
Existential Types
Sijmen van Bommel & Quinten Kock

based on Types and Programming Languages
(Pierce 2002)

Recap: Universal types

● Polymorphism
● ∀X.T: value has type T[X:=S] for any type S
● type S is abstract: only known after specialization
● id = λX. λx:X. x : ∀X. X->X
● erases to untyped λx. x
● specializes to λx:S. x : S->S

Existential types

● {∃X, T}: value has type T[X:=S] for some type X
● value can be seen as pair {*S, t}: a type S and a term t : T[X:=S]
● type S is hidden: only visible in the definition of t

Type abstraction

Different hidden types, same existential type

p : {∃X, {a:X, f:X->Nat}}

A. p = {*Nat, {a=0, f=\x:Nat. x}}
B. p = {*Bool, {a=False, f=\x:Bool. if x then 1 else 0}}

Type ambiguity

Same value, different existential type

p = {*Nat, {v=0, f=λx:Nat. succ(x)}}

A. p : {∃X, {v:X, f:X->X}}
B. p : {∃X, {v:X, f:X->Nat}}
C. p : {∃X, {v:X, f:Nat->Nat}}
D. p : {∃X, {v:Nat, f:Nat->Nat}}

Packing

packing a value can be done using as

{*T,t} as U
where T is some type

t is a term/value
U is an existential type

Examples:

● {*Nat, 42} as {∃X, X}
● {*Bool, true} as {∃X, X}

Unpacking

example:

p = {*Nat, {a: 42, get: λn:Nat.n} as {∃X, {X, X -> Nat}}

let {X,x} = p in x.get(x.a)

evaluates to?

where p is an existentially typed value
X becomes a type

x becomes a term/value
v is a term/value that may contain x

Unpacking can be done using let … = … in …

let {X,x} = p in v

Illegal unpacking

p = {*Nat, {a: 42, get: λn:Nat.n} as {∃X, {X, X -> Nat}}

let {X,x} = p in succ(x.a) argument of succ is X, not a number

let {X,x} = p in x.a type X escapes scope

Syntax

terms: ...
| {*T, t} as U packing
| let {X,x}=p in v unpacking

values: ...
| {*T,v} as U package value

types: ...
| {∃X, T} existential type

Evaluation rules

let {X,x} = ({*T,t} as U) in e → e[X := T, x := t]

t1 → t2

{*T, t1} as U → {*T, t2} as U

t1 → t2

let {X,x} = t1 in e → let {X,x} = t2 in e

E-UnpackPack

E-Pack

E-Unpack

Typing rules

Γ ⊢ t : T[X := U]

Γ ⊢ {*U, t} as {∃X, T} : {∃X, T}

Γ ⊢ t1 : {∃X, T} Γ, X, x : T ⊢ y : Y

Γ ⊢ let {X, x} = t1 in y : Y

T-Pack

T-Unpack

Abstract Data Types (ADTs)

● Existential types hide actual representation
● Useful for enforcing abstraction boundaries

let {X,x}=p in (λy:X. x.f y) x.a

● x.f and x.a are values from p.
● X is abstract for Nat, but:

let {X,x}=p in succ(x.a)

● is forbidden! We are not allowed to use values of type X as Nat outside of p.
● ADTs are like modules:

○ let {X,x}=p ↔ import p

ADT examples

● Counter
○ counterADT = {*Nat, {new=0, get=λi:Nat. i, inc=λi:Nat. succ(i)}}

as {∃C, new:C, get: C->Nat, inc: C->C}

○ Prevents incorrect use (like dec)
● Associative datatypes

○ abstract over hashmap vs treemap vs ...
○ maintain invariants (e.g. that the tree is in order)

● Rational numbers
○ Floating point vs fixed point vs ratio

Existential Objects
counterObject = {*Nat,

{ state = 5,

 methods = {get = λx : Nat . x,

inc = λx : Nat . succ(x) }}}

as

{∃X, {state: x, methods: {get: X → Nat, inc: X → X }}}

let {X,body} = counterObject in body.methods.get(body.state) evaluates to?

functions using counters (as existential objects)

sendinc = λc : Counter .

let {X,Body} = c in

{*X,

{state = body.methods.inc(body.state).

 methods = body.methods}}

as Counter

sendinc : {∃X, {state:X, ...}} → {∃X, {state:X, ...}}

ADTs
usage: counter.get(counter.inc(counter.new))

type: {∃C, {get: C-> Nat, ...}}

uses internal representation

set of available functions unextendable

full support for binary operators

usage: sendget (sendinc (counterObject))

type: {∃C, {state: C, methods: {get:C->Nat, ...}}}

keeps packaged structure

set of available functions can be extended

limited support for binary operators

modern object oriented languages use a hybrid.

Objectsvs

Encoding existential types as universal types (with example)

existential type: {∃C, {get: C->Nat, ...}}

universal type: ∀Y. (∀C. {get: C->Nat, ...} -> Y) -> Y

existential value: {*Nat, {get=id, ...}}

universal value: λY.λy:(∀C. {get: C->Nat, ...} -> Y).
y[Nat]({get=id, ...})

existential usage: let (Counter, counter) = p in v

universal usage: p[V](λCounter. λcounter. v)

