
Theorems For Free - Notes

Billy Snikkers & Alex van Tilburg

December 11, 2023

1 Introduction

These notes spell out the details and proofs of the parametricity theorem described in Wadler’s 1989 paper

Theorems for Free [3], specifically sections 4-6. Parametricity is a theorem about the extensional behaviour

of polymorphic-functions, so we need a semantics for the polymorphic lambda calculus (known as λ2 or

System F) to state the theorem. Wadler makes use of frames and environment models, described in [1], as

a semantic framework.

2 Frames

Definition 2.1. A frame is a tuple F consisting of

F = ⟨U, [U → U ], (→),∀, {Da}a∈U , {[Da → Db]}a,b∈U , {[Πa∈UDF (a)]}F , {ϕa,b}a,b∈U , {ΦF }F ⟩

(i) A set U of types, and a fixed subset of functions [U → U ] ⊆ {f | f : U → U}

(ii) Operations ∀ : [U → U ] → U and (→) : U → U → U

(iii) For each a ∈ U , a set Da (the domain of elements of the type a)

(iv) For each a, b ∈ U , a fixed subset of functions [Da → Db] ⊆ {f | f : Da → Db}, equipped with

a surjective map ϕa,b : Da→b → [Da → Db]. ϕa,b sends a representative f̂ ∈ Da→b to a function

f : Da → Db in [Da → Db].
1

(v) For each F ∈ [U → U ] a fixed subset [
∏

a∈U DF (a)] of functions sending each type a to an element of

DF (a), equipped with a surjective map ΦF : D∀F → [
∏

a∈U DF (a)].

Remark 2.2. The function ϕa,b can be equivalently phrased as the data of a total evaluation map eva,b :

Da→b ×Da → Db, from which the appropriate set [Da → Db] is {eva,b(f̂ ,−) | f̂ ∈ Da→b}.

Definition 2.3. Let F be a frame. A valuation η on F is a finite mapping of type variables to type values

of U (e.g. α 7→ u ∈ U) and variables to domain elements (e.g. x 7→ d ∈ ∪aDa). The denotation of a type

with valuation η, written JσKη ∈ U , is defined inductively on σ

(i) JαKη := η(α)

(ii) Jσ → τKη := JσKη → JτKη
1Frame semantics usually calls for a fixed section of ϕa,b, i.e. a map ψa,b : [Da → Db] → Da→b which chooses a representative

for each function, such that ϕ ◦ ψ = id. This enables unique interpretations of terms, but is a somewhat bold request, akin to

program synthesis.

1



(iii) J∀α.σKη := ∀(a 7→ JσKηα7→a)

where ηα 7→a is the valuation η updated to map α to a

Remark 2.4. Note the usage of the function ∀ : [U → U ] → U in J∀α, σKη. This is only defined if the chosen

set of maps [U → U ] includes the function F : U → U defined as F (a) = JσKηα 7→a. Thus, even if all type

variables of Γ are accounted for in η, we still only have a partial function from λ2 types (with appropriate

type variables) to U .

Definition 2.5. For a context Γ, η satisfies Γ, written η ⊨ Γ, if for all x : σ ∈ Γ, JσKη is defined and

η(x) ∈ DJσKη.

Definition 2.6. Let Γ be a context and η ⊨ Γ. A denotation JΓ ⊢ M : σKη ∈ ∪a∈UDa is (partially) defined

on the derivation of Γ ⊢ M : σ.
η(x) = a

JΓ ⊢ x : σKη = a
(F −Var)

Jσ → τKη = (a → b) f̂ ∈ Da→b ϕa,b(f̂)(d) = JΓ, x : σ ⊢ M : τKηx7→d

JΓ ⊢ λx : σ.M : σ → τKη = f̂
(F −Abs)

Jσ → τKη = (a → b) JΓ ⊢ M : σ → τKη = f̂ JΓ ⊢ N : σKη = d

JΓ ⊢ MN : τKη = ϕa,b(f̂)(d)
(F −App)

J∀α.σKη = ∀F ĝ ∈ D∀F ΦF (ĝ)(a) = JΓ ⊢ M : σKηα7→a

JΓ ⊢ Λα.M : ∀α.σKη = ĝ
(F − I∀)

J∀α.σKη = ∀F JΓ ⊢ M : ∀α.σK = ĝ JτKη = a

JΓ ⊢ Mτ : σ[α := τ ]Kη = ΦF (ĝ)(a)
(F −E∀)

If ϕa,b is not injective, then it is possible to have f̂ ̸= ĥ but ϕa,b(f̂) = ϕa,b(ĥ) as functions [Da → Db], so the

denotation of a lambda abstraction is only defined up to equivalence of representatives. In general, we can

only say we have a relation S ⊆ TypeDerivations×Valuations× ∪aDa, where J∆Kη = d is notation for

(∆, η, d) ∈ S. We say J∆Kη can be interpreted as d to express uncertainty over uniqueness.

Corollary 2.7. If the maps ϕa,b : Da→b → [Da → Db],ΦF : D∀F → [
∏

a F (a)] are bijections, then S above

is a (partial) function, i.e. at most one denotation exists for a given well-typed term and valuation. Such a

frame F is called extensional in [1].

Corollary 2.8. If F is extensional and ∆,∆′ are two type derivations of the same judgement Γ ⊢ M : σ,

then J∆Kη = J∆′Kη (assuming both are defined).

Proof. See [1]

Notation 2.9. The lemma says the denotation of a well-typed term is independent of its type derivation,

justifying the notation JΓ ⊢ M : σKη (which does not specify the type derivation used). We will also abbre-

viate JΓ ⊢ M : σK as JMKη or JM : σKη, remembering that M must be well-typed. We will also write JMK,
omitting η from the notation, when the empty map satisfies Γ (i.e. for closed terms).

Definition 2.10. An environment model E is a frame such that the denotation JΓ ⊢ M : σKη is defined for

all type derivations Γ ⊢ M : σ and valuations η ⊨ Γ.

Definition 2.11 (Semantic typing). Write Γ ⊨ M : σ if for all frames F and valuations η ⊨ Γ, if JσKη = a

and JΓ ⊢ M : σKη = d (so both are defined), then d ∈ Da.

2



Theorem 2.12 (Soundness). If Γ ⊢ M : σ then Γ ⊨ M : σ

Proof. Induction on the type derivation. (Var) η ⊨ Γ, so JΓ ⊢ x : σK = η(x) ∈ DJσKη by assumption. For

(E∀), observe the signature of the function ΦF : D∀F → [
∏

a∈U DF (a)]. By the inductive hypotheses we have

ĝ ∈ D∀F , and JτKη = a, so we have ΨF (ĝ)(a) ∈ DF (a). Using the other assumptions, these are the correct

domains, since we have Jσ[α := τ ]Kη = JσKηα 7→a = F (a), since J∀α.σKη = ∀F . The other cases are left as an

exercise.

Remark 2.13. We have defined a semantic framework for System F, but whether an environment model ac-

tually exists is non-obvious. All of the hard-work is pushed into the choices of [U → U ], [Da → Db], [
∏

a∈U F (a)]

and the maps ϕa,b,ΦF . It is possible to define the syntactic model where types are type-expressions and the

domains DJσKη consist of well-typed terms of type σ (in some context), but this is not very interesting, and

does not explain anything about the nature of functions in System F. Some concrete models presented as

frames can be found in section 7 of [1]. Another model is given in [2] based on the the notion of coherence

spaces, which explain the uniform behaviour of polymorphic functions across types.

3 The Relation Frame

The parametricity theorem is a consequence of the fact that any frame with type-domains A,A′ can be used

to construct another frame in which type values are relations on pairs A,A′.

Definition 3.1. Let F be a frame. The relation frame RF has the universe of types RU = {(R, a, a′) |
a, a′ ∈ U,R ⊆ Da ×Da′}, and the domain of elements RD(R,a,a′) := R of a type relation is the set of pairs

in the relation. Thus JσKη is interpreted in RF as some relation R on a pair of domains in F , and JM : σKη
is interpreted in RF as a pair (d, d′) in this relation.

Notation 3.2. Recording a, a′ alongside the relation R is of technical importance (otherwise a relation

could correspond to multiple pairs of types), but we will often leave them implicit and write R for the type

(R, a, a′). We also use the notation R : A ⇔ A′ to say R ⊆ A×A′ (and we must infer the types a, a′ where

Da = A,Da′ = A′).

(Definition 3.1 continued) We complete this definition by defining the functions ∀, (→), ϕ,Φ, and the

necessary subsets of functions.

• For type relations (R : A ⇔ A′, a, a′), (K : B ⇔ B′, b, b′), define the function type ((R → K), a →
b, a′ → b′) as the relation (R → K) : Da→b ⇔ Da′→b′ consisting of all (f̂ , f̂ ′) such that

(d, d′) ∈ R ⇒ (ϕa,b(f̂)(d), ϕa′,b′(f̂ ′)(d′)) ∈ K

• ϕR,K : (R → K) → [R → K] is defined ϕR,K(f̂ , f̂ ′)(d, d′) := (ϕa,b(f̂)(d), ϕa′,b′(f̂ ′)(d′)), and [R → K]

is the image of this function. Note the difference between the type (R → K) (a relation on functions),

and the subset of functions [R → K].

• [RU → RU ] is the set of functions H : RU → RU such that ∃F, F ′ ∈ [U → U ] satisfying for all

(R, a, a′) ∈ RU

H(R, a, a′) = (HR,F (a), F ′(a′))

where HR : DF (a) ⇔ DF ′(a′) can be any such relation (the left/right type-domains of the relation are

“nice” functions of the input type-domains).

3



• For a function H ∈ [RU → RU ] as above, define the “forall” type ∀(H) := (∀H,∀F,∀F ′) as the

relation ∀H : D∀F ⇔ D∀F ′ of pairs (g, g′) such that for all types (R, a, a′)

(ΦF (g)(a),ΦF ′(g′)(a′)) ∈ HR

• ΦH : ∀H → [
∏

R HR] is defined ΦH(g, g′)(R, a, a′) := (ΦF (g)(a),ΦF ′(g′)(a′))

Example 3.3. JΛα.λx : α.x : ∀α.α → αK can be interpreted as a pair (g, g′) ∈ DJ∀α.α→αK such that for any

relation (R : A ⇔ A′, a, a′) and (d, d′) ∈ R,

ϕ(Φ(g, g′)(R, a, a′))(d, d′) = (d, d′)

Remark 3.4. ϕR,K is rarely ever injective, even if ϕa,b, ϕa′,b′ are both bijections, since R : A ⇔ A′ may not

relate every element of A and A′ to something. In the extreme case when R = ∅, any [R → K] has exactly

one function, and (R → K) = Da→b × Da′→b′ is the total relation, so many pairs are mapped to this one

function. This means terms with λ-abstractions can have many interpretations in RF .

4 The Parametricity Theorem

Types are interpreted in RF as relations, built via a valuation η and the constructors ∀ : [RU → RU ] → RU
and (→) : RU → RU → RU . Knowing a certain pair is in this relation generates a theorem about its

behaviour (since relations made with ∀ and (→) contain only pairs of relation-preserving functions), and the

parametricity theorem gives us a way to find related pairs. Roughly speaking, the parametricity theorem

says that if a well-typed term t : T has meaning t in a frame F , then (t, t) is a pair in the relation

JT KRF ⊆ JT KF × JT KF (this superscript notation is not used elsewhere - the frame used is implicit).

Definition 4.1. For a valuation η in RF , the projection valuations γ, γ′ are defined

• If η(α) = (R, a, a′) then γ(α) = a, γ′(α) = a′

• If η(x) = (d, d′) then γ(x) = d, γ′(x) = d′

We say η projects to γ, γ′ and write η ⇒ γ, γ′

Lemma 4.2. If η ⇒ γ, γ′ and η ⊨ Γ then γ ⊨ Γ and γ′ ⊨ Γ

Proof. If x : σ ∈ Γ and JσKη = (R, a, a′), then η(x) = (d, d′) ∈ R ⊆ Da ×Da′ , so γ(x) = d ∈ Da = JσKγ, and
γ′(x) = d′ ∈ Da′ = JσKγ′.

Lemma 4.3. If η ⇒ γ, γ′, then JσKη = (R, JσKγ, JσKγ′) for some relation R

Proof. Induction on σ, using the definitions of the type constructors ∀ : [RU → RU ] → RU and (→) :

RU → RU → RU .

Remark 4.4. The parametricity theorem would be an immediate consequence of the soundness theorem

for RF if we had JMKη = (JMKγ, JMKγ′) since soundness says JMKη ∈ JσKη (if Γ ⊢ M : σ). However this

requires unique choices of representatives when interpreting terms, and ϕR,K is almost never an injective

map 2. The content of the proof of parametricity is that (JMKγ, JMKγ′) is a type-sound choice (more can be

said - that it is equivalent to any interpretation of JMKη up to exchanges of equivalent representatives, but

we don’t have the means to make this precise here).

2This cannot even be remedied by the map ψ of Wadler’s paper, since we will need to change ψ for each term M .

4



Theorem 4.5 (Parametricity). Let Γ ⊢ M : σ. For all valuations η ⊨ Γ, with projections η ⇒ γ, γ′,

(JMKγ, JMKγ′) ∈ DJσKη.

The inductive cases in the proof are very similar to the soundness theorem. We provide the (Var) and (Abs)

cases.

Proof. Induction on the derivation of Γ ⊢ M : σ.

(Var) JΓ ⊢ x : σKη = η(x) = (γ(x), γ′(x)) = (JσKγ, JσKγ′) by definition and η(x) ∈ DJσKη is true since η ⊨ Γ.

(Abs) Let Jσ → τKη = ((R, a, a′) → (K, b, b′)), and suppose

(JΓ ⊢ λx : σ.M : σ → τKγ, JΓ ⊢ λx : σ.M : σ → τKγ′) = (f̂ , f̂ ′)

Then f̂ , f̂ ′ must satisfy

ϕa,b(f̂)(d) = JΓ ⊢ λx : σ.M : σ → τKγx→d ∀d ∈ Da = JσKγ

ϕa′,b′(f̂ ′)(d′) = JΓ ⊢ λx : σ.M : σ → τKγ′
x→d′ ∀d′ ∈ Da′ = JσKγ′

The inductive hypothesis says that (JΓ ⊢ λx : σ.M : σ → τKγx→d, JΓ ⊢ λx : σ.M : σ → τKγ′
x→d′) ∈ K if ηx→(d,d′) ⊨

Γ, x : σ, but this is equivalent to (d, d′) ∈ R, since η ⊨ Γ and JσKηx→(d,d′) = R. Thus we have: if (d, d′) ∈ R

then (ϕa,b(f̂)(d), ϕa′,b′(f̂ ′)(d′)) ∈ K, so (f̂ , f̂ ′) ∈ (R → K).

5 Applying Parametricity

Generating theorems for free using parametricity comes at the cost of those theorems scaling in logical-

complexity with the complexity of the type, so it not so easy to predict what the theorem will say (often the

theorem is too general, and a simpler one should be cut out). We give some simple examples in this section.

Strict use of the theorem involves a tedious calculation of the relation JT Kη ⊆ JT Kγ × JT Kγ′ and the pair

JtKη inside that relation, so a more direct approach is needed. It is also complete nuisance to cloud the

notation with ϕ, ϕ−1,Φ,Φ−1, so to reduce our workload, we must do some degree of conflation between the

representative f̂ ∈ Da→b and its corresponding function f = ϕa,b(f̂) ∈ [Da → Db].
3 We also drop the

distinction between a type a and its domain of elements Da, writing A for both.

Example 5.1. Consider the syntactic type ∀X∀Y.X → Y . We prove that this has no closed λ2-definable

inhabitants, by computing its relation J∀X∀Y.X → Y K in RF .

Unfolding the semantics for types, we find that J∀X∀Y.X → Y K is the relation

∀(R 7→ ∀(K 7→ (R → K)))

The next step is to use parametricity on a hypothetical well-typed term ⊢ t : ∀X.∀Y.X → Y . Suppose

JtK = p in F . Then parametricity says (p, p) ∈ ∀(R 7→ ∀(K 7→ (R → K))). We unfold this meaning using

the definitions of ∀ : [RU → RU ] → RU and (→) : RU → RU → RU .

• (p, p) ∈ ∀(R 7→ ∀(K 7→ (R → K)))

• For any relation R : A ⇔ A′, (pA, p
′
A) ∈ ∀(K 7→ (R → K))

• For any relations R : A ⇔ A′, K : B ⇔ B′, (pAB , pA′B′) ∈ (R → K)

• For any relations R : A ⇔ A′, K : B ⇔ B′, if (d, d′) ∈ R then (pAB(d), pA′B′(d′)) ∈ K

3One convention from computability theory is to write f · d for ϕ(f)(d).

5



If we suppose now R,K are any functions r : A → A′, k : B → B′, we get a theorem saying k(pA,B(d)) =

pA′,B′(r(d)). Great - but we can do better!

p promises too much, so we can ask it to provide a map into an empty relation. For any A,A′, B,B′,

let R be any relation, and choose K as the empty relation. Then the theorem says (d, d′) ∈ R then

(pAB(d), pA′B′(d′)) ∈ K, i.e. (d, d′) ̸∈ R for any pair (d, d′) ∈ A × A′. Since R was arbitrary, we’ve proved

every relation is empty, which is not the case for a well-chosen frame.

Remark 5.2. Reflecting on this example, we can attempt to leap-frog the calculation by replacing ∀X.∀Y.X →
Y with ∀R : A ⇔ A′.∀K : B ⇔ B′.R → K (we haven’t given this a formal meaning, but it is a useful format).

The task is then to drag the pair (p, p) through this sentence, applying the domains of the relation pairwise

when a ∀ is encountered, and replacing → with an if . . . then . . . sentence.

Example 5.3. We generate a theorem about λ2-definable terms of type ∀X.Maybe X → Maybe X Type

structures like List X and Maybe X are definable in λ2 (e.g. Maybe X := ∀Z.Z → (X → Z) → Z), but

their complexity makes the generated theorem obscure.

Instead, we can extend the type theory with terms Nothing, Just e, type constructors Maybe σ, and ap-

propriate type derivation rules, and extend the semantics by with a function M : U → U equipped with a

bijection DM(a)

∼=→ Da

∐
{⋆}. Then in RF , for a type relation R : A ⇔ A′, we define MR : DMA ⇔ DMA′

as the relation {(⋆, ⋆)}
∐

R, i.e. (Nothing, Nothing) is in the relation and (Just d, Just d′) is in the relation

iff (d, d′) ∈ R.

Parametricity tells us that if f is an interpretation of a well-typed term t : ∀X.Maybe X → Maybe X, then

(f, f) ∈ ∀(R 7→ (MR → MR))

∀R : A ⇔ A′, (fA, f
′
A) ∈ (MR → MR)

∀R : A ⇔ A′,∀(m,m′) ∈ MR, (fAm, f ′
Am

′) ∈ MR

We want to prove f must map ⋆ to ⋆, i.e. Nothing to Nothing. Let A be a domain of an arbitrary type

and choose R : A ⇔ A as the empty relation. Then we have that MR is {(⋆, ⋆)}. So from the theorem

(the one we got for free!) we have (⋆, ⋆) ∈ MR implies (fA ⋆, fA ⋆) ∈ MR. Where ⋆ represents Nothing.

Because of the construction of MR, we have fA ⋆ = ⋆. Since f was arbitrary, we have all terms of the type

∀X.Maybe X → Maybe X must map Nothing to Nothing.

References

[1] Kim B. Bruce, Albert R. Meyer, and John C. Mitchell. The semantics of second-order lambda calculus.

Information and Computation, 85(1):76–134, 1990.

[2] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types. Number 7 in Cambridge Tracts in

Theoretical Computer Science. Cambridge University Press, 1989.

[3] Philip Wadler. Theorems for free! In Proceedings of the Fourth International Conference on Functional

Programming Languages and Computer Architecture, FPCA ’89, page 347–359, New York, NY, USA,

1989. Association for Computing Machinery.

6


