use
the labels of the assumptions to name the variables.

λH1 : (a→ b→ c). λH2 : b. λH3 : a.H1H3H2

3. Consider the following Coq script:

Definition id (a : Set) : a -> a.

intro x; apply x.

Defined.

Print id.

Now answer the following two questions:

(a) Give both the term and the type that the Print commando prints in
Coq syntax, so using fun and forall and the sort Set.

id = fun (a : Set) (x : a) => x

: forall a : Set, a -> a

(b) Give both the term and the type that the Print commando prints in
the mathematical notation of the lambda cube, so using λ and Π and
the sort ∗.

(λa : ∗. λx : a. x) : (Πa : ∗. a→ a)

4. Consider the following lambda term of λP :

λH1 : (Πx : D. px). λH2 : (Πx : D. px→ qx). (λx : D.H2x(H1x))c

This term is well-typed in the context:

D : ∗ ,
p : D → ∗ ,
q : D → ∗ ,
c : D

Now answer the following six questions:

(a) What is the beta redex in this term.

(λx : D.H2x(H1x))c

2



(b) Give the normal form of this term.

λH1 : (Πx : D. px). λH2 : (Πx : D. px→ qx). H2c(H1c)

(c) Give the natural deduction proof of predicate logic that corresponds to
the term from the exercise.

[∀x. p(x)→ q(x)H2 ]

p(x)→ q(x)
E∀

[∀x. p(x)H1 ]

p(x)
E∀

q(x)
E→

∀x. q(x)
I∀

q(c)
E∀

(∀x. p(x)→ q(x))→ q(c)
I[H2]→

(∀x. p(x))→ (∀x. p(x)→ q(x))→ q(c)
I[H1]→

(d) Give the variable condition of this proof and show that it is satisfied.

The variable condition is that in the I∀ rule, the variable x should not
be free in the open assumptions H1 and H2, which is indeed the case,
as these do not have free variables at all.

(e) What is the detour in this proof.

The detour consists of the I∀ rule directly followed by the E∀ rule.

(f) Give the normal form of the proof.

[∀x. p(x)→ q(x)H2 ]

p(c)→ q(c)
E∀

[∀x. p(x)H1 ]

p(c)
E∀

q(c)
E→

(∀x. p(x)→ q(x))→ q(c)
I[H2]→

(∀x. p(x))→ (∀x. p(x)→ q(x))→ q(c)
I[H1]→

5. (This exercise may take some time, consider postponing it until the end of
the exam.)

We want to give a derivation in λP of the judgement:

D : ∗, q : D → ∗, c : D ` qc : ∗

See page 6 for the typing rules of λP . We do this in three stages, where in a
later stage you may abbreviate a derivation that already has been given by
vertical dots.

3



(a) Give a λP derivation of:

D : ∗ ` D → ∗ : �

` ∗ : �

D : ∗ ` D : ∗

` ∗ : � ` ∗ : �

D : ∗ ` ∗ : �

` ∗ : �

D : ∗ ` D : ∗
D : ∗, x : D ` ∗ : �

D : ∗ ` D → ∗ : �

(b) In the remainder of this exercise we abbreviate:

Γ := D : ∗, q : D → ∗

Give a λP derivation of:
Γ ` D : ∗

` ∗ : �

D : ∗ ` D : ∗

...

D : ∗ ` D → ∗ : �

D : ∗, q : D → ∗ ` D : ∗

(c) Give a λP derivation of:

Γ, c : D ` qc : ∗

...

D : ∗ ` D → ∗ : �

Γ ` q : D → ∗

...

Γ ` D : ∗
Γ, c : D ` q : D → ∗

...

Γ ` D : ∗
Γ, c : D ` c : D

Γ, c : D ` qc : ∗

6. The impredicative definition of conjunction in minimal second order propo-
sitional logic is:

A ∧2 B := (∀c. (a→ b→ c)→ c)

Give the corresponding impredicative definition of disjunction, so give a def-
inition of A ∨2 B.

A ∨2 B := (∀c. (a→ c)→ (b→ c)→ c)

7. This exercise is about unlabeled binary trees. These just consist of binary
nodes and leaves, and contain no data. Now answer the following four ques-
tions:

4



(a) Give the Coq definition of an inductuctive type bintree with construc-
tors leaf and node that represents this kind of tree.

Inductive bintree : Set :=

| leaf : bintree

| node : bintree -> bintree -> bintree

(b) Give a Coq definition using Fixpoint and match of a function count_

leaves that counts the number of leaves in a tree.

Fixpoint count_leaves (t : bintree) {struct t} : nat :=

match t with

| leaf => 1

| node t1 t2 => count_leaves t1 + count_leaves t2

end.

(c) Give the type of the dependent recursion principle bintree_rec for your
type.

forall A : bintree -> Set,

A leaf ->

(forall t1 t2 : bintree, A t1 -> A t2 -> A (node t1 t2)) ->

forall t : bintree, A t

(d) Give a Coq definition by applying this recursion principle to define a
function count_leaves_rec that counts the leaves in a tree.

Definition count_leaves_rec :=

bintree_rec (fun _ => nat) 1 (fun _ _ n1 n2 => n1 + n2).

8. This exercise is about the even predicate in Coq, which is defined as:

Inductive even : nat -> Prop :=

| even_O : even O

| even_SS : forall n : nat, even n -> even (S (S n))

Now answer the following three questions:

(a) Give the proof that four is even, i.e., a Coq term with type:

even (S (S (S (S O))))

even_SS (S (S 0)) (even_SS O even_O)

(b) Give the type of the dependent induction principle even_ind_dep.

5



forall P : (forall n : nat, even n -> Prop),

P O even_O ->

(forall (n : nat) (H : even n), P n H ->

P (S (S n)) (even_SS n H)) ->

forall (n : nat) (H : even n), P n H

(c) Give the type of the non-dependent induction principle even_ind.

forall P : nat -> Prop,

P O ->

(forall n : nat, even n -> P n -> P (S (S n))) ->

forall n : nat, even n -> P n

9. The proof of strong normalisation of λ→ that was presented in the lectures
associates a saturated set of untyped lambda terms [[A]] with each simple
type A. This is defined recursively on the structure of the type as:

[[a]] = SN for atomic types a

[[A→ B]] = . . . for types A and B

Here SN it the set of strongly normalizing untyped lambda terms.

Complete this by replacing the dots by a proper definition of [[A→ B]].

[[a]] = SN for atomic types a

[[A→ B]] = {M | ∀N ∈ [[A]].MN ∈ [[B]]} for types A and B

6


