An impure language: Immutable References

By Amal Ahmed, PhD thesis (Section 2.2), Princeton University, 2004.

Presenters: Patrick van Beurden & Razvan Potcoveanu

04-12-2023

Syntax of λ^{I}

Syntax The syntax of λ^I terms is given by the following grammar.

```
Values v ::= \ell \mid \texttt{true} \mid \texttt{false} \mid \lambda x.e Expressions e ::= x \mid v \mid (e_1 e_2) \mid \texttt{new}(e) \mid !e
```

- A term *e* is a value if it is a location *l*, a boolean constant, or an abstraction with no free variables.
- *new* is a term for allocating a new cell on the heap, and term ! reads the contents of an allocated cell.

Operational semantics of new and!

$$\frac{(S,e) \longmapsto_I (S',e')}{(S,\operatorname{new}(e)) \longmapsto_I (S',\operatorname{new}(e'))} \text{ (IO-new1)} \qquad \frac{(S,e) \longmapsto_I (S',e')}{(S,!e) \longmapsto_I (S',!e')} \text{ (IO-deref1)}$$

$$\frac{\ell \notin \mathrm{dom}(S)}{(S, \mathrm{new}(v)) \longmapsto_I (S [\ell \mapsto v], \ell)} \text{ (IO-new2)} \qquad \frac{\ell \in \mathrm{dom}(S)}{(S, !\ell) \longmapsto_I (S, S(\ell))} \text{ (IO-deref2)}$$

Note: In a language with side effects, the order in which terms are evaluated is important.

Safety

Definition 2.12 (Safe)

A state (S, e) is safe if whenever (S, e) evaluates to a state (S', e'), either e' is a value or another step is possible.

$$\operatorname{safe}(S, e) \stackrel{\operatorname{def}}{=} \forall S', e'. \ (S, e) \longmapsto_{I}^{*} (S', e') \\ \Longrightarrow (\operatorname{val}(e') \lor \exists S'', e''. \ (S', e') \longmapsto_{I} (S'', e''))$$

Box type

Type definitions of λ^{I}

```
\begin{array}{lll} \mathsf{bool} & \stackrel{\mathrm{def}}{=} \\ \mathsf{box} \ \tau & \stackrel{\mathrm{def}}{=} \\ \tau_1 \to \tau_2 & \stackrel{\mathrm{def}}{=} \end{array} \left\{ \left\langle S, \ell \right\rangle \ | \ \ell \in \mathsf{dom}(S) \ \land \ \left\langle S, S(\ell) \right\rangle \in \tau \, \right\}
```

Box type

Type definitions of λ^{I}

```
bool
box \tau \stackrel{\text{def}}{=} \{ \langle S, \ell \rangle \mid \ell \in \text{dom}(S) \land \langle S, S(\ell) \rangle \in \tau \}
\tau_1 \rightarrow \tau_2 \stackrel{\text{def}}{=}
                                                      % S<sub>0</sub>
   let x_1 = \text{new}(\text{true}) in S_1 = S_0 [\ell_1 \mapsto \text{true}], \ \ell_1 \notin \text{dom}(S_0), \ x_1 \mapsto \ell_1
                                         S_2 = \ldots, x_1 \mapsto \ell_1
   let x_2 = \dots in
                                            S_n = \ldots, x_1 \mapsto \ell_1
   let x_n = \dots in
                                                     S_{n+1} = S_n
   !x_1
```

Box type

Type definitions of λ^{I}

$$\begin{array}{lll} \mathsf{bool} & \stackrel{\mathrm{def}}{=} \\ \mathsf{box} \; \tau & \stackrel{\mathrm{def}}{=} \; \left\{ \; \langle S, \ell \; \rangle \; \mid \; \ell \in \mathsf{dom}(S) \; \wedge \; \; \langle S, S(\ell) \rangle \in \tau \; \right\} \\ \tau_1 \to \tau_2 & \stackrel{\mathrm{def}}{=} \end{array}$$

Definition 2.13 (Store Extension)

A valid store extension is defined as follows:

$$S \sqsubseteq S' \stackrel{\text{def}}{=} \forall \ell. \ \ell \in \text{dom}(S) \implies (\ell \in \text{dom}(S') \land S(\ell) = S'(\ell))$$

Bool

Type definitions of λ^{I}

Definition 2.14 (Type)

A type is a set τ of tuples of the form $\langle S, v \rangle$, where S is a store and v is a value, such that if $\langle S, v \rangle \in \tau$ and $S \sqsubseteq S'$ then $\langle S', v \rangle \in \tau$; that is,

$$\operatorname{type}(\tau) \stackrel{\text{def}}{=} \forall S, S', v. \ (\langle S, v \rangle \in \tau \ \land \ S \sqsubseteq S') \implies \langle S', v \rangle \in \tau$$

Arrow

Type definitions of λ^{I}

$$\begin{array}{ccc} \mathsf{bool} & \stackrel{\mathrm{def}}{=} \\ \mathsf{box} \; \tau & \stackrel{\mathrm{def}}{=} \\ \tau_1 \! \to \! \tau_2 & \stackrel{\mathrm{def}}{=} \end{array}$$

Definition 2.15 (Expr: Type)

For any closed expression e and type τ I write $e :_S \tau$ if whenever $(S, e) \longmapsto_I^* (S', e')$ and (S', e') is irreducible, then $(S, e') \in \tau$; that is,

$$e:_{S} \tau \stackrel{\text{def}}{=} \forall S', e'. ((S, e) \longmapsto_{I}^{*} (S', e') \land \operatorname{irred}(S', e'))$$

 $\Longrightarrow S \sqsubseteq S' \land \langle S', e' \rangle \in \tau$

Arrow

Type definitions of λ^{I}

$$\begin{array}{lll} \mathsf{bool} & \stackrel{\mathrm{def}}{=} \\ \mathsf{box} \; \tau & \stackrel{\mathrm{def}}{=} \\ \tau_1 \to \tau_2 & \stackrel{\mathrm{def}}{=} \; \left\{ \; \langle S, \lambda x.e \rangle \; | \; \forall v, S'. \; (S \sqsubseteq S' \; \wedge \; \langle S', v \rangle \in \tau_1) \; \Longrightarrow \; e[v/x] :_{S'} \tau_2 \; \right\} \end{array}$$

Definition 2.15 (Expr:Type)

For any closed expression e and type τ I write $e :_S \tau$ if whenever $(S, e) \longmapsto_I^* (S', e')$ and (S', e') is irreducible, then $(S, e') \in \tau$; that is,

$$e:_{S} \tau \stackrel{\text{def}}{=} \forall S', e'. ((S, e) \longmapsto_{I}^{*} (S', e') \land \operatorname{irred}(S', e'))$$

 $\Longrightarrow S \sqsubseteq S' \land \langle S', e' \rangle \in \tau$

A modal interpresentation - Possible Worlds

$$\begin{array}{lll} \mathsf{bool} & \stackrel{\mathrm{def}}{=} & \{\, \langle S, v \rangle \mid v = \mathsf{true} \ \lor \ v = \mathsf{false} \,\} \\ \mathsf{box} \ \tau & \stackrel{\mathrm{def}}{=} & \{\, \langle S, \ell \,\rangle \mid \ell \in \mathsf{dom}(S) \ \land \ \langle S, S(\ell) \rangle \in \tau \,\} \\ \tau_1 \to \tau_2 & \stackrel{\mathrm{def}}{=} & \{\, \langle S, \lambda x.e \rangle \mid \forall v, S'. \ (S \sqsubseteq S' \ \land \ \langle S', v \rangle \in \tau_1) \implies e[v/x]:_{S'} \tau_2 \,\} \end{array}$$

To define:

- A set W of worlds
- An accessibility relation
- A labelling function
- Properties Acc should satisfy (reflexivity, transitivity)

$$W = Loc \stackrel{\text{fin}}{\rightarrow} Val$$

$$S \sqsubseteq S'$$

$$L(S) = \{ (\ell, v) \mid S(\ell) = v \}$$

closed under store extension

Validity of types

$$\begin{aligned} \operatorname{type}(\tau) &\stackrel{\mathrm{def}}{=} & \forall S, S', v. \ (\langle S, v \rangle \in \tau \ \land \ S \sqsubseteq S') \implies \langle S', v \rangle \in \tau \\ \operatorname{bool} &\stackrel{\mathrm{def}}{=} & \{ \langle S, v \rangle \mid v = \operatorname{true} \ \lor \ v = \operatorname{false} \} \end{aligned}$$

Lemma 2.16 (Store Extension Reflexive) $S \sqsubset S$.

Lemma 2.17 (Store Extension Transitive) If $S_1 \sqsubseteq S_2$ and $S_2 \sqsubseteq S_3$ then $S_1 \sqsubseteq S_3$.

closed under store extension

Validity of types

$$\operatorname{type}(\tau) \stackrel{\text{def}}{=} \forall S, S', v. \ (\langle S, v \rangle \in \tau \ \land \ S \sqsubseteq S') \implies \langle S', v \rangle \in \tau$$
$$\tau_1 \to \tau_2 \stackrel{\text{def}}{=} \{ \langle S, \lambda x. e \rangle \mid \forall v, S'. \ (S \sqsubseteq S' \ \land \ \langle S', v \rangle \in \tau_1) \implies e[v/x] :_{S'} \tau_2 \}$$

Lemma 2.18 (Type $\tau_1 \rightarrow \tau_2$)

If τ_1 and τ_2 are types then $\tau_1 \to \tau_2$ is also a type.

- 1. Suppose $\langle S, v \rangle \in \tau_1 \to \tau_2$ and $S \sqsubseteq S'$ (with v of the form $\lambda x.e$)
- 2. We have to show that $\langle S', \lambda x.e \rangle \in \tau_1 \to \tau_2$
- 3. Suppose $S' \sqsubseteq S''$ and $\langle S'', v_1 \rangle \in \tau_1$
- 4. By definition of \rightarrow , we now need to show: $e[v_1/x]:_{S''} \tau_2$
- 5. Transitivity lemma gives us $S \sqsubseteq S''$
- 6. By definition of \rightarrow , and $\langle S, \lambda x.e \rangle \in \tau_1 \rightarrow \tau_2$ with 5 and $\langle S'', v_1 \rangle \in \tau_1$ implies $e[v_1/x]:_{S''} \tau_2$

closed under store extension

Validity of types

$$\operatorname{type}(\tau) \stackrel{\mathrm{def}}{=} \ \forall S, S', v. \ (\langle S, v \rangle \in \tau \ \land \ S \sqsubseteq S') \implies \langle S', v \rangle \in \tau$$

$$\operatorname{box} \tau \stackrel{\mathrm{def}}{=} \ \{ \langle S, \ell \rangle \mid \ell \in \operatorname{dom}(S) \ \land \ \langle S, S(\ell) \rangle \in \tau \}$$

$$\operatorname{Lemma} \ \mathbf{2.19}$$

$$If \ \tau \ is \ a \ type, \ then \ \operatorname{box} \ \tau \ is \ a \ type.$$

- 1. Suppose $\langle S, v \rangle \in \mathsf{box} \ \tau$ and $S \sqsubseteq S'$ (with v some store location ℓ
- 2. We have to show that $\langle S', v \rangle \in \mathsf{box} \ \tau$
- 3. From $\langle S, \ell \rangle \in \mathsf{box}\ \tau$ we have that: a. $\ell \in \mathsf{dom}(S)$ b. $\langle S, S(\ell) \rangle \in \tau$
- 4. Since τ is a type, we have $\langle S', S(\ell) \rangle \in \tau$
- 5. From 3a and $S \sqsubseteq S'$ it follows that $\ell \in \text{dom}(S')$ and $S(\ell) = S'(\ell)$
- 6. Hence, we have $\langle S', S'(\ell) \rangle \in \tau$, so by definition of *box* we have $\langle S', \ell \rangle \in box \tau$

Typing rules

$$\overline{\Gamma \vDash_I x : \Gamma(x)}$$
 (I-var)

$$\overline{\Gamma \vDash_I \mathsf{true} : \mathsf{bool}}$$
 (I-true) $\overline{\Gamma \vDash_I \mathsf{false} : \mathsf{bool}}$ (I-false)

$$\frac{\Gamma\left[x\mapsto\tau_1\right]\vDash_I e:\tau_2}{\Gamma\vDash_I \lambda x.e:\tau_1\to\tau_2} \text{ (I-abs)}$$

$$\frac{\Gamma \vDash_I e_1 : \tau_1 \to \tau_2 \qquad \Gamma \vDash_I e_2 : \tau_1}{\Gamma \vDash_I (e_1 e_2) : \tau_2} \quad \text{(I-app)}$$

$$\frac{\Gamma \vDash_I e : \tau}{\Gamma \vDash_I \mathrm{new}(e) : \mathrm{box} \; \tau} \; \; \text{(I-new)} \qquad \qquad \frac{\Gamma \vDash_I e : \mathrm{box} \; \tau}{\Gamma \vDash_I ! e : \tau} \; \text{(I-deref)}$$

Semantics of Judgement

For any type of environment Γ and a value environment σ I write $\sigma :_S \Gamma$ if for all variables $x \in \text{dom}(\Gamma)$ we have $\sigma(x) :_S \Gamma(x)$; that is,

$$\sigma:_S\Gamma\stackrel{\mathrm{def}}{=} \forall x\in\mathrm{dom}(\Gamma).\ \sigma(x):_S\Gamma(x)$$

I write $\Gamma \vDash_I e : \tau \text{ iff } FV(e) \subseteq \text{dom}(\Gamma)$ and $\forall \sigma, S. \ \sigma :_S \Gamma \implies \sigma(e) :_S \tau$ where $\sigma(e)$ is the result of replacing the free variables in e with their values under σ .

I write $\vDash_I e : \tau$ to mean $\Gamma_0 \vDash_I e : \tau$ for the empty environment Γ_0 .

Safety

Theorem 2.21 (Safety)

If $\vDash_I e : \tau$, τ is a type, and S is a store, then (S, e) is safe.

PROOF:

- 1. Suppose $(S, e) \longmapsto_{I}^{*} (S', e')$
- 2. If (S', e') is not irreducible, then $\exists (S'', e'')$ such that $(S', e') \longmapsto_I (S'', e'')$
- 3. Otherwise, (S', e') is irreducible and we must prove that e' is a value
- 4. $\models_I e : \tau \Rightarrow \Gamma_0 \models_I e : \tau \Rightarrow e$ is closed
- 5. Choose the empty value environment σ_0 and store S
- 6. By the definition of \vDash_I we have $\sigma_0 :_S \Gamma_0 \implies \sigma_0(e) :_S \tau$
- 7. Since $(S, e) \mapsto_I^* (S', e')$ and $\operatorname{irred}(S', e') \Longrightarrow S \sqsubseteq S'$ and $\langle S', e' \rangle \in \tau$
- 8. τ is a type \Longrightarrow val(e')

Validity of I-New

Lemma 2.24 (Closed New)

If e is a closed term and τ is a type such that $e:_S \tau$ then $new(e):_S box \tau$.

Proof:

Suppose $(S, \text{new}(e)) \longmapsto_I^* (S', \ell)$ where $\text{irred}(S', \ell)$ $S \sqsubseteq S' \text{ and } \langle S', \ell \rangle \in \text{box } \tau$.

Part 1

- 1. $(S,e) \longmapsto_I^* (S_1,e_1)$ and $\operatorname{irred}(S_1,e_1)$
- 2. From the premise $e:_S \tau$ we have $S \sqsubseteq S_1$ and $\langle S_1, e_1 \rangle \in \tau$

Part 2

- 1. $(S_1, \text{new}(e_1)) \longmapsto_I (S_1[\ell \mapsto e_1], \ell)$
- 2. I is a value => $irred(S_1[\ell \mapsto e_1], \ell)$
- 3. $S_1 \sqsubseteq S'$ then, by the transitivity of $\sqsubseteq \Longrightarrow S \sqsubseteq S'$

 $\langle S_1, e_1 \rangle \in \tau$ and $S_1 \sqsubseteq S' \Rightarrow \langle S', e_1 \rangle \in \tau$; $S'(\ell) = e_1 \Rightarrow \langle S', S'(\ell) \rangle \in \tau$ which together with $\ell \in S' \Rightarrow \langle S', \ell \rangle \in box$

Validity of I-New

Theorem 2.25 (New)

If Γ is a type environment, e is a (possibly open) term, and τ is a type such that $\Gamma \vDash_I e : \tau$, then $\Gamma \vDash_I \text{new}(e) : \text{box } \tau$.

Proof:

- 1. Suppose $\sigma :_S \Gamma$
- 2. From the premise $\Gamma \vDash_I e : \tau$ we have $\sigma(e) :_S \tau$.
- 3. Since $\sigma(e)$ is a closed term, the result now follows from Lemma 2.24

Validity of I-Deref

Lemma 2.26 (Closed Deref)

If e is a closed term and τ is a type such that $e:_S box \tau$ then $!e:_S \tau$. Proof:

- 1. Suppose $(S,!e) \longmapsto_I^* (S',e')$ such that $\operatorname{irred}(S',e')$
- 2. $(S,e) \longmapsto_I^* (S',\ell)$ and $\operatorname{irred}(S',\ell)$
- 3. $e:_S \text{box } \tau \Rightarrow S \sqsubseteq S' \text{ and } \langle S', \ell \rangle \in \text{box } \tau$
- 4. From the definition of box τ we have $\ell \in \text{dom}(S')$ and $\langle S', S'(\ell) \rangle \in \tau$
- 5. From the operational semantics we have $(S', !\ell) \longmapsto_I (S', e')$ where $e' = S'(\ell)$
- 6. Hence, $\langle S', e' \rangle \in \tau$

Theorem 2.27 (Deref)

If Γ is a type environment, e is a (possibly open) term, and τ is a type such that $\Gamma \vDash_I e : \mathsf{box} \ \tau$, then $\Gamma \vDash_I ! e : \tau$.

Kripke Logical Relations

There is a correspondence between Kripke logical relations and the possible-worlds model developed for λ^I .

A Kripke logical relation over a set A is defined as follows:

Suppose that we have a set of worlds W, an accessibility relation $Acc \subseteq W \times W$, and a family $\{i_{ww'}^{\tau}\}$, of transition functions where w and w' are worlds such that Acc(w,w'). A Kripke logical relation is a family $\mathcal{R}=\{R_w^{\tau}\}$ of relations R_w^{τ} indexed by types \mathcal{T} and worlds $w \in W$, satisfying the condition:

 $R_w^{\tau}(a)$ implies $R_{w'}^{\tau}(i_{ww'}^{\tau}(a))$ for all w' such that Acc(w,w')