
⇐←0→

introduction & lambda calculus

Freek Wiedijk

Type Theory & Coq
2024–2025

Radboud University Nijmegen

September 6, 2024

λω λC

λ2 λP2

λω λPω

λ→ λP

https://www.cs.ru.nl/~freek/
https://www.cs.ru.nl/~freek/courses/tt-2024/
https://www.ru.nl
https://www.cs.ru.nl/~freek/courses/tt-2024/


⇐←1→

organization

coordinates

https://www.cs.ru.nl/~freek/courses/tt-2024/
+

Brightspace

teachers:
I Freek Wiedijk

freek@cs.ru.nl

I Herman Geuvers
herman@cs.ru.nl

I Niels van der Weide
n.vanderweide@cs.ru.nl

I Robbert Krebbers
robbert@cs.ru.nl

teaching assistant:
I Luko van der Maas

luko.vandermaas2@ru.nl

https://www.cs.ru.nl/~freek/courses/tt-2024/
https://www.cs.ru.nl/~freek/
mailto:freek@cs.ru.nl
http://www.cs.ru.nl/~herman/
mailto:herman@cs.ru.nl
https://nmvdw.github.io
mailto:n.vanderweide@cs.ru.nl
https://robbertkrebbers.nl
mailto:robbert@cs.ru.nl
mailto:luko.vandermaas2@ru.nl


⇐←2→

structure of the course

first half:
I five lectures on the type theory of Coq, by Freek (Fridays)
I three lectures on metatheory, by Herman (Fridays)
I Coq practicum (Thursdays)
−→ required, not graded

I two hour written exam
−→ one third of the final grade

second half:
I student presentations (Mondays & Fridays)

45 minutes, in pairs
−→ one third of the final grade

I Coq project
−→ one third of the final grade



⇐←3→

materials

I Femke van Raamsdonk, VU Amsterdam
Logical Verification Course Notes, 2008
I course notes
I slides
I Coq practicum files

I Herman Geuvers
Introduction to Type Theory, 2008
I summer school lecture notes
I slides
I some exercises

I reading list papers

I some supporting documents
I Jules Jacobs: Coq cheat sheet
I examples of induction/recursion principles

I many old exams, all with answers

http://www.cs.ru.nl/~freek/courses/tt-2024/public/notes.pdf
http://www.cs.ru.nl/~freek/courses/tt-2024/public/IntroTT-improved.pdf


⇐←4→

prerequisites

course is self-contained, but. . .

we will presuppose some basic familiarity with:
I context-free grammars

NWI-IPC002 Languages and Automata
I mathematical logic: natural deduction

NWI-IPI004 Logic and Applications
I functional programming

NWI-IBC040 Functional Programming
I lambda calculus

NWI-IBC025 Semantics and Rewriting

as well as some mathematical maturity



⇐←5→

introduction

what is a type?

I an attribute of expressions in a language ←− this!

int i;
float pi = 3.14;
i = 2 * pi;

I something like a set

int = {−231,−231 + 1, . . . ,−1, 0, 1, . . . 231 − 1}
nat = {0, 1, 2, 3, . . . }

but: types do not overlap
the 0 of nat is different from the 0 of int

also: an object has a type
a type has a kind

. . . but there it stops

https://x.com/julesjacobs5/status/1608668580895416323


⇐←6→

what is type theory?

I typed lambda calculus
6= untyped lambda calculus (today: recap)

I a formal system of datatypes encoding logic
Curry-Howard correspondence

pairs in A×B correspond to proofs of A ∧B
functions in A→ B correspond to proofs of A→ B

I one of the logical foundations for mathematics
I set theory

I HOL = Higher Order Logic = simple type theory
I ZFC = Zermelo-Fraenkel set theory + AC (Axiom of Choice)

I type theory
I Martin-Löf type theory
I CIC = Calculus of Inductive Constructions

I category theory
I topoi −→ ∞-topoi



⇐←7→

the five type theories in this course

λ→ = STT
= simple type theory
= simply typed lambda calculus

λP = dependent type theory

λ2 = system F
= polymorphic type theory

λC = CC
= Calculus of Constructions

CIC
= Calculus of Inductive Constructions
= the type theory of Coq



⇐←8→

implementations of dependent type theory

I Coq
INRIA, 1989
Thierry Coquand, Gérard Huet, Christine Paulin-
Mohring, Hugo Herbelin, Matthieu Sozeau

I Agda
Chalmers, 1999
Catarina Coquand, Ulf Norell
−→ Cubical Agda

I Lean 4
Microsoft Research, 2013
Leonardo de Moura, Sebastian Ullrich

I other implementations
Automath, Cubical, Dedukti, Epigram, Idris, Lego, Matita,
Nuprl, Plastic, Twelf, . . .

https://coq.inria.fr
https://coq.inria.fr
https://wiki.portal.chalmers.se/agda/pmwiki.php
https://wiki.portal.chalmers.se/agda/pmwiki.php
https://leanprover.github.io
https://leanprover.github.io


⇐←9→

applications of type theory

I advanced functional programming

Lisp −→ ML −→ Haskell −→ Agda,Coq

types are dependent: carry more information
‘correct by construction’

I proof formalization

I verification of programs and other systems
I verification of theoretical computer science
I verification of mathematics

I understanding categorical foundations better



⇐←10→

CompCert

I CompCert = verified C compiler
Xavier Leroy, INRIA

compiles C to assembly, implemented in Coq
similar optimization as gcc -O1

formal semantics for C and assembly + correctness proof

Coq
extraction
��

OCaml
C

compilation
// asm

I VST = Verified Software Toolchain
Andrew Appel, Princeton

separation logic, based on CompCert

https://compcert.org
https://vst.cs.princeton.edu
https://vst.cs.princeton.edu


⇐←11→

Iris

Ralf Jung, Zürich , Robbert Krebbers, Nijmegen
Jacques-Henri Jourdan, Paris , Derek Dreyer, Saarbrücken
Lars Birkedal, Aarhus

I separation logic in Coq
extension of Hoare logic
pointers in a heap, ownership, concurrency

l 7→ v memory at location l has value v
P ∗Q P and Q hold for separate parts of heap

programming language independent

I RustBelt
proof (using Iris) of safety and data race freedom of
Rust + some unsafe Rust libraries

−→ Robbert Krebbers

https://iris-project.org
https://iris-project.org
https://plv.mpi-sws.org/rustbelt/
https://plv.mpi-sws.org/rustbelt/


⇐←12→

mathematical components

Georges Gonthier, Microsoft −→ INRIA

Ssreflect proof language for Coq
math-comp mathematical library

I four color theorem (2005)
every planar graph is four colorable
proof contains a huge computer check

I Feit-Thompson theorem = odd order theorem (2012)
every simple group of odd order is cyclic
original proof was 255 pages
−→ two full books formalized

https://coq.inria.fr/refman/proof-engine/ssreflect-proof-language.html
https://math-comp.github.io


⇐←13→

Lean

Leonardo de Moura, Microsoft Research −→ Amazon
Jeremy Avigad, CMU
Kevin Buzzard, Imperial College

Lean = ‘Coq#’ = Microsoft’s Coq clone
= Coq + Isabelle

I simpler and slightly different type theory
extra conveniences: proof irrelevance, quotient types
convertibility not transitive, no Subject Reduction

I implemented in Lean itself (+ small core in C++)
serious compiler

I very nice interface based on VS Code
I very different user community: mathematicians!

https://leanprover.github.io


⇐←14→

mathlib

Lean mathematical library
over a million lines of code
well organized, constantly refactored
aims to include all undergraduate mathematics (Imperial College)

large projects:
I formal definition of perfectoid spaces
I liquid tensor experiment (2020–2022)

challenge by Peter Scholze (Fields medal 2018)
I polynomial Freiman-Ruzsa (PFR) conjecture over F2 (2023)

formalization led by Terence Tao (Fields Medal 2006)
recent 28 page paper
formalization took only a few weeks

I working towards a proof of Fermat’s Last Theorem

−→ Michail Karatarakis, Freek Wiedijk

https://github.com/leanprover-community/mathlib
https://xenaproject.wordpress.com/2020/12/05/liquid-tensor-experiment/


⇐←15→

HoTT

Homotopy Type Theory
Vladimir Voevodsky (Fields medal 2002), 2006, †2017

type ∼ topological space
function ∼ continuous function

equality between points ∼ path between points
equality between types ∼ equivalence of spaces

A = B A ' B

I UA = Univalence Axiom

(A = B) ' (A ' B)

I HITs = Higher Inductive Types
= types with constructors for equalities ��

��
r

base

loop

−→ Niels van der Weide, Herman Geuvers



⇐←16→

untyped lambda calculus

lambda abstraction and function application

lambda abstraction defines an unnamed function:

sqr := λx. x2 input: x
output: x2

sqr(3) = 9
sqr 3 = 9

(
lambda abstraction︷ ︸︸ ︷

λx. x2) 3︸ ︷︷ ︸
function application

= 9



⇐←17→

syntax versus semantics

λx. x a string of six symbols
(λ x . x )

[[λx. x]] a function (the identity function)

no semantics of untyped lambda calculus in this course
not trivial!

−→ NWI-IMC011 Semantics and Domain Theory



⇐←18→

examples of untyped lambda terms

x
xx
xy
λx. x
λx. y
λxy. x
λxy. y

λxyz. xz(yz)
λfxy. fyx
λfx. fxx
λfgx. f(gx)
λfx. x
λfx. fx

λfx. f(fx)
λfx. f(f(fx))

...

λnfx. f(nfx)
λmnfx.mf(nfx)
λmnfx.m(nf)x
λmnfx. nmfx

λx. xx
(λx. xx)(λx. xx)

(λx. f(xx))(λx. f(xx))
λf. (λx. f(xx))(λx. f(xx))

λxf. f(xxf)
(λxf. f(xxf))(λxf. f(xxf))
λx. x(λxyz. xz(yz))(λxy. x)



⇐←19→

variables

the set of variables is called Var

it does not matter what this set is,
as long as it is countably infinite

for the formal definition of untyped lambda terms we will take

Var = {x, x′, x′′, x′′′, . . . }

but we will write these as

x,
x′, x′′, x′′′, . . .
x0, x1, x2, x3, . . .
y, z, u, v, w, n,m, f, g, h, . . .
y′, y′′, y′′′, . . .
y0, y1, y2, y3, . . .
. . .



⇐←20→

alpha equivalence

λx. x2 6≡ λy. y2

λx. x2 =α λy. y
2

x2 6≡ y2

x2 6=α y
2

in the first case the variables x and y are bound
in the second case the variables x and y are free

FV(M) is the set of free variables in the term M

M ≡ N
M and N are equal as strings

M =α N
‘names of variables bound by lambdas do not matter’

in practice we only consider lambda terms modulo =α



⇐←21→

formal definition of untyped lambda terms

the set of untyped lambda terms Λ is the smallest set which
I contains all variables

if x ∈ Var then x ∈ Λ

I is closed under function application

if F,M ∈ Λ then also (FM) ∈ Λ

I is closed under lambda abstraction

if x ∈ Var and M ∈ Λ then (λx.M) ∈ Λ



⇐←22→

context-free grammar of untyped lambda terms

the set of variables Var
and the set of untyped lambda terms Λ
are sets of strings over the alphabet

{λ , . , ( , ) , x , ′ }

x ::= x | x′ Var
M ::= x | (MM) | (λx.M) Λ

λfxy. fyx

is the =α-equivalence class of the 28-symbol string
(λx.(λx′.(λx′′.((xx′′) x′)))) ∈ Λ



⇐←23→

abstract syntax trees

the parentheses in the grammar are for non-ambiguity

λfxy. fyx

(λf.(λx.(λy.((fy)x))))

(λx′′.(λx.(λx′.((x′′x′) x))))

λf

λx

λy

@

@ x

f y



⇐←24→

notation

I parentheses may be omitted or added

I lambda abstraction binds more weakly than application:

λx. yz ≡ ((λx. y)z) or (λx.(yz))

I application associates to the left:

xyz ≡ ((xy)z) or (x(yz))

Curried function with three arguments applied to three values:

(λxyz.M)abc≡

((((λx.(λy.(λz.M))) a) b) c)



⇐←25→

what is this x2 anyway?

in untyped lambda calculus everything is a function
there is only lambda abstraction and function application

I numbers are functions

0 = λfx. x

7 = λfx. f(f(f(f(f(f(fx))))))
x2 = λyz.x(xy)z

I Booleans are functions

false = λxy. y

true = λxy. x

I in untyped lambda calculus the elements of all datatypes are
coded as functions



⇐←26→

computation

beta reduction

‘compute’ the value of

(λx. x2) (y + 1)

substitute (y + 1) for the x under the lambda:

(λx. x2) (y + 1) →β (y + 1)2

general form of the beta rule:

(λx.M)N︸ ︷︷ ︸
redex

→β M [x := N ]

substitution operation on terms comes later:

M [x := N ]



⇐←27→

three relations between terms

I
M →β N

one-step reduction
subterms also can be redexes

I
M →→β N

M →β M1 →β M2 →β · · · →β N

many-step reduction
zero, one or more steps

I
M =β N

convertible = computationally equal
zero, one or more steps in both directions
smallest equivalence relation containing →β

M
��
M1
��

M5
�� ��

M2
��
M4
��

N

M3



⇐←28→

example reduction

I = λx. x
K = λxy. x
ω = λx. xx
Ω = ωω

KIΩ→→β I

KIΩ≡

(λxy. x)(λz. z) Ω→
β

(λy. (λz. z)) Ω≡

(λyz. z) Ω→
β

λz. z≡
I



⇐←29→

beware of the brackets!

(λxy. x)(λz. z) Ω︸ ︷︷ ︸
beta redex?

((λxy. x) (λz. z)) Ω︸ ︷︷ ︸
not a beta redex!

@

@ Ω

λx λz

λy z

x



⇐←30→

avoiding variable capture by renaming

ω = λx. xx
1 = λfx. fx

ω1→→β 1

ω1≡

(λz. zz)(λfx. fx)→
β

(λfx. fx)(λfx. fx)→
β

λx. (λfx. fx)x 6→β λx. (λx. xx)=
α

λx. (λfx′. fx′)x→
β

λx. λx′. xx′≡

λxx′. xx′=
α

1



⇐←31→

example with more than one reduction path

I = λx. x
IM ≡ (λx. x)M →β M

the red lines are not part of the syntax
they just indicate where the redexes are

II(II)

|| !!
I(II)

��**

III

}}
II

��
I

II(II)→→β I



⇐←32→

wrapping up

Currying revisited

I traditional mathematics:

f(x)
f(g(x))
h(x, y)

h : A×B → C

I lambda calculus and type theory:

fx
f(gx)
hxy ≡ (hx)y

h : A→ B → C
hx : B → C
hxy : C



⇐←33→

partial function application

add = λxy. x+ y = λx.(λy. x+ y)

add 3 = λy. 3 + y

add 3 4 = 3 + 4 = 7

add : N→ N→ N
N→ (N→ N)



⇐←34→

substitution more formally

recursive definition of substitution
the terms are modulo =α

x[x := N ] ≡ N
y[x := N ] ≡ y y 6= x

(M1M2)[x := N ] ≡ (M1[x := N ]M2[x := N ])
(λx.M)[x := N ] ≡ (λx.M)
(λy′.M)[x := N ] ≡ (λy′.M [x := N ]) y′ 6= x, y′ 6∈ FV(N)

if you want to be specific, you can let y′ be the first variable from
Var \

(
{x} ∪ FV(M) ∪ FV(N)

)
in practice, we always work in Λ/=α



⇐←35→

fast-and-loose context-free grammars

x ::= x | x′

M ::= x | (MM) | (λx.M)

M,N ::= x |MN | λx.M

in this course from now on:
I no parentheses in grammars

imagine them being there
or imagine Λ to consist of abstract syntax trees

I no grammar rules for the variables
imagine them being there
or consider sets like Var to be a parameter of the definition

I multiple names for the same non-terminal



⇐←36→

recap

I a set of lambda terms as strings called Λ

I relations ≡, =α, →β , →→β , =β

I Curried functions

I fast-and-loose context-free grammars

homework for next Thursday:

I install Coq on your computer

I download the Coq practicum files

https://coq.inria.fr/download
/home/freek/courses/tt-2024/public/tt.zip


⇐←37→

T-shirt

a lambda calculus evaluator

U i
k ≡ λx1 . . . xk.xi

〈M1, . . . ,Mk〉 ≡ λz.zM1 . . .Mk

〈〈K, S,C〉〉pMq→→M

pxq ≡ λe.eU 1
3 xe

pPQq ≡ λe.eU 2
3
pPqpQqe

pλx.Pq ≡ λe.eU 3
3 (λx.pPq)e

K ≡ λxy.x

S ≡ λxyz.xz(yz)

C ≡ λxyz.xzy



⇐←38→

table of contents

contents

organization

introduction

untyped lambda calculus

computation

wrapping up

T-shirt

table of contents


