
27-11-2023
Rico te Wechel s4773039
Lucas van Kasteren s1039270

Safety of STLC with
recursive types

1

• Recursive types can be used to capture potentially infinite data structures.

• To demonstrate the utility of recursive types we use the

Naive way to “add” recursion

• Now suppose we try to type this term:

| 2

• We recall the syntax of STLC

Naive way to “add” recursion

• What do we expect the Ω combinator to have for its type?

• Later we will see why recursive types can be helpful in typing the Ω combinator

| 3

• Let us consider the inductive definition of tree

Example data structure ‘tree’

• We can rewrite this definition:

type tree = unit + int * tree * tree

• Unfold the definition:
unit + int * tree * tree = unit + (int * (unit + (int * tree * tree)) * (unit + (int * tree * tree)))

• We can define a fixpoint, which is a function f for which

• For tree we take some F such that tree = F(tree)

| 4

• For the sake of clarity we will use tree = α and as unit type 1:

Example data structure ‘tree’

Recall: tree = F(tree)

• We use F in the recursive constructor μ:

• We substitute τ for F(α):

• Rewriting:

| 5

• We (again) recall the syntax of STLC

Formalizing STLC with recursive types

• Now we extend it with recursive types

| 6

• We add the following typing judgements:

Typing the term Ω

• Now how do we type

• We define

• Hence we get Ω = SA SA

| 7

• First we type x and say that

Typing the term Ω continued

• Now unfolding this type once gives

• We can encode the self application with

• Hence SA is well typed, i.e.

• Finally, if we encode

• Thus

| 8

• Type safety = “Well-typed programs do not go wrong” or “well-typed programs do not get stuck”

Type Safety recap

• Formally we say

• To prove type safety for STLC we recall the following

• Type safety is the best we get

| 9

The recursive type case

• So this means we get

• To prove type safety for STLC extended with recursive
types we might try to extend the following way

• Problem: This breaks well-foundedness

• But..

| 10

• Solution: Step-indexed logical relations

STLC type safety enabling recursive types

| 11

Understanding the relations

| 12

• Recall

Recap: The fundamental property

| 13

• Now

Fundamental property allowing recursive types

• Proof
• Monotonicity lemma
• Induction on typing judgment

| 14

Thank you!

15

