Normalization of STLC

Joos Munneke Robert Kunst

24th of November, 2023

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- 2 Normalization Theorem
- Ormalization: first attempt

Normalization Theorem Normalization: first attempt Normalization: second attempt Normalization: third attempt

Grammar of STLC

$$\begin{aligned} \tau &:= \text{bool} \mid \tau \to \tau \\ e &:= x \mid \text{true} \mid \text{false} \mid \text{if } e \text{ then } e \text{ else } e \mid \lambda x \colon \tau.e \mid e e \\ v &:= \text{true} \mid \text{false} \mid \lambda x \colon \tau.e \\ E &:= [] \mid \text{if } E \text{ then } e \text{ else } e \mid E e \mid v E \end{aligned}$$

æ

イロト イ団ト イヨト イヨト

Normalization Theorem Normalization: first attempt Normalization: second attempt Normalization: third attempt

Evaluation rules

$$(\lambda x: \tau.e) v \mapsto e[x := v]$$

 $\frac{e \mapsto e'}{E[e] \mapsto E[e']}$

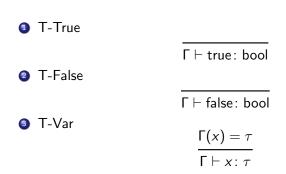
if true then e_1 else $e_2\mapsto e_1$

if false then e_1 else $e_2\mapsto e_2$

▲ 同 ▶ → 三 ▶

Normalization Theorem Normalization: first attempt Normalization: second attempt Normalization: third attempt

Typing rules 1/2



< D > < P > < P > < P >

э

э

Normalization Theorem Normalization: first attempt Normalization: second attempt Normalization: third attempt

T-IfThenElse $\Gamma \vdash e$: bool $\Gamma \vdash e_1 : \tau \quad \Gamma \vdash e_2 : \tau$ $\Gamma \vdash$ if *e* then e_1 else e_2 : τ T-Abs $\Gamma, x: \tau_1 \vdash e: \tau_2$ $\Gamma \vdash \lambda x : \tau_1.e : \tau_1 \rightarrow \tau_2$ O T-App $\Gamma \vdash e_1 : \tau_2 \rightarrow \tau_1 \quad \Gamma \vdash e_2 : \tau_2$ $\Gamma \vdash e_1 e_2 : \tau_1$

< ロ > < 同 > < 三 > < 三 >

Normalization Theorem

Theorem

For all terms e, if $\cdot \vdash e$: τ , then $e \Downarrow$.

Joos Munneke & Robert Kunst Normalization of STLC

< □ > < 同 > < 回 >

Induction on type derivation

Proof: suppose $\cdot \vdash e$: τ , we have to show $e \Downarrow$. Attempt: induction on typing rules.

▲ 同 ▶ → 三 ▶

Induction on type derivation

Proof: suppose $\cdot \vdash e$: τ , we have to show $e \Downarrow$. Attempt: induction on typing rules.

T-True

 $\cdot \vdash \mathsf{true} \colon \mathsf{bool}$

▲ 同 ▶ → 三 ▶

Induction on type derivation

Proof: suppose $\cdot \vdash e$: τ , we have to show $e \Downarrow$. Attempt: induction on typing rules.

T-True

 $\cdot \vdash \mathsf{true} \colon \mathsf{bool}$

2 T-False

 $\cdot \vdash \mathsf{false} \colon \mathsf{bool}$

Induction on type derivation

Proof: suppose $\cdot \vdash e: \tau$, we have to show $e \Downarrow$. Attempt: induction on typing rules.

 $\cdot \vdash \mathsf{true} \colon \mathsf{bool}$

2 T-False

Interpretation of the second secon

 $\cdot \vdash \mathsf{false: bool}$ $\frac{\cdot(x) = \tau}{\cdot \vdash x: \tau}$

▲ 同 ▶ ▲ 三 ▶ ▲

Induction on type derivation

Proof: suppose $\cdot \vdash e$: τ , we have to show $e \Downarrow$. Attempt: induction on typing rules.

T-IfThenElse

$$\cdot \vdash e : \mathsf{bool} \quad \cdot \vdash e_1 : \tau \quad \cdot \vdash e_2 : \tau$$

 $\cdot \vdash \mathsf{if} \ e \ \mathsf{then} \ e_1 \ \mathsf{else} \ e_2 \colon au$

Induction on type derivation

Proof: suppose $\cdot \vdash e: \tau$, we have to show $e \Downarrow$. Attempt: induction on typing rules.

T-IfThenElse

$$\cdot \vdash e : \text{bool} \quad \cdot \vdash e_1 : \tau \quad \cdot \vdash e_2 : \tau$$

 $\cdot \vdash$ if *e* then e_1 else $e_2 \colon \tau$

T-Abs

$$\frac{x: \tau_1 \vdash e: \tau_2}{\cdot \vdash \lambda x: \tau_1.e: \tau_1 \to \tau_2}$$

Induction on type derivation

Proof: suppose $\cdot \vdash e: \tau$, we have to show $e \Downarrow$. Attempt: induction on typing rules.

T-IfThenElse

Logical Relations

A logical relation is a predicate $P_{\tau}(e)$ over an expression, indexed by a type.

- **(**) The logical relation should contain well-typed terms: $\cdot \vdash e: \tau$;
- P contains the property we want to prove;
- P should be preserved by the elimination forms for the corresponding type τ.

Logical relation

Define the relation $N_{\tau}(e)$ for terms *e* and types τ as follows:

$$\begin{array}{l} \mathsf{N}_{\mathsf{bool}}(e) := \cdot \vdash e : \mathsf{bool} \land e \Downarrow \\ \mathsf{N}_{\tau_1 \to \tau_2}(e) := \cdot \vdash e : \tau_1 \to \tau_2 \land e \Downarrow \land \forall e' . \mathsf{N}_{\tau_1}(e') \implies \mathsf{N}_{\tau_2}(e \ e') \end{array}$$

▲ 同 ▶ ▲ 三

Proof plan of normalization

For all terms e:

$\cdot \vdash e : \tau \implies e \Downarrow$

э

(日)

Proof plan of normalization

For all terms e:

$$\cdot \vdash e : \tau \qquad \Longrightarrow \qquad e \Downarrow$$

 $\cdot \vdash e : \tau \qquad \stackrel{A}{\Longrightarrow} \qquad N_{\tau}(e) \qquad \stackrel{B}{\Longrightarrow} \qquad e \Downarrow$

Joos Munneke & Robert Kunst Normalization of STLC

æ

э

< 同 > < 三 >

For all terms e, we have $N_{\tau}(e) \implies e \Downarrow$.

Joos Munneke & Robert Kunst Normalization of STLC

æ

イロト イ団ト イヨト イヨト

Step B

For all terms e, we have $N_{\tau}(e) \implies e \Downarrow$.

Immediate from definition of $N_{\tau}(e)$:

$$\begin{array}{l} \mathsf{N}_{\mathsf{bool}}(e) := \cdot \vdash e : \mathsf{bool} \land e \Downarrow \\ \mathsf{N}_{\tau_1 \to \tau_2}(e) := \cdot \vdash e : \tau_1 \to \tau_2 \land e \Downarrow \land \forall e' . \mathsf{N}_{\tau_1}(e') \implies \mathsf{N}_{\tau_2}(e \ e') \end{array}$$

(日)

Step A

For all terms e, we have $\cdot \vdash e : \tau \implies N_{\tau}(e)$.

æ

イロト イ団ト イヨト イヨト

Step A

For all terms e, we have $\cdot \vdash e : \tau \implies N_{\tau}(e)$.

Rule T-App for $e_1 e_2 : \tau$

$$\frac{\cdot \vdash e_1 : \tau_2 \to \tau \quad \cdot \vdash e_2 : \tau_2}{\cdot \vdash e_1 : e_2 : \tau}$$

(日)

æ

Step A

For all terms
$$e$$
, we have $\cdot \vdash e : \tau \implies N_{\tau}(e)$.

Rule T-App for
$$e_1 e_2 : \tau$$

$$\frac{\cdot \vdash e_1 : \tau_2 \to \tau \quad \cdot \vdash e_2 : \tau_2}{\cdot \vdash e_1 \; e_2 : \tau}$$

Induction hypothesis: $N_{\tau_2 \to \tau}(e_1)$ and $N_{\tau_2}(e_2)$ hold. To prove: $N_{\tau}(e_1 \ e_2)$.

▲□ ► < □ ► </p>

글 🖒 🗦

Step A: T-App

Induction hypothesis: $N_{\tau_2 \to \tau}(e_1)$ and $N_{\tau_2}(e_2)$ hold. To prove: $N_{\tau}(e_1 \ e_2)$.

Definition of $N_{\tau}(e)$:

$$N_{\text{bool}}(e) := \cdot \vdash e : \text{bool} \land e \Downarrow$$
$$N_{\tau_1 \to \tau_2}(e) := \cdot \vdash e : \tau_1 \to \tau_2 \land e \Downarrow \land \forall e' . N_{\tau_1}(e') \implies N_{\tau_2}(e e')$$

▲御▶ ▲臣▶ ▲臣▶

Step A: T-App

Induction hypothesis: $N_{\tau_2 \to \tau}(e_1)$ and $N_{\tau_2}(e_2)$ hold. To prove: $N_{\tau}(e_1 \ e_2)$.

Definition of $N_{\tau_2 \rightarrow \tau}(e_1)$:

$$N_{\tau_2 \to \tau}(e_1) := \cdot \vdash e_1 : \tau_2 \to \tau \land e_1 \Downarrow \land \forall e'. N_{\tau_2}(e') \implies N_{\tau}(e_1 \ e')$$

< ロ > < 回 > < 回 > < 回 > < 回 >

Induction hypothesis:
$$N_{\tau_2 \to \tau}(e_1)$$
 and $N_{\tau_2}(e_2)$ hold.
To prove: $N_{\tau}(e_1 \ e_2)$.

Definition of
$$N_{\tau_2 \rightarrow \tau}(e_1)$$
:

$$N_{\tau_2 \to \tau}(e_1) := \cdot \vdash e_1 : \tau_2 \to \tau \land e_1 \Downarrow \land \forall e'. N_{\tau_2}(e') \implies N_{\tau}(e_1 \ e')$$

Case T-App is fixed.

æ

イロト イ団ト イヨト イヨト

Step A

For all terms e, we have $\cdot \vdash e : \tau \implies N_{\tau}(e)$.

Joos Munneke & Robert Kunst Normalization of STLC

æ

イロト イ団ト イヨト イヨト

Step A

For all terms
$$e$$
, we have $\cdot \vdash e : \tau \implies N_{\tau}(e)$.

Now look at the case T-Abs:

 $\frac{x:\tau_1 \vdash e:\tau_2}{\cdot \vdash \lambda x:\tau_1.e:\tau_1 \to \tau_2}$

(日)

B> B

Step A

For all terms
$$e$$
, we have $\cdot \vdash e : \tau \implies N_{\tau}(e)$.

Now look at the case T-Abs:

$$\frac{x:\tau_1 \vdash e:\tau_2}{\cdot \vdash \lambda x:\tau_1.e:\tau_1 \to \tau_2}$$

To prove: $N_{\tau_1 \rightarrow \tau_2}(\lambda x : \tau_1.e)$.

(日)

B> B

Step A: T-Abs

To prove: $N_{\tau_1 \rightarrow \tau_2}(\lambda x : \tau_1.e)$.

Joos Munneke & Robert Kunst Normalization of STLC

æ

イロト イ団ト イヨト イヨト

Step A: T-Abs

To prove: $N_{\tau_1 \to \tau_2}(\lambda x : \tau_1.e)$. Definition of $N_{\tau_1 \to \tau_2}(\lambda x : \tau_1.e)$

$$\begin{split} \mathcal{N}_{\tau_1 \to \tau_2}(\lambda x : \tau_1.e) &:= \cdot \vdash \lambda x : \tau_1.e : \tau_1 \to \tau_2 \land \lambda x : \tau_1.e \Downarrow \\ \land \forall e'.\mathcal{N}_{\tau_1}(e') \implies \mathcal{N}_{\tau_2}((\lambda x : \tau_1.e) e') \end{split}$$

A (1) > A (2) > A

글 🖒 🗦

Step A: T-Abs

To prove: $N_{\tau_1 \to \tau_2}(\lambda x : \tau_1.e)$. Definition of $N_{\tau_1 \to \tau_2}(\lambda x : \tau_1.e)$

$$\begin{array}{l} \mathsf{N}_{\tau_1 \to \tau_2}(\lambda x : \tau_1.e) := \cdot \vdash \lambda x : \tau_1.e : \tau_1 \to \tau_2 \land \lambda x : \tau_1.e \Downarrow \\ \land \forall e'.\mathsf{N}_{\tau_1}(e') \implies \mathsf{N}_{\tau_2}((\lambda x : \tau_1.e) e') \end{array}$$

Case T-Abs broke!

・ 一 マ ト ・ 日 ト ・

э

Substitutions

We allow for open terms by modifying step A to step A': A. For all terms e, if $\cdot \vdash e : \tau$, then $N_{\tau}(e)$.

Substitutions

We allow for open terms by modifying step A to step A':

- A. For all terms e, if $\cdot \vdash e : \tau$, then $N_{\tau}(e)$.
- A'. For all contexts Γ , "suitable substitutions" γ and terms e, if $\Gamma \vdash e : \tau$, then $N_{\tau}(\gamma(e))$.

Substitutions

A substitution $\gamma = \{x_1 \mapsto v_1, \dots, x_n \mapsto v_n\}$ is suitable for a context Γ if:

イロト イボト イヨト イヨト

э

Substitutions

A substitution $\gamma = \{x_1 \mapsto v_1, \dots, x_n \mapsto v_n\}$ is suitable for a context Γ if:

• Both γ and Γ contain the same variables, that is, they have equal domain.

• I > • I > • •

Substitutions

A substitution $\gamma = \{x_1 \mapsto v_1, \dots, x_n \mapsto v_n\}$ is suitable for a context Γ if:

- Both γ and Γ contain the same variables, that is, they have equal domain.
- The substitutes of γ must be correctly typed according to Γ , and even comply with our normalization predicate N.

Substitutions

A substitution $\gamma = \{x_1 \mapsto v_1, \dots, x_n \mapsto v_n\}$ is suitable for a context Γ if:

- Both γ and Γ contain the same variables, that is, they have equal domain.
- The substitutes of γ must be correctly typed according to Γ , and even comply with our normalization predicate N.

Definition

A substitution γ is suitable for a context $\Gamma,$ write $\gamma \vDash \Gamma,$ is defined by:

$$\gamma \vDash \Gamma := \operatorname{dom}(\gamma) = \operatorname{dom}(\Gamma) \land (\forall x \in \operatorname{dom}(\Gamma).N_{\Gamma(x)}(\gamma(x))).$$

< D > < A > < B > < B >

A'. For all contexts Γ , "suitable substitutions" γ and terms e, if $\Gamma \vdash e : \tau$, then $N_{\tau}(\gamma(e))$.

▲ 同 ▶ ▲ 三 ▶ ▲

э

A'. For all contexts Γ , substitutions γ and terms e, if $\Gamma \vdash e : \tau$ and $\gamma \vDash \Gamma$, then $N_{\tau}(\gamma(e))$.

▲ 同 ▶ ▲ 三 ▶ ▲

э

Lemmas

Lemma (Substitution Lemma)

Substitution preserves type: if $\Gamma \vdash e : \tau$ and $\gamma \vDash \Gamma$, then $\cdot \vdash \gamma(e) : \tau$.

< 同 × I = >

Lemmas

Lemma (Substitution Lemma)

Substitution preserves type: if $\Gamma \vdash e : \tau$ and $\gamma \models \Gamma$, then $\cdot \vdash \gamma(e) : \tau$.

Lemma (Reduction Lemma)

 $N_{\tau}(e)$ respects reduction: if $\cdot \vdash e : \tau$ and $e \mapsto e'$, then $N_{\tau}(e) \iff N_{\tau}(e')$.

< ロ > < 同 > < 三 > < 三 >

For all contexts Γ , substitutions γ and terms e, if $\Gamma \vdash e : \tau$ and $\gamma \vDash \Gamma$, then $N_{\tau}(\gamma(e))$.

(日)

.⊒ →

For all contexts Γ , substitutions γ and terms e, if $\Gamma \vdash e : \tau$ and $\gamma \vDash \Gamma$, then $N_{\tau}(\gamma(e))$. We prove step A' by induction on the typing derivation.

▲ 伊 ▶ ▲ 王 ▶

Step A'

For all contexts Γ , substitutions γ and terms e, if $\Gamma \vdash e : \tau$ and $\gamma \vDash \Gamma$, then $N_{\tau}(\gamma(e))$.

(日)

э

Step A'

For all contexts Γ , substitutions γ and terms e, if $\Gamma \vdash e : \tau$ and $\gamma \vDash \Gamma$, then $N_{\tau}(\gamma(e))$.

Look at the case T-Abs:

$$\Gamma, x : \tau_1 \vdash e : \tau_2$$
$$\Gamma \vdash \lambda x : \tau_1 . e : \tau_1 \to \tau_2$$

▲ 伊 ▶ ▲ 王 ▶

Step A'

For all contexts Γ , substitutions γ and terms e, if $\Gamma \vdash e : \tau$ and $\gamma \vDash \Gamma$, then $N_{\tau}(\gamma(e))$.

Look at the case T-Abs:

$$\frac{\Gamma, x : \tau_1 \vdash e : \tau_2}{\Gamma \vdash \lambda x : \tau_1 . e : \tau_1 \to \tau_2}$$

To prove: for any substitution $\gamma \vDash \Gamma$, we have $N_{\tau_1 \rightarrow \tau_2}(\gamma(\lambda x : \tau_1.e)).$

< /₽ > < E >

Step A'

For all contexts Γ , substitutions γ and terms e, if $\Gamma \vdash e : \tau$ and $\gamma \models \Gamma$, then $N_{\tau}(\gamma(e))$.

Look at the case T-Abs:

$$\frac{\Gamma, x : \tau_1 \vdash e : \tau_2}{\Gamma \vdash \lambda x : \tau_1 . e : \tau_1 \to \tau_2}$$

To prove: for any substitution $\gamma \vDash \Gamma$, we have $N_{\tau_1 \rightarrow \tau_2}(\gamma(\lambda x : \tau_1.e))$. Induction hypothesis: for any substitution $\gamma' \vDash \Gamma, x : \tau_1$, we have $N_{\tau_2}(\gamma'(e))$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Step A': case T-Abs

Induction hypothesis: for any substitution $\gamma' \vDash \Gamma, x : \tau_1$, we have $N_{\tau_2}(\gamma'(e))$. To prove: for any substitution $\gamma \vDash \Gamma$, we have $N_{\tau_1 \rightarrow \tau_2}(\gamma(\lambda x : \tau_1.e))$.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Step A': case T-Abs

Induction hypothesis: for any substitution $\gamma' \vDash \Gamma, x : \tau_1$, we have $N_{\tau_2}(\gamma'(e))$. To prove: for any substitution $\gamma \vDash \Gamma$, we have $N_{\tau_1 \rightarrow \tau_2}(\gamma(\lambda x : \tau_1.e))$.

Take any substitution $\gamma \vDash \Gamma$. Proving $N_{\tau_1 \rightarrow \tau_2}(\gamma(\lambda x : \tau_1.e))$ means proving three things:

1.
$$\vdash \gamma(\lambda x : \tau_1.e) : \tau_1 \to \tau_2$$

2. $\gamma(\lambda x : \tau_1.e) \Downarrow$
3. $\forall e'. N_{\tau_1}(e') \implies N_{\tau_2}(\gamma(\lambda x : \tau_1.e) e'$

・ 同 ト ・ ヨ ト ・ ヨ ト

Step A': case T-Abs (1)

Induction hypothesis: for all $\gamma' \vDash \Gamma, x : \tau_1$, we have $N_{\tau_2}(\gamma'(e))$. Assumptions: $\Gamma \vdash \lambda x : \tau_1 . e : \tau_1 \to \tau_2$ and $\gamma \vDash \Gamma$

1. $\cdot \vdash \gamma(\lambda x : \tau_1.e) : \tau_1 \to \tau_2$

・ 同 ト ・ ヨ ト ・ ヨ ト

Step A': case T-Abs (2)

Induction hypothesis: for all $\gamma' \vDash \Gamma, x : \tau_1$, we have $N_{\tau_2}(\gamma'(e))$. Assumptions: $\Gamma \vdash \lambda x : \tau_1 . e : \tau_1 \to \tau_2$ and $\gamma \vDash \Gamma$

2. $\gamma(\lambda x : \tau_1.e) \Downarrow$

・ 一 マ ト ・ 日 ト ・

Step A': case T-Abs (3)

Induction hypothesis: for all $\gamma' \vDash \Gamma, x : \tau_1$, we have $N_{\tau_2}(\gamma'(e))$. Assumptions: $\Gamma \vdash \lambda x : \tau_1 . e : \tau_1 \rightarrow \tau_2$ and $\gamma \vDash \Gamma$

3. $\forall e'. N_{\tau_1}(e') \implies N_{\tau_2}(\gamma(\lambda x : \tau_1.e) e')$

・ 同 ト ・ ヨ ト ・ ヨ ト

Normalization

Theorem

For all terms e, if $\cdot \vdash e \colon \tau$, then $e \Downarrow$.

- A'. For all contexts Γ , substitutions γ and terms e, if $\Gamma \vdash e : \tau$ and $\gamma \vDash \Gamma$, then $N_{\tau}(\gamma(e))$.
- B. For all terms e, we have $N_{\tau}(e) \implies e \Downarrow$.

< 同 > < 三 >

Normalization

Theorem

For all terms e, if $\cdot \vdash e \colon \tau$, then $e \Downarrow$.

- A'. For all contexts Γ , substitutions γ and terms e, if $\Gamma \vdash e : \tau$ and $\gamma \vDash \Gamma$, then $N_{\tau}(\gamma(e))$.
- B. For all terms e, we have $N_{\tau}(e) \implies e \Downarrow$.

We have shown A', and we had already shown B, so the normalization theorem follows.

< /i>
↓