
Safety of Mutable References & Quantified Types
Definitions

Sergio Doḿınguez

Faculty of Science
Radboud University

December 8th, 2023

S. Doḿınguez (RU) Safety of mutref + ∀/∃ Definitions December 8th, 2023 1 / 26

Brief recap

Syntax of λM

Expr e ::= x | l | λx.e | ee | new(e) |!e | e := e

| Λ.e | e[] | pack e | unpack e asx in e
Val v ::= l | unit | λx : A.e | Λ.e | pack v

Store S ←→ function from locations to values.

Store typing Ψ ←→ function from locations to types.

State (S, e) ←→ tuple of store S and expression e.

S. Doḿınguez (RU) Safety of mutref + ∀/∃ Definitions December 8th, 2023 2 / 26

Safety

Definition (Safe)

A state (S, e) is safe for k steps if for any reduction (S, e) 7−→j
M (S′, e′) of

j < k steps, either e′ is a value or another step is possible.

safen(k, S, e)
def
= ∀j, S′, e′.(j < k, (S, e) 7−→j

M (S′, e′))

=⇒ (val(e′) ∨ ∃S′′, e′′.(S′, e′) 7−→M (S′′, e′′)

A state (S, e) is called safe if it is safe for all k ≥ 0 steps.

safe(S, e)
def
= ∀ k ≥ 0. safen(k, S, e)

S. Doḿınguez (RU) Safety of mutref + ∀/∃ Definitions December 8th, 2023 3 / 26

Modeling Stratified Types as Sets
Stratified Types

Type elements

• Types cannot be defined as sets of tuples of the form ⟨Ψ, v⟩.

• Add an index k to the tuple: ⟨k,Ψ, v⟩, where k is the level in the
hierarchy.

S. Doḿınguez (RU) Safety of mutref + ∀/∃ Definitions December 8th, 2023 4 / 26

Modeling Stratified Types as Sets
Stratified Types

Type elements

• Types cannot be defined as sets of tuples of the form ⟨Ψ, v⟩.
• Add an index k to the tuple: ⟨k,Ψ, v⟩, where k is the level in the

hierarchy.

S. Doḿınguez (RU) Safety of mutref + ∀/∃ Definitions December 8th, 2023 4 / 26

Modeling Stratified Types as Sets
Definition of Approximation

Definition (k-approximation)

The k-aproximation of a set is the subset of its elements whose index is
less than k.

⌊τ⌋k
def
= {⟨j,Ψ, v⟩ | j < k ∧ ⟨j,Ψ, v⟩ ∈ τ}

This notion is extended pointwise to store typings

⌊Ψ⌋k
def
= {(l 7→ ⌊τ⌋k) | Ψ(l) = τ}

S. Doḿınguez (RU) Safety of mutref + ∀/∃ Definitions December 8th, 2023 5 / 26

Modeling Stratified Types as Sets
Definition of Approximation

Definition (k-approximation)

The k-aproximation of a set is the subset of its elements whose index is
less than k.

⌊τ⌋k
def
= {⟨j,Ψ, v⟩ | j < k ∧ ⟨j,Ψ, v⟩ ∈ τ}

This notion is extended pointwise to store typings

⌊Ψ⌋k
def
= {(l 7→ ⌊τ⌋k) | Ψ(l) = τ}

S. Doḿınguez (RU) Safety of mutref + ∀/∃ Definitions December 8th, 2023 5 / 26

Modeling Stratified Types as Sets
Stratification Invariant and Type Definitions

Stratification Invariant

All type definitions obey the following: The definition of
(k + 1)-approximation of a type τ cannot consider any type beyond
approximation k.

τ ∈ Type0 ←→ τ = {}
τ ∈ Typek+1 ←→ ∀⟨j,Ψ, v⟩ ∈ τ . j ≤ k ∧Ψ ∈ StoreTypej

Ψ ∈ StoreTypek ←→ ∀l ∈ dom(Ψ). Ψ(l) ∈ Typek

τ ∈ Type ←→ ∀k. ⌊τ⌋k ∈ Typek

Ψ ∈ StoreType ←→ ∀k. ⌊τ⌋k ∈ StoreTypek

S. Doḿınguez (RU) Safety of mutref + ∀/∃ Definitions December 8th, 2023 6 / 26

Modeling Stratified Types as Sets
Stratification Invariant and Type Definitions

Stratification Invariant

All type definitions obey the following: The definition of
(k + 1)-approximation of a type τ cannot consider any type beyond
approximation k.

τ ∈ Type0 ←→ τ = {}
τ ∈ Typek+1 ←→ ∀⟨j,Ψ, v⟩ ∈ τ . j ≤ k ∧Ψ ∈ StoreTypej

Ψ ∈ StoreTypek ←→ ∀l ∈ dom(Ψ). Ψ(l) ∈ Typek

τ ∈ Type ←→ ∀k. ⌊τ⌋k ∈ Typek

Ψ ∈ StoreType ←→ ∀k. ⌊τ⌋k ∈ StoreTypek

S. Doḿınguez (RU) Safety of mutref + ∀/∃ Definitions December 8th, 2023 6 / 26

Modeling Stratified Types as Sets
Stratification Invariant and Type Definitions

Stratification Invariant

All type definitions obey the following: The definition of
(k + 1)-approximation of a type τ cannot consider any type beyond
approximation k.

τ ∈ Type0 ←→ τ = {}
τ ∈ Typek+1 ←→ ∀⟨j,Ψ, v⟩ ∈ τ . j ≤ k ∧Ψ ∈ StoreTypej

Ψ ∈ StoreTypek ←→ ∀l ∈ dom(Ψ). Ψ(l) ∈ Typek

τ ∈ Type ←→ ∀k. ⌊τ⌋k ∈ Typek

Ψ ∈ StoreType ←→ ∀k. ⌊τ⌋k ∈ StoreTypek

S. Doḿınguez (RU) Safety of mutref + ∀/∃ Definitions December 8th, 2023 6 / 26

Modeling Stratified Types as Sets
Definition of ref τ

The hypothetical definition of ref τ is as follows:

(ref τ)k
something like

= {⟨Ψk−1, l⟩ | Ψk−1(l) = τk−1}

Now, we can define the actual definition of ref τ as follows:

ref τ
def
= {⟨k,Ψ, l⟩ | ⌊Ψ⌋k(l) = ⌊τ⌋k}

Note

The actual definition of ref τ satisfies the stratification invariant.

S. Doḿınguez (RU) Safety of mutref + ∀/∃ Definitions December 8th, 2023 7 / 26

Modeling Stratified Types as Sets
Definition of ref τ

The hypothetical definition of ref τ is as follows:

(ref τ)k
something like

= {⟨Ψk−1, l⟩ | Ψk−1(l) = τk−1}

Now, we can define the actual definition of ref τ as follows:

ref τ
def
= {⟨k,Ψ, l⟩ | ⌊Ψ⌋k(l) = ⌊τ⌋k}

Note

The actual definition of ref τ satisfies the stratification invariant.

S. Doḿınguez (RU) Safety of mutref + ∀/∃ Definitions December 8th, 2023 7 / 26

Properties of Types
Program Example

% S0 = Ψ0 = {}
let x1 = new(true) in % S1 = S0[l1 7→ true],Ψ1 = ⌊Ψ0⌋10[l1 7→ ⌊bool⌋10]

% x1 7→ l1, 10 more steps

let x2 = ... in % S2 = ...,Ψ2 = ..., x1 7→ l1
...

let xn = ... in % Sn = ...,Ψn = ..., x1 7→ l1, 6 more steps

let y = !x1 in % Sn+1 = ...,Ψn+1 = ...
erest

S. Doḿınguez (RU) Safety of mutref + ∀/∃ Definitions December 8th, 2023 8 / 26

Properties of Types

Definition (State Extensions)

For any two machine states (S, e) and (S′, e′), and store typings Ψ and
Ψ’, such that S satisfies Ψ for k steps and S′ satisfies Ψ’ for j ≤ k steps,
if (S, e) 7−→k−j

M (S′, e′), then the relation between Ψ and Ψ’ is as follows:

(k,Ψ) ⊑ (j,Ψ′)
def
= j ≤ k ∧ (∀l ∈ dom(Ψ). ⌊Ψ′⌋j(l) = ⌊Ψ⌋j(l))

S. Doḿınguez (RU) Safety of mutref + ∀/∃ Definitions December 8th, 2023 9 / 26

Properties of Types

Definition (Type)

A type is a set τ of tuples of the form ⟨k,Ψ, v⟩ where v is a value, k is a
natural number, and Ψ is a store typing, and where the set τ is closed
under state extension; that is,

type(τ)
def
= ∀⟨k,Ψ, v⟩ ∈ τ . (k,Ψ) ⊑ (j,Ψ′) =⇒ ⟨j,Ψ′, v⟩ ∈ τ

S. Doḿınguez (RU) Safety of mutref + ∀/∃ Definitions December 8th, 2023 10 / 26

Type Definitions
Base Types

Definition (Base Types)

A base type τbase is given by a set of values V .

τbase
def
= {⟨k,Ψ, v⟩ | v ∈ V }

Important notes

• The store typing Ψ is irrelevant for base types.

• The index k is irrelevant for base types.

• The set is closed under state extension.

unit, bool, and int are examples of base types.

S. Doḿınguez (RU) Safety of mutref + ∀/∃ Definitions December 8th, 2023 11 / 26

Type Definitions
Base Types

Definition (Base Types)

A base type τbase is given by a set of values V .

τbase
def
= {⟨k,Ψ, v⟩ | v ∈ V }

Important notes

• The store typing Ψ is irrelevant for base types.

• The index k is irrelevant for base types.

• The set is closed under state extension.

unit, bool, and int are examples of base types.

S. Doḿınguez (RU) Safety of mutref + ∀/∃ Definitions December 8th, 2023 11 / 26

Type Definitions
Base Types

Definition (Base Types)

A base type τbase is given by a set of values V .

τbase
def
= {⟨k,Ψ, v⟩ | v ∈ V }

Important notes

• The store typing Ψ is irrelevant for base types.

• The index k is irrelevant for base types.

• The set is closed under state extension.

unit, bool, and int are examples of base types.

S. Doḿınguez (RU) Safety of mutref + ∀/∃ Definitions December 8th, 2023 11 / 26

Type Definitions
Function Types

Concerns when deciding if λx.e has type τ1 → τ2 for k steps for a store
typing Ψ:

• The program may not apply λx.e to a value of type τ1 until some
time in the future (where the store typing may have changed).

• The number of steps required to reach that future point.

The intuitive definition of τ1 → τ2 is as follows:

τ1 → τ2
something like

= {⟨k,Ψ, λx.e⟩ | ∀v,Ψ′, j < k.

(k,Ψ) ⊑ (j,Ψ′) ∧ ⟨j,Ψ′, v⟩ ∈ τ1

=⇒ evaluating e [x := v]

gives a value in τ2 in less than j steps}

S. Doḿınguez (RU) Safety of mutref + ∀/∃ Definitions December 8th, 2023 12 / 26

Type Definitions
Function Types

Concerns when deciding if λx.e has type τ1 → τ2 for k steps for a store
typing Ψ:

• The program may not apply λx.e to a value of type τ1 until some
time in the future (where the store typing may have changed).

• The number of steps required to reach that future point.

The intuitive definition of τ1 → τ2 is as follows:

τ1 → τ2
something like

= {⟨k,Ψ, λx.e⟩ | ∀v,Ψ′, j < k.

(k,Ψ) ⊑ (j,Ψ′) ∧ ⟨j,Ψ′, v⟩ ∈ τ1

=⇒ evaluating e [x := v]

gives a value in τ2 in less than j steps}

S. Doḿınguez (RU) Safety of mutref + ∀/∃ Definitions December 8th, 2023 12 / 26

Type Definitions
Function Types

Concerns when deciding if λx.e has type τ1 → τ2 for k steps for a store
typing Ψ:

• The program may not apply λx.e to a value of type τ1 until some
time in the future (where the store typing may have changed).

• The number of steps required to reach that future point.

The intuitive definition of τ1 → τ2 is as follows:

τ1 → τ2
something like

= {⟨k,Ψ, λx.e⟩ | ∀v,Ψ′, j < k.

(k,Ψ) ⊑ (j,Ψ′) ∧ ⟨j,Ψ′, v⟩ ∈ τ1

=⇒ evaluating e [x := v]

gives a value in τ2 in less than j steps}

S. Doḿınguez (RU) Safety of mutref + ∀/∃ Definitions December 8th, 2023 12 / 26

Type Definitions
Function Types

Definition (Well-Typed Store)

A store S is well-typed to approximation k with respect to a store typing
Ψ iff dom(Ψ) ⊆ dom(S) and the contents of each l ∈ dom(Ψ) has the
type Ψ(l) to aproximation k.

S :k Ψ
def
= dom(Ψ) ⊆ dom(S) ∧

∀j < k. l ∈ dom(Ψ). ⟨j, ⌊Ψ⌋j , S(l)⟩ ∈ ⌊Ψ⌋k(l)

Important notes

• j < k to avoid circularity.

• dom(Ψ) = dom(S), though not incorrect, is too restrictive.

S. Doḿınguez (RU) Safety of mutref + ∀/∃ Definitions December 8th, 2023 13 / 26

Type Definitions
Function Types

Definition (Well-Typed Store)

A store S is well-typed to approximation k with respect to a store typing
Ψ iff dom(Ψ) ⊆ dom(S) and the contents of each l ∈ dom(Ψ) has the
type Ψ(l) to aproximation k.

S :k Ψ
def
= dom(Ψ) ⊆ dom(S) ∧

∀j < k. l ∈ dom(Ψ). ⟨j, ⌊Ψ⌋j , S(l)⟩ ∈ ⌊Ψ⌋k(l)

Important notes

• j < k to avoid circularity.

• dom(Ψ) = dom(S), though not incorrect, is too restrictive.

S. Doḿınguez (RU) Safety of mutref + ∀/∃ Definitions December 8th, 2023 13 / 26

Type Definitions
Function Types

Definition (Expr:Type)

For any closed expression e and type τ , e :k,Ψ τ iff whenever S :k Ψ,

(S, e) 7−→j
M (S′, e′) for j < k, and (S′, e′) is irreducible, then there exists

a store typing Ψ′ such that (j,Ψ) ⊑ (k − j,Ψ′), S′ :k−j Ψ′, and
⟨k − j,Ψ′, e′⟩ ∈ τ .

e :k,Ψ τ
def
= ∀j, S, S′, e′.(0 ≤ j < k ∧ S :k Ψ

∧ (S, e) 7−→j
M (S′, e′) ∧ irred((S′, e′))

=⇒ ∃Ψ′. (j,Ψ) ⊑ (k − j,Ψ′)

∧ S′ :k−j Ψ′ ∧ ⟨k − j,Ψ′, e′⟩ ∈ τ)

Important note

If v is a value of type τ and k > 0, then v :k,Ψ τ ←→ ⟨k,Ψ, v⟩ ∈ τ .

S. Doḿınguez (RU) Safety of mutref + ∀/∃ Definitions December 8th, 2023 14 / 26

Type Definitions
Function Types

Definition (Expr:Type)

For any closed expression e and type τ , e :k,Ψ τ iff whenever S :k Ψ,

(S, e) 7−→j
M (S′, e′) for j < k, and (S′, e′) is irreducible, then there exists

a store typing Ψ′ such that (j,Ψ) ⊑ (k − j,Ψ′), S′ :k−j Ψ′, and
⟨k − j,Ψ′, e′⟩ ∈ τ .

e :k,Ψ τ
def
= ∀j, S, S′, e′.(0 ≤ j < k ∧ S :k Ψ

∧ (S, e) 7−→j
M (S′, e′) ∧ irred((S′, e′))

=⇒ ∃Ψ′. (j,Ψ) ⊑ (k − j,Ψ′)

∧ S′ :k−j Ψ′ ∧ ⟨k − j,Ψ′, e′⟩ ∈ τ)

Important note

If v is a value of type τ and k > 0, then v :k,Ψ τ ←→ ⟨k,Ψ, v⟩ ∈ τ .

S. Doḿınguez (RU) Safety of mutref + ∀/∃ Definitions December 8th, 2023 14 / 26

Type Definitions
Function Types

Definition (Function type)

The semantics of function types is defined as follows:

τ1 → τ2
def
= {⟨k,Ψ, λx.e⟩ | ∀v,Ψ′, j < k.

((k,Ψ) ⊑ (j,Ψ′) ∧ ⟨j,Ψ′, v⟩ ∈ τ1)

=⇒ e [x := v] :j,Ψ′ τ2}

Note

The definition satisfies the stratification invariant.

S. Doḿınguez (RU) Safety of mutref + ∀/∃ Definitions December 8th, 2023 15 / 26

Type Definitions
Quantified Types

Important note

Instead of writing ∀α.τ and ∃α.τ , I write ∀F and ∃F where α is the only
free type variable in τ .

• Same expressive power.

• Unconventional notation, but it leads to simpler semantics as we
don’t need to bookkeep the free type variables.

S. Doḿınguez (RU) Safety of mutref + ∀/∃ Definitions December 8th, 2023 16 / 26

Type Definitions
Quantified Types

Important note

Instead of writing ∀α.τ and ∃α.τ , I write ∀F and ∃F where α is the only
free type variable in τ .

• Same expressive power.

• Unconventional notation, but it leads to simpler semantics as we
don’t need to bookkeep the free type variables.

S. Doḿınguez (RU) Safety of mutref + ∀/∃ Definitions December 8th, 2023 16 / 26

Type Definitions
Quantified Types

Definition (Universal type)

∀F def
= {⟨k,Ψ,Λ.e⟩ | ∀τ ,Ψ′, j < k.

((k,Ψ) ⊑ (j,Ψ′) ∧ type(⌊τ⌋j))
=⇒ ∀i < j. e :i,⌊Ψ′⌋i F (τ)}

Note

The definition satisfies the stratification invariant.

S. Doḿınguez (RU) Safety of mutref + ∀/∃ Definitions December 8th, 2023 17 / 26

Type Definitions
Quantified Types

Definition (Universal type)

∀F def
= {⟨k,Ψ,Λ.e⟩ | ∀τ ,Ψ′, j < k.

((k,Ψ) ⊑ (j,Ψ′) ∧ type(⌊τ⌋j))
=⇒ ∀i < j. e :i,⌊Ψ′⌋i F (τ)}

Note

The definition satisfies the stratification invariant.

S. Doḿınguez (RU) Safety of mutref + ∀/∃ Definitions December 8th, 2023 17 / 26

Type Definitions
Quantified Types

Definition (Existential type)

∃F def
= {⟨k,Ψ, pack v⟩ | ∃τ.(type(⌊τ⌋k) ∧ ∀j < k.⟨j, ⌊Ψ′⌋j , v⟩ ∈ F (τ))}

Note

The definition satisfies the stratification invariant.

S. Doḿınguez (RU) Safety of mutref + ∀/∃ Definitions December 8th, 2023 18 / 26

Judgments, Typing Rules and Safety
Judgments

Definition (Semantics of Judgments)

For any type environment Γ and value environment σ I write σ :k,Ψ Γ if for
all variables x ∈ dom(Γ) we have σ(x) :k,Ψ Γ(x); that is

σ :k,Ψ Γ
def
= ∀x ∈ dom(Γ). σ(x) :k,Ψ Γ(x)

Note

Value environment σ is a mapping from variables to values.
Type environment Γ is a mapping from variables to types.

S. Doḿınguez (RU) Safety of mutref + ∀/∃ Definitions December 8th, 2023 19 / 26

Judgments, Typing Rules and Safety
Judgments

Definition (Semantics of Judgments (Cont.))

I write Γ ⊨k
M e : τ iff FV(e) ⊆ dom(Γ) and

∀σ,Ψ. (σ :k,Ψ Γ =⇒ σ(e) :k,Ψ τ)

where σ(e) is the result of substituting the free variables in e with their
values under σ.

We remove the k superscript when the property holds for all k ≥ 0 and we
remove Γ when it is empty.

Notes

Γ ⊨k
M e : τ can be obtained from our semantics of a similar judgement of

closed expressions.

S. Doḿınguez (RU) Safety of mutref + ∀/∃ Definitions December 8th, 2023 20 / 26

Judgments, Typing Rules and Safety
Judgments

Definition (Semantics of Judgments (Cont.))

I write Γ ⊨k
M e : τ iff FV(e) ⊆ dom(Γ) and

∀σ,Ψ. (σ :k,Ψ Γ =⇒ σ(e) :k,Ψ τ)

where σ(e) is the result of substituting the free variables in e with their
values under σ.

We remove the k superscript when the property holds for all k ≥ 0 and we
remove Γ when it is empty.

Notes

Γ ⊨k
M e : τ can be obtained from our semantics of a similar judgement of

closed expressions.

S. Doḿınguez (RU) Safety of mutref + ∀/∃ Definitions December 8th, 2023 20 / 26

Judgments, Typing Rules and Safety
Typing Rules

S. Doḿınguez (RU) Safety of mutref + ∀/∃ Definitions December 8th, 2023 21 / 26

Judgments, Typing Rules and Safety
Typing Rules (Cont.)

S. Doḿınguez (RU) Safety of mutref + ∀/∃ Definitions December 8th, 2023 22 / 26

Safety

Theorem (Safety)

If ⊨ e : τ , τ is a type, and S is a store, then (S, e) is safe.

S. Doḿınguez (RU) Safety of mutref + ∀/∃ Definitions December 8th, 2023 23 / 26

Relation with S4 Modal Logic

First, one specifies a set of possible worlds W :

W = {⟨k,Ψ⟩ | ∀k ≥ 0 ∧ l ∈ dom(Ψ). (∀⟨j,Ψ′, v⟩ ∈ Ψ(l). j < k)}

Second, a binary relation Acc ⊆W ×W which corresponds to:

State Extension (k,Ψ) ⊑ (j,Ψ′)

Third, a label function L : W → P(Atoms) which corresponds to:

L(k,Ψ) = {(l, τ) | ⌊Ψ⌋k(l) = τ}

S. Doḿınguez (RU) Safety of mutref + ∀/∃ Definitions December 8th, 2023 24 / 26

Well Founded and Nonexpansive Type Functions

Definition

A nonexpansive functional is a function F from types to types such that
for any type τ and k ≥ 0 we have:

⌊F (τ)⌋k = ⌊F (⌊τ⌋k)⌋k

Definition (Well Founded)

A well founded functional is a function F from types to types such that for
any type τ and k ≥ 0 we have:

⌊F (τ)⌋k+1 = ⌊F (⌊τ⌋k)⌋k+1

S. Doḿınguez (RU) Safety of mutref + ∀/∃ Definitions December 8th, 2023 25 / 26

Well Founded and Nonexpansive Type Functions

Definition

A nonexpansive functional is a function F from types to types such that
for any type τ and k ≥ 0 we have:

⌊F (τ)⌋k = ⌊F (⌊τ⌋k)⌋k

Definition (Well Founded)

A well founded functional is a function F from types to types such that for
any type τ and k ≥ 0 we have:

⌊F (τ)⌋k+1 = ⌊F (⌊τ⌋k)⌋k+1

S. Doḿınguez (RU) Safety of mutref + ∀/∃ Definitions December 8th, 2023 25 / 26

Thank you!

S. Doḿınguez (RU) Safety of mutref + ∀/∃ Definitions December 8th, 2023 26 / 26

	Introduction
	Safety
	Modeling Stratified Types as Sets
	Properties of Types
	Type Definitions
	Judgments, Typing Rules, and Safety
	Components of Possible-Worlds Model
	Well Founded and Nonexpansive Type Functions
	Conclusion

