
Introduction
Indexed types for the lambda calculus

Properties of the typing lemmas
Well-foundedness

Radboud University Nijmegen

STLC + µ
Safety and Semantic Approach

Cleo Gerards & Dick Blankvoort

Radboud University Nijmegen

27 November 2023

Cleo Gerards & Dick Blankvoort 27-11-2023 1 / 29

Introduction
Indexed types for the lambda calculus

Properties of the typing lemmas
Well-foundedness

Radboud University Nijmegen

Contents

Introduction

Indexed types for the lambda calculus

Properties of the typing lemmas

Well-foundedness

Cleo Gerards & Dick Blankvoort 27-11-2023 2 / 29

Introduction
Indexed types for the lambda calculus

Properties of the typing lemmas
Well-foundedness

Radboud University Nijmegen

Introduction

Introduction

Cleo Gerards & Dick Blankvoort 27-11-2023 3 / 29

Introduction
Indexed types for the lambda calculus

Properties of the typing lemmas
Well-foundedness

Radboud University Nijmegen

Introduction

PCC = ‘Proof-carrying code’
Ensuring a trusted program does no harm

We introduce new type semantics to reduce the complexity of
proofs

Cleo Gerards & Dick Blankvoort 27-11-2023 4 / 29

Introduction
Indexed types for the lambda calculus

Properties of the typing lemmas
Well-foundedness

Radboud University Nijmegen

Introduction

PCC = ‘Proof-carrying code’
Ensuring a trusted program does no harm

We introduce new type semantics to reduce the complexity of
proofs

Cleo Gerards & Dick Blankvoort 27-11-2023 4 / 29

Introduction
Indexed types for the lambda calculus

Properties of the typing lemmas
Well-foundedness

Radboud University Nijmegen

Semantic approach

Semantic proof consists of the following steps:

1 Assign meaning to type judgments

2 Proof that if a type judgment is true, then the typed machine
state is safe

3 Proof that type inference rules are safe

We then know that the derivable type judgments are true, and
thus the typable machine states are safe.

Cleo Gerards & Dick Blankvoort 27-11-2023 5 / 29

Introduction
Indexed types for the lambda calculus

Properties of the typing lemmas
Well-foundedness

Radboud University Nijmegen

Semantic approach

Semantic proof consists of the following steps:

1 Assign meaning to type judgments

2 Proof that if a type judgment is true, then the typed machine
state is safe

3 Proof that type inference rules are safe

We then know that the derivable type judgments are true, and
thus the typable machine states are safe.

Cleo Gerards & Dick Blankvoort 27-11-2023 5 / 29

Introduction
Indexed types for the lambda calculus

Properties of the typing lemmas
Well-foundedness

Radboud University Nijmegen

Semantic approach

Avoid formalizing syntactic type expressions =⇒ Formalize a type
as a set of semantic values

Definition

We define the operator → as a function taking two sets as
arguments and returning a set

Cleo Gerards & Dick Blankvoort 27-11-2023 6 / 29

Introduction
Indexed types for the lambda calculus

Properties of the typing lemmas
Well-foundedness

Radboud University Nijmegen

Semantic approach

Avoid formalizing syntactic type expressions =⇒ Formalize a type
as a set of semantic values

Definition

We define the operator → as a function taking two sets as
arguments and returning a set

Cleo Gerards & Dick Blankvoort 27-11-2023 6 / 29

Introduction
Indexed types for the lambda calculus

Properties of the typing lemmas
Well-foundedness

Radboud University Nijmegen

Semantic approach

Thus, replace the inference rule:

Γ ⊢ f : α → β, Γ ⊢ e : α
Γ ⊢ (f e) : β

for the semantic lemma:

Γ ⊨ f : α → β, Γ ⊨ e : α
Γ ⊨ (f e) : β

Cleo Gerards & Dick Blankvoort 27-11-2023 7 / 29

Introduction
Indexed types for the lambda calculus

Properties of the typing lemmas
Well-foundedness

Radboud University Nijmegen

Indexed types for the lambda calculus

Indexed types for the lambda calculus

Cleo Gerards & Dick Blankvoort 27-11-2023 8 / 29

Introduction
Indexed types for the lambda calculus

Properties of the typing lemmas
Well-foundedness

Radboud University Nijmegen

Recursive types with Cartesian products and constant 0

We define the syntax of lambda terms with products and 0 by the
following grammar:

e ::= x | 0 |⟨e1, e2⟩ | π1(e) | π2(e) | λx .e |(e1e2)

Definition

A term v is a value if it is 0, a closed term of the form λx .e, or a
pair ⟨v1, v2⟩ of values.

Cleo Gerards & Dick Blankvoort 27-11-2023 9 / 29

Introduction
Indexed types for the lambda calculus

Properties of the typing lemmas
Well-foundedness

Radboud University Nijmegen

Recursive types with Cartesian products and constant 0

We define the syntax of lambda terms with products and 0 by the
following grammar:

e ::= x | 0 |⟨e1, e2⟩ | π1(e) | π2(e) | λx .e |(e1e2)

Definition

A term v is a value if it is 0, a closed term of the form λx .e, or a
pair ⟨v1, v2⟩ of values.

Cleo Gerards & Dick Blankvoort 27-11-2023 9 / 29

Introduction
Indexed types for the lambda calculus

Properties of the typing lemmas
Well-foundedness

Radboud University Nijmegen

Definitions

Definition

We write e 7→j e ′ to mean that there exists a chain of j steps of
the form e 7→ e1 7→ ... 7→ ej = e ′.
We write e 7→∗ e ′ if e 7→j e ′ for some j ≥ 0.

Definition

A term is irreducible if it has no successor in the step relation.

This means that irred(e) if e is a value or e is a “stuck”
expression, e.g. π1(λx .e

′).

Cleo Gerards & Dick Blankvoort 27-11-2023 10 / 29

Introduction
Indexed types for the lambda calculus

Properties of the typing lemmas
Well-foundedness

Radboud University Nijmegen

Definitions

Definition

We write e 7→j e ′ to mean that there exists a chain of j steps of
the form e 7→ e1 7→ ... 7→ ej = e ′.
We write e 7→∗ e ′ if e 7→j e ′ for some j ≥ 0.

Definition

A term is irreducible if it has no successor in the step relation.

This means that irred(e) if e is a value or e is a “stuck”
expression, e.g. π1(λx .e

′).

Cleo Gerards & Dick Blankvoort 27-11-2023 10 / 29

Introduction
Indexed types for the lambda calculus

Properties of the typing lemmas
Well-foundedness

Radboud University Nijmegen

Definition of safe

Definition

A term e is safe for k steps if for any reduction e 7→j e ′ of j < k
steps, one of the following holds:

• e ′ is a value

• e ′ 7→ e ′′, for some e ′′

Note: any term is safe for 0 steps.

Definition

A term e is called safe if it is safe for all k ≥ 0.

Cleo Gerards & Dick Blankvoort 27-11-2023 11 / 29

Introduction
Indexed types for the lambda calculus

Properties of the typing lemmas
Well-foundedness

Radboud University Nijmegen

Definition of safe

Definition

A term e is safe for k steps if for any reduction e 7→j e ′ of j < k
steps, one of the following holds:

• e ′ is a value

• e ′ 7→ e ′′, for some e ′′

Note: any term is safe for 0 steps.

Definition

A term e is called safe if it is safe for all k ≥ 0.

Cleo Gerards & Dick Blankvoort 27-11-2023 11 / 29

Introduction
Indexed types for the lambda calculus

Properties of the typing lemmas
Well-foundedness

Radboud University Nijmegen

Types as sets

Definition

A type is a set τ of pairs of the form ⟨k , v⟩ where:
• k is a nonnegative integer

• if ⟨k , v⟩ ∈ τ and 0 ≤ j ≤ k , then ⟨j , v⟩ ∈ τ

Definition

For any closed expression e and type τ we write e :k τ if whenever
e 7→j v for j < k and v irreducible, then ⟨k − j , v⟩ ∈ τ.

Or in other words:

e :k τ ≡ ∀j ∀v . 0 ≤ j ≤ k ∧ e 7→j v ∧ irred(v) ⇒ ⟨k − j , v⟩ ∈ τ

Cleo Gerards & Dick Blankvoort 27-11-2023 12 / 29

Introduction
Indexed types for the lambda calculus

Properties of the typing lemmas
Well-foundedness

Radboud University Nijmegen

Types as sets

Definition

A type is a set τ of pairs of the form ⟨k , v⟩ where:
• k is a nonnegative integer

• if ⟨k , v⟩ ∈ τ and 0 ≤ j ≤ k , then ⟨j , v⟩ ∈ τ

Definition

For any closed expression e and type τ we write e :k τ if whenever
e 7→j v for j < k and v irreducible, then ⟨k − j , v⟩ ∈ τ.

Or in other words:

e :k τ ≡ ∀j ∀v . 0 ≤ j ≤ k ∧ e 7→j v ∧ irred(v) ⇒ ⟨k − j , v⟩ ∈ τ

Cleo Gerards & Dick Blankvoort 27-11-2023 12 / 29

Introduction
Indexed types for the lambda calculus

Properties of the typing lemmas
Well-foundedness

Radboud University Nijmegen

Observations

We can observe the following:

• if e :k τ and 0 ≤ j ≤ k , then e :j τ

• If v is a value and k > 0, then the statements v :k τ and
⟨k , v⟩ ∈ τ are equivalent.

Cleo Gerards & Dick Blankvoort 27-11-2023 13 / 29

Introduction
Indexed types for the lambda calculus

Properties of the typing lemmas
Well-foundedness

Radboud University Nijmegen

µ operator

Let µ be a function where:

• the input is a set functional F , so a function from sets to sets

• the output is a set that is a fixed point of F

µ allows us to define recursive types:

⊥ ≡ {}
⊤ ≡ {⟨k , v⟩| k ≥ 0}
int ≡ {⟨k , 0⟩| k ≥ 0}

τ1 × τ2 ≡ {⟨k, (v1, v2)⟩| ∀j < k .⟨j , v1⟩ ∈ τ1 ∧ ⟨j , v2⟩ ∈ τ2}
σ → τ ≡ {⟨k , λx .e⟩| ∀j < k ∀v .⟨j , v⟩ ∈ σ ⇒ e[v/x] :j τ}

µF ≡ {⟨k , v⟩|⟨k , v⟩ ∈ F k+1(⊥)}

Cleo Gerards & Dick Blankvoort 27-11-2023 14 / 29

Introduction
Indexed types for the lambda calculus

Properties of the typing lemmas
Well-foundedness

Radboud University Nijmegen

µ operator

Let µ be a function where:

• the input is a set functional F , so a function from sets to sets

• the output is a set that is a fixed point of F

µ allows us to define recursive types:

⊥ ≡ {}
⊤ ≡ {⟨k , v⟩| k ≥ 0}
int ≡ {⟨k , 0⟩| k ≥ 0}

τ1 × τ2 ≡ {⟨k, (v1, v2)⟩| ∀j < k .⟨j , v1⟩ ∈ τ1 ∧ ⟨j , v2⟩ ∈ τ2}
σ → τ ≡ {⟨k , λx .e⟩| ∀j < k ∀v .⟨j , v⟩ ∈ σ ⇒ e[v/x] :j τ}

µF ≡ {⟨k , v⟩|⟨k , v⟩ ∈ F k+1(⊥)}

Cleo Gerards & Dick Blankvoort 27-11-2023 14 / 29

Introduction
Indexed types for the lambda calculus

Properties of the typing lemmas
Well-foundedness

Radboud University Nijmegen

Environments

Definition

A type environment is a mapping from lambda calculus variables
to types.
A value environment is a mapping from lambda calculus variables
to values.

Cleo Gerards & Dick Blankvoort 27-11-2023 15 / 29

Introduction
Indexed types for the lambda calculus

Properties of the typing lemmas
Well-foundedness

Radboud University Nijmegen

Environments

For any type environment Γ and value environment σ we write
σ :k Γ if for all variables x ∈ dom(Γ) we have σ(x) :k Γ(x).

We write Γ ⊨k e : α to say that every free variable of e is mapped
by Γ and ∀σ.σ :k Γ ⇒ σ(e) :k α. Here, σ(e) is the result of
replacing the free variables in e with their values under σ.

We write Γ ⊨ e : α if for all k ≥ 0, we have Γ ⊨k e : α.

We write ⊨ e : α, to mean Γ0 ⊨ e : α for the empty environment Γ0

Cleo Gerards & Dick Blankvoort 27-11-2023 16 / 29

Introduction
Indexed types for the lambda calculus

Properties of the typing lemmas
Well-foundedness

Radboud University Nijmegen

Environments

For any type environment Γ and value environment σ we write
σ :k Γ if for all variables x ∈ dom(Γ) we have σ(x) :k Γ(x).

We write Γ ⊨k e : α to say that every free variable of e is mapped
by Γ and ∀σ.σ :k Γ ⇒ σ(e) :k α. Here, σ(e) is the result of
replacing the free variables in e with their values under σ.

We write Γ ⊨ e : α if for all k ≥ 0, we have Γ ⊨k e : α.

We write ⊨ e : α, to mean Γ0 ⊨ e : α for the empty environment Γ0

Cleo Gerards & Dick Blankvoort 27-11-2023 16 / 29

Introduction
Indexed types for the lambda calculus

Properties of the typing lemmas
Well-foundedness

Radboud University Nijmegen

First lemma!

Lemma

If ⊨ e : α, then e is safe.

Cleo Gerards & Dick Blankvoort 27-11-2023 17 / 29

Introduction
Indexed types for the lambda calculus

Properties of the typing lemmas
Well-foundedness

Radboud University Nijmegen

Properties of the typing lemmas

Properties of the typing lemmas

Cleo Gerards & Dick Blankvoort 27-11-2023 18 / 29

Introduction
Indexed types for the lambda calculus

Properties of the typing lemmas
Well-foundedness

Radboud University Nijmegen

Function types

For function types we have that the following properties should
hold:

1 Types are closed under function types (→).

• If α and β are types then α → β is as well.

2 Function types are well-behaved (semantic rules are satisfied).
• Application: under a set context, the existence of a term

e1 : α → β and a term e2 : α implies the existence of a term
(e1e2) : β.

• Abstraction: under a set context Γ, Γ[x := α] ⊨ e ∈ β implies
that Γ ⊨ λx .e : α → β

Cleo Gerards & Dick Blankvoort 27-11-2023 19 / 29

Introduction
Indexed types for the lambda calculus

Properties of the typing lemmas
Well-foundedness

Radboud University Nijmegen

Function types

For function types we have that the following properties should
hold:

1 Types are closed under function types (→).
• If α and β are types then α → β is as well.

2 Function types are well-behaved (semantic rules are satisfied).
• Application: under a set context, the existence of a term

e1 : α → β and a term e2 : α implies the existence of a term
(e1e2) : β.

• Abstraction: under a set context Γ, Γ[x := α] ⊨ e ∈ β implies
that Γ ⊨ λx .e : α → β

Cleo Gerards & Dick Blankvoort 27-11-2023 19 / 29

Introduction
Indexed types for the lambda calculus

Properties of the typing lemmas
Well-foundedness

Radboud University Nijmegen

Function types

For function types we have that the following properties should
hold:

1 Types are closed under function types (→).
• If α and β are types then α → β is as well.

2 Function types are well-behaved (semantic rules are satisfied).

• Application: under a set context, the existence of a term
e1 : α → β and a term e2 : α implies the existence of a term
(e1e2) : β.

• Abstraction: under a set context Γ, Γ[x := α] ⊨ e ∈ β implies
that Γ ⊨ λx .e : α → β

Cleo Gerards & Dick Blankvoort 27-11-2023 19 / 29

Introduction
Indexed types for the lambda calculus

Properties of the typing lemmas
Well-foundedness

Radboud University Nijmegen

Function types

For function types we have that the following properties should
hold:

1 Types are closed under function types (→).
• If α and β are types then α → β is as well.

2 Function types are well-behaved (semantic rules are satisfied).
• Application: under a set context, the existence of a term

e1 : α → β and a term e2 : α implies the existence of a term
(e1e2) : β.

• Abstraction: under a set context Γ, Γ[x := α] ⊨ e ∈ β implies
that Γ ⊨ λx .e : α → β

Cleo Gerards & Dick Blankvoort 27-11-2023 19 / 29

Introduction
Indexed types for the lambda calculus

Properties of the typing lemmas
Well-foundedness

Radboud University Nijmegen

Function types

For function types we have that the following properties should
hold:

1 Types are closed under function types (→).
• If α and β are types then α → β is as well.

2 Function types are well-behaved (semantic rules are satisfied).
• Application: under a set context, the existence of a term

e1 : α → β and a term e2 : α implies the existence of a term
(e1e2) : β.

• Abstraction: under a set context Γ, Γ[x := α] ⊨ e ∈ β implies
that Γ ⊨ λx .e : α → β

Cleo Gerards & Dick Blankvoort 27-11-2023 19 / 29

Introduction
Indexed types for the lambda calculus

Properties of the typing lemmas
Well-foundedness

Radboud University Nijmegen

Product types

For product types the following properties must hold:

1 Types are closed under product types (×).

2 Product types are well-behaved.
• Combination: the existence of terms e1 :k α and e2 :k α

implies the existence of a term ⟨e1, e2⟩ :k α× β.
• Projection: the existence of a term e :k α× β implies the

existence of projected terms π1(e) :k α and π2(e) :k β.

Cleo Gerards & Dick Blankvoort 27-11-2023 20 / 29

Introduction
Indexed types for the lambda calculus

Properties of the typing lemmas
Well-foundedness

Radboud University Nijmegen

Well-foundedness

Well-foundedness

Cleo Gerards & Dick Blankvoort 27-11-2023 21 / 29

Introduction
Indexed types for the lambda calculus

Properties of the typing lemmas
Well-foundedness

Radboud University Nijmegen

k-approximation

k-approximation: the subset of elements of a set τ whose index is
less than some number k.

approx(k , τ) := {⟨j , v⟩ | j < k , ⟨j , v⟩ ∈ τ}

Types are closed under approximation.

Cleo Gerards & Dick Blankvoort 27-11-2023 22 / 29

Introduction
Indexed types for the lambda calculus

Properties of the typing lemmas
Well-foundedness

Radboud University Nijmegen

Well-foundedness

A recursive definition is well-founded if safety for k steps can be
decided based purely on knowing the safety of any term for j < k
steps.

More succinctly: a recursive definition is well-founded if its
subterms require fewer steps to determine type-safety.

Cleo Gerards & Dick Blankvoort 27-11-2023 23 / 29

Introduction
Indexed types for the lambda calculus

Properties of the typing lemmas
Well-foundedness

Radboud University Nijmegen

Well-founded functional

A well-founded functional is a type-transforming function (/type
constructor) F for which for any type τ and k ≥ 0 we have that

approx(k + 1,F (τ)) = approx(k + 1,F (approx(k , τ)))

Where once again, types are closed under the operation. This
definition demands that elements of the domain require strictly less
steps to determine type-safety than the elements of the codomain.
In other words: unfolding the definition makes determining
type-safety simpler.

Cleo Gerards & Dick Blankvoort 27-11-2023 24 / 29

Introduction
Indexed types for the lambda calculus

Properties of the typing lemmas
Well-foundedness

Radboud University Nijmegen

WF functional properties

We have the following key properties for well-founded functionals:

1 Applying a well-founded functional j or more times to two
different types yields identical types up to approximation j .

Induction on approximation levels.

2 For a well-founded functional F , µ(F) is a type.

Recall that µ repeatedly applies its argument to the bottom
element.

Cleo Gerards & Dick Blankvoort 27-11-2023 25 / 29

Introduction
Indexed types for the lambda calculus

Properties of the typing lemmas
Well-foundedness

Radboud University Nijmegen

WF functional properties

We have the following key properties for well-founded functionals:

1 Applying a well-founded functional j or more times to two
different types yields identical types up to approximation j .

Induction on approximation levels.

2 For a well-founded functional F , µ(F) is a type.

Recall that µ repeatedly applies its argument to the bottom
element.

Cleo Gerards & Dick Blankvoort 27-11-2023 25 / 29

Introduction
Indexed types for the lambda calculus

Properties of the typing lemmas
Well-foundedness

Radboud University Nijmegen

WF functional properties (cont’d)

3 We have that approx(k , µ(F)) = approx(k ,F k⊥). In words,
we can approximate µ in k steps by applying our function k
times to the bottom element.

4 We have that approx(k , µ(F)) = approx(k ,F (µ(F))). This
proves that the type inference lemmas for µ hold for any
well-founded functional.

Cleo Gerards & Dick Blankvoort 27-11-2023 26 / 29

Introduction
Indexed types for the lambda calculus

Properties of the typing lemmas
Well-foundedness

Radboud University Nijmegen

WF functional properties (cont’d)

3 We have that approx(k , µ(F)) = approx(k ,F k⊥). In words,
we can approximate µ in k steps by applying our function k
times to the bottom element.

4 We have that approx(k , µ(F)) = approx(k ,F (µ(F))). This
proves that the type inference lemmas for µ hold for any
well-founded functional.

Cleo Gerards & Dick Blankvoort 27-11-2023 26 / 29

Introduction
Indexed types for the lambda calculus

Properties of the typing lemmas
Well-foundedness

Radboud University Nijmegen

Nonexpansive type constructor

A nonexpansive type constructor (recall: a function from types to
types) is a function F such that

approx(k ,F (τ)) = approx(k ,F (approx(k , τ)))

Cleo Gerards & Dick Blankvoort 27-11-2023 27 / 29

Introduction
Indexed types for the lambda calculus

Properties of the typing lemmas
Well-foundedness

Radboud University Nijmegen

Nonexpansive type constructor properties

1 Nonexpansive type constructors are closed under composition.

2 Composition of a nonexpansive type constructor with a
well-founded one results in a well-founded type constructor.

3 Given two nonexpansive type constructors F and G ,
Λα.Fα → Gα and Λα.Fα× Gα are well-founded.

Cleo Gerards & Dick Blankvoort 27-11-2023 28 / 29

Introduction
Indexed types for the lambda calculus

Properties of the typing lemmas
Well-foundedness

Radboud University Nijmegen

Nonexpansive type constructor properties

1 Nonexpansive type constructors are closed under composition.

2 Composition of a nonexpansive type constructor with a
well-founded one results in a well-founded type constructor.

3 Given two nonexpansive type constructors F and G ,
Λα.Fα → Gα and Λα.Fα× Gα are well-founded.

Cleo Gerards & Dick Blankvoort 27-11-2023 28 / 29

Introduction
Indexed types for the lambda calculus

Properties of the typing lemmas
Well-foundedness

Radboud University Nijmegen

Nonexpansive type constructor properties

1 Nonexpansive type constructors are closed under composition.

2 Composition of a nonexpansive type constructor with a
well-founded one results in a well-founded type constructor.

3 Given two nonexpansive type constructors F and G ,
Λα.Fα → Gα and Λα.Fα× Gα are well-founded.

Cleo Gerards & Dick Blankvoort 27-11-2023 28 / 29

Introduction
Indexed types for the lambda calculus

Properties of the typing lemmas
Well-foundedness

Radboud University Nijmegen

Quantifications

It is possible to define existential and universal quantifications for
type constructors, in the following manner:

∃F :=
⋃

τ∈type
F τ ; ∀F :=

⋂
τ∈type

F τ

For these operations, we have five typing rules. Using these rules
we can prove, for instance, that the only functions of type
∀α.α → α are the empty function and the identity function.

Cleo Gerards & Dick Blankvoort 27-11-2023 29 / 29

Introduction
Indexed types for the lambda calculus

Properties of the typing lemmas
Well-foundedness

Radboud University Nijmegen

Quantifications

It is possible to define existential and universal quantifications for
type constructors, in the following manner:

∃F :=
⋃

τ∈type
F τ ; ∀F :=

⋂
τ∈type

F τ

For these operations, we have five typing rules. Using these rules
we can prove, for instance, that the only functions of type
∀α.α → α are the empty function and the identity function.

Cleo Gerards & Dick Blankvoort 27-11-2023 29 / 29

	Introduction
	Indexed types for the lambda calculus
	Properties of the typing lemmas
	Well-foundedness

