An impure language: Immutable References

Presenters: Patrick van Beurden \& Razvan Potcoveanu

Syntax of λ^{1}

Syntax The syntax of λ^{I} terms is given by the following grammar.

$$
\begin{array}{ll}
\text { Values } & v::=\ell \mid \text { true } \mid \text { false } \mid \lambda x . e \\
\text { Expressions } & e::=x|v|\left(e_{1} e_{2}\right)|\operatorname{new}(e)|!e
\end{array}
$$

- A term e is a value if it is a location I, a boolean constant, or an abstraction with no free variables.
- new is a term for allocating a new cell on the heap, and term ! reads the contents of an allocated cell.

Operational semantics of new and!

$$
\begin{array}{cl}
\frac{(S, e) \longmapsto_{I}\left(S^{\prime}, e^{\prime}\right)}{(S, \text { new }(e)) \longmapsto_{I}\left(S^{\prime}, \text { new }\left(e^{\prime}\right)\right)} \text { (IO-new1) } & \frac{(S, e) \longmapsto \longmapsto_{I}\left(S^{\prime}, e^{\prime}\right)}{(S,!e) \longmapsto_{I}\left(S^{\prime},!e^{\prime}\right)} \text { (IO-deref1) } \\
\frac{\ell \notin \operatorname{dom}(S)}{(S, \text { new }(v)) \longmapsto_{I}(S[\ell \longmapsto v], \ell)} \text { (IO-new2) } & \frac{\ell \in \operatorname{dom}(S)}{(S,!\ell) \longmapsto \longmapsto_{I}(S, S(\ell))} \text { (IO-deref2) }
\end{array}
$$

Note: In a language with side effects, the order in which terms are evaluated is important.

Safety

Definition 2.12 (Safe)

A state (S, e) is safe if whenever (S, e) evaluates to a state $\left(S^{\prime}, e^{\prime}\right)$, either e^{\prime} is a value or another step is possible.

$$
\begin{aligned}
& \operatorname{safe}(S, e) \stackrel{\text { def }}{=} \forall S^{\prime}, e^{\prime} .(S, e) \\
& \longmapsto_{I}^{*}\left(S^{\prime}, e^{\prime}\right) \\
&\left(\operatorname{val}\left(e^{\prime}\right) \vee \exists S^{\prime \prime}, e^{\prime \prime} .\left(S^{\prime}, e^{\prime}\right) \longmapsto{ }_{I}\left(S^{\prime \prime}, e^{\prime \prime}\right)\right)
\end{aligned}
$$

Box type
Type definitions of λ^{\prime}

```
bool def
box \tau \stackrel{\mathrm{ def }}{=}{\langleS,\ell\rangle|\ell\in\operatorname{dom}(S)\wedge\langleS,S(\ell)\rangle\in\tau}
\tau}->\mp@subsup{\tau}{2}{}\stackrel{\mathrm{ def }}{=
```

Box type

Type definitions of λ^{\prime}

$$
\begin{aligned}
& \text { boo } \\
& \text { box } \tau \quad \stackrel{\text { def }}{=}\{\langle S, \ell\rangle \mid \ell \in \operatorname{dom}(S) \wedge\langle S, S(\ell)\rangle \in \tau\} \\
& \tau_{1} \rightarrow \tau_{2} \quad \stackrel{\text { def }}{=} \\
& \begin{array}{ll}
& \% S_{0} \\
\text { let } x_{1}=\text { new }(\text { true }) \text { in } & \% S_{1}=S_{0}\left[\ell_{1} \mapsto \text { true }\right], \ell_{1} \notin \operatorname{dom}\left(S_{0}\right), x_{1} \mapsto \ell_{1} \\
\text { let } x_{2}=\ldots \text { in } & \% S_{2}=\ldots, x_{1} \mapsto \ell_{1} \\
\quad \vdots & \\
\text { let } x_{n}=\ldots \text { in } & \% S_{n}=\ldots, x_{1} \mapsto \ell_{1} \\
\text { ! } x_{1} & \% S_{n+1}=S_{n}
\end{array}
\end{aligned}
$$

Box type
Type definitions of λ^{\prime}
bool $\stackrel{\text { def }}{=}$
box τ
$\tau_{1} \rightarrow \tau_{2} \stackrel{\text { def }}{=} \stackrel{\text { def }}{=}\{\langle S, \ell\rangle \mid \ell \in \operatorname{dom}(S) \wedge\langle S, S(\ell)\rangle \in \tau\}$

Definition 2.13 (Store Extension)

A valid store extension is defined as follows:

$$
S \sqsubseteq S^{\prime} \stackrel{\text { def }}{=} \forall \ell . \ell \in \operatorname{dom}(S) \Longrightarrow\left(\ell \in \operatorname{dom}\left(S^{\prime}\right) \wedge S(\ell)=S^{\prime}(\ell)\right)
$$

Bool

Type definitions of λ^{\prime}

$$
\begin{array}{ll}
\text { bool } & \stackrel{\text { def }}{=}\{\langle S, v\rangle \mid v=\text { true } \vee v=\text { false }\} \\
\text { box } \tau & \stackrel{\text { def }}{=} \\
\tau_{1} \rightarrow \tau_{2} & \stackrel{\text { def }}{=}
\end{array}
$$

Definition 2.14 (Type)

A type is a set τ of tuples of the form $\langle S, v\rangle$, where S is a store and v is a value, such that if $\langle S, v\rangle \in \tau$ and $S \sqsubseteq S^{\prime}$ then $\left\langle S^{\prime}, v\right\rangle \in \tau$; that is,

$$
\operatorname{type}(\tau) \stackrel{\text { def }}{=} \forall S, S^{\prime}, v .\left(\langle S, v\rangle \in \tau \wedge S \sqsubseteq S^{\prime}\right) \Longrightarrow\left\langle S^{\prime}, v\right\rangle \in \tau
$$

Arrow

Type definitions of λ^{\prime}

bool	$\stackrel{\text { def }}{=}$
box τ	$\stackrel{\text { def }}{=}$
$\tau_{1} \rightarrow \tau_{2}$	$\stackrel{\text { def }}{=}$

Definition 2.15 (Expr: Type)

For any closed expression e and type τ I write e $:_{S} \tau$ if whenever $(S, e) \longmapsto \longmapsto_{I}^{*}\left(S^{\prime}, e^{\prime}\right)$ and $\left(S^{\prime}, e^{\prime}\right)$ is irreducible, then $\left\langle S, e^{\prime}\right\rangle \in \tau$; that is,

$$
\begin{aligned}
e:_{S} \tau \stackrel{\text { def }}{=} \forall S^{\prime}, e^{\prime} \cdot & \left((S, e) \longmapsto{ }_{I}^{*}\left(S^{\prime}, e^{\prime}\right) \wedge \operatorname{irred}\left(S^{\prime}, e^{\prime}\right)\right) \\
& \Longrightarrow S \sqsubseteq S^{\prime} \wedge\left\langle S^{\prime}, e^{\prime}\right\rangle \in \tau
\end{aligned}
$$

Arrow

Type definitions of λ^{\prime}

bool $\stackrel{\text { def }}{=}$
box $\tau \quad \stackrel{\text { def }}{=}$
$\tau_{1} \rightarrow \tau_{2} \stackrel{\text { def }}{=}\left\{\langle S, \lambda x . e\rangle \mid \forall v, S^{\prime} .\left(S \sqsubseteq S^{\prime} \wedge\left\langle S^{\prime}, v\right\rangle \in \tau_{1}\right) \Longrightarrow e[v / x]: S_{S^{\prime}} \tau_{2}\right\}$

Definition 2.15 (Expr: Type)

For any closed expression e and type τ I write e $:_{S} \tau$ if whenever $(S, e) \longmapsto \longmapsto_{I}^{*}\left(S^{\prime}, e^{\prime}\right)$ and $\left(S^{\prime}, e^{\prime}\right)$ is irreducible, then $\left\langle S, e^{\prime}\right\rangle \in \tau$; that is,

$$
\begin{aligned}
e:_{S} \tau \stackrel{\text { def }}{=} \forall S^{\prime}, e^{\prime} . & \left((S, e) \longmapsto{ }_{I}^{*}\left(S^{\prime}, e^{\prime}\right) \wedge \operatorname{irred}\left(S^{\prime}, e^{\prime}\right)\right) \\
& \Longrightarrow S \sqsubseteq S^{\prime} \wedge\left\langle S^{\prime}, e^{\prime}\right\rangle \in \tau
\end{aligned}
$$

A modal interpresentation - Possible Worlds

bool $\stackrel{\text { def }}{=}\{\langle S, v\rangle \mid v=$ true $\vee v=$ false $\}$
box $\tau \quad \stackrel{\text { def }}{=}\{\langle S, \ell\rangle \mid \ell \in \operatorname{dom}(S) \wedge\langle S, S(\ell)\rangle \in \tau\}$
$\tau_{1} \rightarrow \tau_{2} \stackrel{\text { def }}{=}\left\{\langle S, \lambda x . e\rangle \mid \forall v, S^{\prime} .\left(S \sqsubseteq S^{\prime} \wedge\left\langle S^{\prime}, v\right\rangle \in \tau_{1}\right) \Longrightarrow e[v / x]:_{S^{\prime}} \tau_{2}\right\}$

To define:

- A set W of worlds

$$
\begin{gathered}
W=L o c \xrightarrow{\mathrm{fin}} V a l \\
S \sqsubseteq S^{\prime} \\
L(S)=\{(\ell, v) \mid S(\ell)=v\}
\end{gathered}
$$

- A labelling function
- Properties Acc should satisfy (reflexivity, transitivity)

Validity of types

$$
\begin{array}{ll}
\operatorname{type}(\tau) & \stackrel{\text { def }}{=} \forall S, S^{\prime}, v \cdot\left(\langle S, v\rangle \in \tau \wedge S \sqsubseteq S^{\prime}\right) \Longrightarrow\left\langle S^{\prime}, v\right\rangle \in \tau \\
\text { bool } \quad \stackrel{\text { def }}{=}\{\langle S, v\rangle \mid v=\text { true } \vee v=\mathrm{false}\}
\end{array}
$$

Lemma 2.16 (Store Extension Reflexive) $S \sqsubseteq S$.

Lemma 2.17 (Store Extension Transitive) If $S_{1} \sqsubseteq S_{2}$ and $S_{2} \sqsubseteq S_{3}$ then $S_{1} \sqsubseteq S_{3}$.

Validity of types

$$
\begin{aligned}
\operatorname{type}(\tau) & \stackrel{\text { def }}{=} \forall S, S^{\prime}, v .\left(\langle S, v\rangle \in \tau \wedge S \sqsubseteq S^{\prime}\right) \Longrightarrow\left\langle S^{\prime}, v\right\rangle \in \tau \\
\tau_{1} \rightarrow \tau_{2} & \stackrel{\text { def }}{=}\left\{\langle S, \lambda x . e\rangle \mid \forall v, S^{\prime} .\left(S \sqsubseteq S^{\prime} \wedge\left\langle S^{\prime}, v\right\rangle \in \tau_{1}\right) \Longrightarrow e[v / x]: S_{S^{\prime}} \tau_{2}\right\}
\end{aligned}
$$

Lemma 2.18 (Type $\tau_{1} \rightarrow \tau_{2}$)
If τ_{1} and τ_{2} are types then $\tau_{1} \rightarrow \tau_{2}$ is also a type.

1. Suppose $\langle S, v\rangle \in \tau_{1} \rightarrow \tau_{2}$ and $S \sqsubseteq S^{\prime}$ (with v of the form λ x.e)
2. We have to show that $\left\langle S^{\prime}, \lambda x . e\right\rangle \in \tau_{1} \rightarrow \tau_{2}$
3. Suppose $S^{\prime} \sqsubseteq S^{\prime \prime}$ and $\left\langle S^{\prime \prime}, v_{1}\right\rangle \in \tau_{1}$
4. By definition of \rightarrow, we now need to show: $e\left[v_{1} / x\right]: S_{S^{\prime \prime}} \tau_{2}$
5. Transitivity lemma gives us $S \sqsubset S^{\prime \prime}$
6. By definition of \rightarrow, and $\langle S, \lambda x . e\rangle \in \tau_{1} \rightarrow \tau_{2}$ with 5 and $\left\langle S^{\prime \prime}, v_{1}\right\rangle \in \tau_{1}$ implies $e\left[v_{1} / x\right]:_{S^{\prime \prime}} \tau_{2}$

Validity of types

$$
\operatorname{type}(\tau) \stackrel{\text { def }}{=} \forall S, S^{\prime}, v \cdot\left(\langle S, v\rangle \in \tau \wedge S \sqsubseteq S^{\prime}\right) \Longrightarrow\left\langle S^{\prime}, v\right\rangle \in \tau
$$

box $\tau \quad \stackrel{\text { def }}{=}\{\langle S . \ell\rangle \mid \ell \in \operatorname{dom}(S) \wedge\langle S, S(\ell)\rangle \in \tau\}$
Lemma $\overline{2} .19$
If τ is a type, then box τ is a type.

1. Suppose $\langle S, v\rangle \in$ box τ and $S \sqsubseteq S^{\prime}$ (with v some store location ℓ
2. We have to show that $\left\langle S^{\prime}, v\right\rangle \in$ box τ
3. From $\langle S, \ell\rangle \in$ box τ we have that:
a. $\ell \in \operatorname{dom}(S)$
b. $\langle S, S(\ell)\rangle \in \tau$
4. Since τ is a type, we have $\left\langle S^{\prime}, S(\ell)\right\rangle \in \tau$
5. From 3a and $S \sqsubseteq S^{\prime}$ it follows that $\ell \in \operatorname{dom}\left(S^{\prime}\right)$ and $S(\ell)=S^{\prime}(\ell)$
6. Hence, we have $\left\langle S^{\prime}, S^{\prime}(\ell)\right\rangle \in \tau$, so by definition of box we have $\left\langle S^{\prime}, \ell\right\rangle \in$ box τ

Typing rules

$$
\begin{aligned}
& \overline{\Gamma \digamma_{I} x: \Gamma(x)} \text { (I-var) } \\
& \overline{\Gamma \vDash_{I} \text { true : bool }} \text { (I-true) } \quad \overline{\Gamma \vDash_{I} \text { false : bool }} \text { (I-false) } \\
& \frac{\Gamma\left[x \mapsto \tau_{1}\right] \vDash_{I} e: \tau_{2}}{\Gamma \vDash_{I} \lambda x . e: \tau_{1} \rightarrow \tau_{2}}(\text { I-abs }) \\
& \frac{\Gamma \vDash_{I} e_{1}: \tau_{1} \rightarrow \tau_{2} \quad \Gamma \vDash_{I} e_{2}: \tau_{1}}{\Gamma \vDash_{I}\left(e_{1} e_{2}\right): \tau_{2}} \text { (I-app) } \\
& \frac{\Gamma \vDash_{I} e: \tau}{\Gamma \vDash_{I} \text { new }(e): \text { box } \tau} \text { (I-new) } \quad \frac{\Gamma \vDash_{I} e: \operatorname{box} \tau}{\Gamma \vDash_{I}!e: \tau} \text { (I-deref) }
\end{aligned}
$$

Semantics of Judgement

For any type of environment Γ and a value environment σ । write $\sigma:_{S} \Gamma$ if for all variables $x \in \operatorname{dom}(\Gamma)$ we have $\sigma(x)$:s $\Gamma(x)$; that is,

$$
\sigma:_{S} \Gamma \stackrel{\text { def }}{=} \forall x \in \operatorname{dom}(\Gamma) \cdot \sigma(x):_{S} \Gamma(x)
$$

I write $\Gamma \vDash_{I} e: \tau$ iff $F V(e) \subseteq \operatorname{dom}(\Gamma)$ and $\forall \sigma, S . \sigma:_{S} \Gamma \Longrightarrow \sigma(e):_{S} \tau$ where $\sigma(e)$ is the result of replacing the free variables in e with their values under σ.

I write $\vDash_{I} e: \tau$ to mean $\Gamma_{0} \vDash_{I} e: \tau$ for the empty environment Γ_{0}.

Safety

Theorem 2.21 (Safety)

If $\vDash_{I} e: \tau, \tau$ is a type, and S is a store, then (S, e) is safe.
PROOF:

1. Suppose $(S, e) \longmapsto \longmapsto_{I}^{*}\left(S^{\prime}, e^{\prime}\right)$
2. If $\left(S^{\prime}, e^{\prime}\right)$ is not irreducible, then $\exists\left(S^{\prime \prime}, e^{\prime \prime}\right)$ such that $\left(S^{\prime}, e^{\prime}\right) \longmapsto_{I}\left(S^{\prime \prime}, e^{\prime \prime}\right)$
3. Otherwise, $\left(S^{\prime}, e^{\prime}\right)$ is irreducible and we must prove that e^{\prime} is a value
4. $\vDash_{I} e: \tau=>\Gamma_{0} \models_{I} e: \tau=>e$ is closed
5. Choose the empty value environment σ_{0} and store S
6. By the definition of \vDash_{I} we have $\sigma_{0}:_{S} \Gamma_{0} \Longrightarrow \sigma_{0}(e):_{S} \tau$
7. Since $(S, e) \longmapsto{ }_{I}^{*}\left(S^{\prime}, e^{\prime}\right)$ and $\operatorname{irred}\left(S^{\prime}, e^{\prime}\right) \Longrightarrow S \sqsubseteq S^{\prime}$ and $\left\langle S^{\prime}, e^{\prime}\right\rangle \in \tau$
8. τ is a type $\Longrightarrow \operatorname{val}\left(e^{\prime}\right)$

Validity of I-New

Lemma 2.24 (Closed New)

If e is a closed term and τ is a type such that $e:_{S} \tau$ then new $(e):_{S}$ box τ.
Proof:
Suppose $(S, \operatorname{new}(e)) \longmapsto{ }_{I}^{*}\left(S^{\prime}, \ell\right)$ where $\operatorname{irred}\left(S^{\prime}, \ell\right)$
$S \sqsubseteq S^{\prime}$ and $\left\langle S^{\prime}, \ell\right\rangle \in$ box τ.
Part 1

1. $(S, e) \longmapsto_{I}^{*}\left(S_{1}, e_{1}\right)$ and $\operatorname{irred}\left(S_{1}, e_{1}\right)$
2. From the premise $e:_{S} \tau$ we have $S \sqsubseteq S_{1}$ and $\left\langle S_{1}, e_{1}\right\rangle \in \tau$

Part 2

1. $\left(S_{1}, \operatorname{new}\left(e_{1}\right)\right) \longmapsto I\left(S_{1}\left[\ell \mapsto e_{1}\right], \ell\right)$
2. I is a value $=>\operatorname{irred}\left(S_{1}\left[\ell \mapsto e_{1}\right], \ell\right)$
3. $S_{1} \sqsubseteq S^{\prime}$ then, by the transitivity of $\sqsubseteq=>S \sqsubseteq S^{\prime}$
$\left\langle S_{1}, e_{1}\right\rangle \in \tau$ and $S_{1} \sqsubseteq S^{\prime}=>\left\langle S^{\prime}, e_{1}\right\rangle \in \tau ; S^{\prime}(\ell)=e_{1} \Rightarrow>\left\langle S^{\prime}, S^{\prime}(\ell)\right\rangle \in \tau$ which together with $\ell \in S^{\prime}=>\left\langle S^{\prime}, \ell\right\rangle \in$ box

Validity of I-New

Theorem 2.25 (New)
If Γ is a type environment, e is a (possibly open) term, and τ is a type such that $\Gamma \vDash_{I} e: \tau$, then $\Gamma \vDash_{I}$ new (e) : box τ.

Proof:

1. Suppose $\sigma:_{S} \Gamma$
2. From the premise $\Gamma \vDash_{I} e: \tau$ we have $\sigma(e):_{S} \tau$
3. Since $\sigma(e)$ is a closed term, the result now follows from Lemma 2.24

Validity of I-Deref

Lemma 2.26 (Closed Deref)

If e is a closed term and τ is a type such that $e:_{S}$ box τ then $!e:_{S} \tau$.
Proof:

1. Suppose $(S,!e) \longmapsto{ }_{I}^{*}\left(S^{\prime}, e^{\prime}\right)$ such that $\operatorname{irred}\left(S^{\prime}, e^{\prime}\right)$
2. $(S, e) \longmapsto{ }_{I}^{*}\left(S^{\prime}, \ell\right)$ and $\operatorname{irred}\left(S^{\prime}, \ell\right)$
3. $e: S$ box $\tau=>S \sqsubseteq S^{\prime}$ and $\left\langle S^{\prime}, \ell\right\rangle \in$ box τ
4. From the definition of box τ we have $\ell \in \operatorname{dom}\left(S^{\prime}\right)$ and $\left\langle S^{\prime}, S^{\prime}(\ell)\right\rangle \in \tau$
5. From the operational semantics we have $\left(S^{\prime},!\ell\right) \longmapsto{ }_{I}\left(S^{\prime}, e^{\prime}\right)$ where $e^{\prime}=S^{\prime}(\ell)$
6. Hence, $\left\langle S^{\prime}, e^{\prime}\right\rangle \in \tau$

Theorem 2.27 (Deref)

If Γ is a type environment, e is a (possibly open) term, and τ is a type such that $\Gamma \vDash_{I} e:$ box τ, then $\Gamma \vDash_{I}!e: \tau$.

Kripke Logical Relations

There is a correspondence between Kripke logical relations and the possible-worlds model developed for λ^{I}.
A Kripke logical relation over a set A is defined as follows:
Suppose that we have a set of worlds W, an accessibility relation $A c c \subseteq W \times W$, and a family $\left\{i_{w w^{\prime}}^{\tau}\right\}$, of transition functions where w and w^{\prime} are worlds such that $\operatorname{Acc}\left(w, w^{\prime}\right)$. A Kripke logical relation is a family $\mathcal{R}=\left\{R_{w}^{\tau}\right\}$ of relations R_{w}^{τ} indexed by types τ and worlds $w \in W$, satisfying the condition:

$$
R_{w}^{\tau}(a) \text { implies } R_{w^{\prime}}^{\tau}\left(i_{w w^{\prime}}^{\tau}(a)\right) \text { for all } w^{\prime} \text { such that } \operatorname{Acc}\left(w, w^{\prime}\right)
$$

