Type safety of Simply Typed Lambda Calculus

Maud van de Lockant Susan Withaar

Table of contents

- Introduction type safety
- Type safety theorem
- Logical relations for type safety
- Proof in two steps
- Semantic well-typedness

Definition simple typed lambda environment

$$\tau ::= bool \mid \tau \to \tau$$

$$e ::= x \mid true \mid false \mid if \ e \ then \ e \ else \ e \mid \lambda x : \tau. \ e \mid e \ e$$

$$v ::= true \mid false \mid \lambda x : \tau. \ e$$

$$E ::= [] \mid if \ E \ then \ e \ else \ e \mid E \ e \mid v \ E$$

Type safety

"well-typed programs do not go wrong." -Robin Milner

"well-typed programs do not get stuck."

$\operatorname{safe}(e) := \forall e'. \ e \mapsto^* e' \Rightarrow \operatorname{val}(e') \lor \exists e''. \ e' \mapsto e''$

Type safety theorem

Theorem (Type safety):
$$\cdot \vdash e : \tau \Rightarrow \operatorname{safe}(e).$$

A)
$$\cdot \vdash e : \tau \Rightarrow \cdot \models e : \tau$$
 (Theorem)
B) $\cdot \models e : \tau \Rightarrow \text{safe}(e)$
 $\text{safe}(e) := \forall e'. \ e \mapsto^* e' \Rightarrow \text{val}(e') \lor \exists e''. \ e' \mapsto e''$

Logical relations for type safety

 $\begin{aligned} \tau &::= \text{bool} \mid \tau \to \tau \\ e &::= x \mid \text{true} \mid \text{false} \mid \text{if } e \text{ then } e \text{ else } e \mid \lambda x : \tau \text{. } e \mid e e \\ v &::= \text{true} \mid \text{false} \mid \lambda x : \tau \text{. } e \end{aligned}$

$$\mathcal{V}[[bool]] := \{true, false\}$$

 $\mathcal{V}\llbracket\tau_1 \to \tau_2 \rrbracket := \{\lambda x : \tau_1. \ e \mid \forall v \in \mathcal{V}\llbracket\tau_1 \rrbracket. \ e[v/x] \in \mathcal{E}\llbracket\tau_2 \rrbracket\}$

 $\mathcal{E}\llbracket\tau\rrbracket := \{e \mid \forall e'. \ e \mapsto^* e' \land \operatorname{irred}(e') \Rightarrow e' \in \mathcal{V}\llbracket\tau\rrbracket\}$

 $\operatorname{irred}(e) := \nexists e'. \ e \mapsto e'$

safe $(e) := \forall e'. \ e \mapsto^* e' \Rightarrow \operatorname{val}(e') \lor \exists e''. \ e' \mapsto e''$

Semantic well-typedness

Theorem (Type safety): $\cdot \vdash e : \tau \Rightarrow \operatorname{safe}(e)$. A) $\cdot \vdash e : \tau \Rightarrow \cdot \models e : \tau$ (Theorem) B) $\cdot \models e : \tau \Rightarrow \operatorname{safe}(e)$

 $\mathcal{G}\llbracket \cdot \rrbracket := \{ \emptyset \}$

 $\mathcal{G}\llbracket\Gamma, x:\tau\rrbracket := \{\gamma[x \mapsto v] \mid \gamma \in \mathcal{G}\llbracket\Gamma\rrbracket \land v \in \mathcal{V}\llbracket\tau\rrbracket\}$

Semantic type safety / well-typedness: $\Gamma \models e : \tau := \forall \gamma \in \mathcal{G}\llbracket \Gamma \rrbracket$. $\gamma(e) \in \mathcal{E}\llbracket \tau \rrbracket$

Proof of part B

$$\operatorname{safe}(e) := \forall e'. \ e \mapsto^* e' \Rightarrow \operatorname{val}(e') \lor \exists e''. \ e' \mapsto e'' \quad \operatorname{irred}(e) := \nexists e'. \ e \mapsto e'$$
$$\Gamma \models e : \tau := \forall \gamma \in \mathcal{G}\llbracket\Gamma\rrbracket. \ \gamma(e) \in \mathcal{E}\llbracket\tau\rrbracket \quad \mathcal{G}\llbracket\cdot\rrbracket := \{\emptyset\}$$

 $\mathcal{E}\llbracket \tau \rrbracket := \{ e \mid \forall e'. \ e \mapsto^* e' \land \operatorname{irred}(e') \Rightarrow e' \in \mathcal{V}\llbracket \tau \rrbracket \}$

B) $\cdot \models e : \tau \Rightarrow \operatorname{safe}(e)$

Proof. Suppose $e \mapsto^* e'$. To show: val(e') or $\exists e'' \colon e' \mapsto e''$. Either irred(e') or \neg irred(e').

- 1. Case \neg irred(e'). Then $\exists e'' \colon e' \mapsto e'' \checkmark$
- 2. Case irred(e'). From $\cdot \models e : \tau$ we have $e \in \mathcal{E}[\![\tau]\!]$. Therefore, $e' \in \mathcal{V}[\![\tau]\!]$. Thus $\operatorname{val}(e') \checkmark$

A) $\cdot \vdash e : \tau \Rightarrow \cdot \models e : \tau$ (Theorem)

Proof. Suppose $\cdot \vdash e : \tau$ we have to show $\cdot \models e : \tau$. We proceed by induction on the typing judgement

A) $\cdot \vdash e : \tau \Rightarrow \cdot \models e : \tau$ Case to show $\Gamma \models true : bool$

Proof. Suppose $\gamma \in \mathcal{G}\llbracket\Gamma\rrbracket$ to show: $\gamma(true) \in \mathcal{E}\llbracketbool\rrbracket$. Since irred(*true*) therefore to show: $true \in \mathcal{V}\llbracketbool\rrbracket$.

$\Gamma \models e : \tau := \forall$	$\gamma \in \mathcal{G}\llbracket \Gamma \rrbracket.$	$\gamma(e) \in \mathcal{E}\llbracket \tau \rrbracket$
--------------------------------------	---	---

$$\mathcal{E}\llbracket \tau \rrbracket := \{ e \mid \forall e'. \ e \mapsto^* e' \land \operatorname{irred}(e') \Rightarrow e' \in \mathcal{V}\llbracket \tau \rrbracket \}$$

$$\mathcal{V}\llbracket \tau_1 \to \tau_2 \rrbracket := \{\lambda x : \tau_1. \ e \mid \forall v \in \mathcal{V}\llbracket \tau_1 \rrbracket. \ e[v/x] \in \mathcal{E}\llbracket \tau_2 \rrbracket\}$$

A) $\cdot \vdash e : \tau \Rightarrow \cdot \models e : \tau$ Case to show $\Gamma \models \lambda x : \tau_1 . e : \tau_1 \to \tau_2$

Proof. Suppose $\gamma \in \mathcal{G}\llbracket\Gamma\rrbracket$ to show: $\gamma(\lambda x : \tau_1.e) \in \mathcal{E}\llbracket\tau_1 \to \tau_2\rrbracket$. To show $\equiv (\lambda x : \tau_1.\gamma(e)) \in \mathcal{E}\llbracket\tau_1 \to \tau_2\rrbracket$.

Suppose $\lambda x : \tau_1 . \gamma(e) \mapsto^* e' \wedge irred(e')$ To show: $e' \in \mathcal{V}[\![\tau_1 \to \tau_2]\!]$. Since $\lambda x : \tau_1 . \gamma(e)$ is a value $e' = \lambda x : \tau_1 . \gamma(e)$ Therefore to show: $\lambda x : \tau_1 . \gamma(e) \in \mathcal{V}[\![\tau_1 \to \tau_2]\!]$.

Suppose $v \in \mathcal{V}[\![\tau_1]\!]$ to show: $\gamma(e)[v/x] \in \mathcal{E}[\![\tau_2]\!]$.

Case $\frac{\Gamma\text{-}ABS}{\Gamma \vdash x : \tau_1 \vdash e : \tau_2}$ $\frac{\Gamma \vdash \lambda x : \tau_1 \cdot e : \tau_1 \to \tau_2}{\Gamma \vdash \lambda x : \tau_1 \cdot e : \tau_1 \to \tau_2}$

 $v ::= true \mid false \mid \lambda x : \tau. e$

 $\operatorname{irred}(e) := \nexists e'. \ e \mapsto e'$

To show: $\gamma(e)[v/x] \in \mathcal{E}[\![\tau_2]\!]$

Case $\frac{\Gamma\text{-ABS}}{\Gamma \vdash \lambda x : \tau_1 \vdash e : \tau_2}$ $\frac{\Gamma \vdash \lambda x : \tau_1 \cdot e : \tau_2 \rightarrow \tau_2}{\Gamma \vdash \lambda x : \tau_1 \cdot e : \tau_1 \rightarrow \tau_2}$

 $\mathcal{G}\llbracket\Gamma, x:\tau\rrbracket := \{\gamma[x\mapsto v] \mid \gamma \in \mathcal{G}\llbracket\Gamma\rrbracket \land v \in \mathcal{V}\llbracket\tau\rrbracket\}$

 $\Gamma \models e : \tau := \forall \gamma \in \mathcal{G}\llbracket \Gamma \rrbracket. \ \gamma(e) \in \mathcal{E}\llbracket \tau \rrbracket$

Induction Hypothesis $\Gamma, x : \tau_1 \models e : \tau_2$ Instantiate $\gamma[x \mapsto v] \in \mathcal{G}\llbracket\Gamma, x : \tau_1\rrbracket$ with conditions $\gamma \in \mathcal{G}\llbracket\Gamma\rrbracket \land v \in \mathcal{V}\llbracket\tau_1\rrbracket$. Gives $\gamma[x \mapsto v](e) \in \mathcal{E}\llbracket\tau_2\rrbracket \equiv \gamma(e)[v/x] \in \mathcal{E}\llbracket\tau_2\rrbracket$