
Safety of mutref + ∀/∃, problem + intuitive solution

From ”Semantics of Types for Mutable State” by Amal Jamil Ahmed

Dmitrii Mikhailovskii, Marijn van Wezel

Introduction: syntax

Consider

λM := λ2+mutref+ ∃+ unit,

or formally,

e ::= x | l | unit | λx.e | e1e2 | new(e) | !e | e1 := e2 |
Λ.e | e[] | pack e | unpack e1 as x in e2,

v ::= l | unit | λx.e | Λ.e | pack v,
x ∈ Var,
l ∈ Loc.

1/25

Introduction: operational semantics

Given a store S,

• dom(S) is a set of allocated locations.
• It can be extended with new.

Then operational semantics is given by an abstract machine with states
(S, e), where e is a closed term, and

(S, e) 7→M (S′, e′)

is a single operational step.

2/25

Operational semantics: rules

(S, e1) 7→M (S′, e′1) (MO-app1)
(S, e1e2) 7→M (S′, e′1e2)

(S, e2) 7→M (S′, e′2) (MO-app2)
(S, (λx.e1)e2) 7→M (S′, (λx.e1)e′2)

(MO-app3)
(S, (λx.e)v) 7→M (S′, e[v/x])

(S, e) 7→M (S′, e′)
(MO-new1)

(S,new e) 7→M (S′,new e′)

l /∈ dom(S)
(MO-new2)

(S,new v) 7→M (S[l 7→ v], l)
3/25

Operational semantics: rules

(S, e) 7→M (S′, e′)
(MO-deref1)

(S, !e) 7→M (S′, !e′)

l ∈ dom(S)
(MO-deref2)

(S, !l) 7→M (S, S(l))

(S, e1) 7→M (S′, e′1) (MO-assign1)
(S, e1 := e2) 7→M (S′, e′1 := e2)

(S, e2) 7→M (S′, e′2) (MO-assign2)
(S, v1 := e2) 7→M (S′, v1 := e′2)

l ∈ dom(S)
(MO-assign3)

(S, l := v) 7→M (S[l 7→ v],unit) 4/25

Operational semantics: rules

(S, e) 7→M (S′, e′)
(MO-tapp1)

(S, e[]) 7→M (S′, e′[])

(MO-tapp2)
(S, (Λ.e)[]) 7→M (S, e)

(S, e) 7→M (S′, e′)
(MO-pack)

(S,pack e) 7→M (S′,pack e′)

(S, e1) 7→M (S′, e′1) (MO-unpack1)
(S,unpack e1 as x in e2) 7→M (S′,unpack e′1 as x in e2)

(MO-unpack1)
(S,unpack (pack v) as x in e2) 7→M (S, e2[v/x])

5/25

Problem

The model for λI restricts updates of allocated cells. Consider the
following program:
l e t . . . in % store i s S
l e t _ = x : = y in % store i s S ’
e_rest

with the following derivation:

Γ = {x 7→ ref τ1, y 7→ τ1, z 7→ τ2},
Γ ⊨M let _ = x := y in erest : τ ′

Γ ⊨M erest : τ ′

6/25

Problem

According to λI, we have that

x :S ref τ1, y :S τ1, z :S τ2

and
x :S′ ref τ1, y :S′ τ1, z :S′ τ2.

Hence, we need to be able to prove that types remain the same after
evaluation of

x := y.

However, we cannot guarantee that z : τ2, as it may be an aliased location
of x.

7/25

Problem

Hence, we need to be able to prove that types remain the same after
evaluation of

x := y.

Figure 1: Visualization of state S
8/25

Store typing

To allow only weak (type-preserving) updates to mutable references, we
introduce a store typing Ψ, which keeps tracks of the type τ of updates
allowed at a location ℓ ∈ Loc.

We say that
Ψ(ℓ) = τ

if ℓ is an allocated location and updates of type τ are allowed at ℓ.

9/25

Store typing

We say that ℓ has type ref τ if and only if:

• ℓ is an allocated location, and,
• the value in the store S at location ℓ currently has type τ , and,
• the store typing says that the allowed update type for location ℓ is τ .

10/25

Store typing

We can formalize the type of mutable references ref τ as:

ref τ def
= { 〈S,Ψ, ℓ〉 | ℓ ∈ dom(Ψ) ∧Ψ(ℓ) = τ ∧ 〈S,Ψ, S(ℓ)〉 ∈ τ }

Since Ψ(ℓ) = τ implies that ℓ ∈ dom(Ψ) and we implicitly assume that S
satisfies Ψ, we can simplify this type to:

ref τ def
= { 〈Ψ, ℓ〉 | Ψ(ℓ) = τ }

We can see that the type of a value depends on Ψ and the value itself (n.b.
a location ℓ is also a value).

11/25

An inconsistent model

Recall that the type of a value depends on the store typing Ψ and the
value itself. The types of these objects are:

StoreType = Loc
fin−→ Type

Type = StoreType× V al → P

where P is the type of propositions (true or false).

The definition of Type is circular and has an inconsistent cardinality: the
set of types must be bigger than itself.

12/25

Stratification

Consider our latest definition of ref:

ref τ def
= { 〈Ψ, ℓ〉 | Ψ(ℓ) = τ }

Notice that to determine the members of ref τ , we only need to look at
Ψ(ℓ) = τ . This suggests there exists an ordering, which can be used to
stratify our types.

13/25

Stratification

To stratify our types, we:

• Divide our types into levels 0 through∞, and,
• Let a type at level k rely only the store typing that maps to types at
level j, where j < k.

Type0 = Unit

StoreTypek = Loc
fin−→ Typek

Typek+1 = StoreTypek × V al → P

14/25

Syntax-based stratification

To determine whether a type τ belongs to Typek for k ≥ 0, we use the
following set of rules:

• τ = ⊥ ⇒ τ ∈ Type0

• τ is a primitive type (unit or bool)⇒ τ ∈ Type1

• τ ∈ Typek ⇒ ref τ ∈ Typek+1

• τ ∈ Typek ⇒ τ ∈ Typek+1

15/25

Syntax-based stratification

Figure 2: Type hierarchy based on syntax of types
16/25

Problems with syntax-based stratification

Consider ∃α. ref α: if we assume that α ∈ Typek, we can conclude that
∃α. ref α ∈ Typek+1 (the +1 comes from the extra ref).

However, since α is a type variable, we don’t know the level of the type
that instantiates α.

17/25

Problems with syntax-based stratification

Furthermore, we want to model impredicative quantified types as well.
This means that α, which we assumed to be at level k, may be instantiated
with ∃α. ref α itself, which we concluded was at level k+ 1.

Since k 6= k+ 1, this leads to a contradiction: there is no finite level that is
guaranteed to contain ∃α. ref α.

18/25

Problems with syntax-based stratification

Suppose we do know of a finite level n that contains ∃α. ref α, then we
another problem:

• In the existential case (∃), knowing the witness type is contained in
level n breaks the abstraction;

• In the universal case (∀), knowing that level n must contain the type
gives a form of bounded (not impredicative) polymorphism.

19/25

Stratification based on semantic approximation

Instead of using the syntactic complexity of a type to stratify on, we shall
use semantic approximation for our stratification.

• 〈Ψk−1, v〉 ∈ τ k means that v looks like it belong to τ for at least k steps;
• We call this k the approximation index;
• Levels correspond to approximations of a type’s behaviour;
• To determine the members of ref τ to approximation k, we only need
to look at a store typing that maps types to approximation k− 1.

20/25

Stratification based on semantic approximation

Figure 3: Approximations of type ref(ref(bool))
21/25

Stratification based on semantic approximation

Figure 4: Approximations of type ref(bool)
22/25

Stratification based on semantic approximation

Our original observation that led us to this type hierarchy was that τ is
smaller than ref τ . With semantic approximation, ”smaller” means that
less steps are necessary to show that an assumption about a type is wrong.

It is still true that τ is smaller than ref τ , since the latter requires an
additional dereferencing step.

23/25

Stratification based on semantic approximation

Unlike the previous approach, semantic approximation is able to model
(impredicative) quantified types. Suppose we need to assign a level to:

∃α. ref α

Since the level of our types is now bound to the operational semantics of
the language (i.e. the number of steps), we can just assign it the number
of remaining steps as the level.

24/25

Conclusion

In conclusion, to model weak updates to mutable references, we:

• Introduced the concept of a store typing, which lead to an
inconsistent model;

• Tried using syntax-based stratification to solve this, but this did not
work for quantified types;

• Introduced the concept of an approximation index to stratify our
types.

25/25

