Type Theory and Coq Exercises on Normalization

- 1. In the proof of WN for $\lambda \rightarrow$, the height of a type $h(\sigma)$ is defined by
 - $h(\alpha) := 0$
 - $h(\sigma_1 \rightarrow \ldots \rightarrow \sigma_n \rightarrow \alpha) := \max(h(\sigma_1), \ldots, h(\sigma_n)) + 1.$

Prove that this is the same as taking as the second clause

- $h(\sigma \rightarrow \tau) := \max(h(\sigma) + 1, h(\tau)).$
- 2. Consider the following term N : A, where $A = \alpha \rightarrow \alpha$ and $\mathbf{I}_1 : A$ and $\mathbf{I}_2 : A \rightarrow A$ and $\mathbf{I}_3 : A$ and $\mathbf{I}_4 : A$ are copies of the well-known λ -term \mathbf{I} (:= $\lambda x.x$).

$$N := \lambda y: \alpha. (\lambda x: A \to A. \mathbf{I}_1 (x \mathbf{I}_4 (\mathbf{I}_3 y))) \mathbf{I}_2$$

- (a) Determine m(N), the *measure* of N as defined in the weak normalization proof.
- (b) Determine which redex will be contracted following the strategy in the weak normalization proof, obtaining a term N'.
- (c) Determine m(N'), the measure of this reduct of N.
- 3. In the proof of WN for $\lambda \rightarrow$, it is stated that, if $M \longrightarrow_{\beta} N$ by contracting a redex of maximum height, h(M), that does not contain any other redex of height h(M), then this does not create a new redex of maximum height.

Show that this holds for the case

$$M = (\lambda x : A.x (\lambda v : B.x \mathbf{I}))(\lambda z : C.z (\mathbf{I} \mathbf{I}))$$

$$\longrightarrow_{\beta} (\lambda z : C.z (\mathbf{I} \mathbf{I}))(\lambda v : B.(\lambda z : C.z (\mathbf{I} \mathbf{I})) \mathbf{I}) = P$$

where $B = \alpha \rightarrow \alpha$, $C = B \rightarrow B$ and $A = C \rightarrow B$.

Also show that $m(M) >_l m(P)$.

- 4. Suppose X, Y, and Z are properties of λ -terms. Then we can have the following situations: If M satisfies property X and N satisfies property Y, then
 - (a) Yes, property Z always holds (so $\forall M, N(M \in X \land N \in Y \Rightarrow M N \in Z)$
 - (b) No, property Z never holds (so $\forall M, N(M \in X \land N \in Y \Rightarrow M N \notin Z)$
 - (c) Undec, property Z holds for some M, N, and doesn't hold for some other M, N (so $\exists M, N(M \in X \land N \in Y \land M N \in Z$ and $\exists M, N(M \in X \land N \in Y \land M N \notin Z)$

Fill in the following diagram with Yes, No and Undec and motivate your answers. In case of Undec, give M, N for both cases.

	$N\inWN$	$N\in\negSN$
$M\inWN$	$M N \in WN?$	$M N \in SN$?
$M\inSN$	$M N \in SN?$	$M N \in \neg SN?$

5. Prove that type reduction is SN for $\lambda 2$ a la Church. (Define a simple measure on terms that decreases with type reduction.)