Type Theory and Coq Exercises on Normalization

- 1. In the proof of WN for $\lambda \rightarrow$, the height of a type $h(\sigma)$ is defined by
 - $h(\alpha) := 0$
 - $h(\sigma_1 \rightarrow \ldots \rightarrow \sigma_n \rightarrow \alpha) := \max(h(\sigma_1), \ldots, h(\sigma_n)) + 1.$

Prove that this is the same as taking as the second clause

• $h(\sigma \rightarrow \tau) := \max(h(\sigma) + 1, h(\tau)).$

Answer:

Recall that $\sigma_1 \to \dots \sigma_n \to \alpha$ should be read as $(\sigma_1 \to (\dots (\sigma_n \to \alpha) \dots))$ and this means that every type $\sigma \to \tau$ can be written as $\sigma \to \tau_1 \dots \tau_n \to \alpha$ for some α .

We have two definitions of h that we call h_1 and h_2 for now:

- $h_1(\alpha) := 0$,
- $h_1(\sigma_1 \rightarrow \ldots \rightarrow \sigma_n \rightarrow \alpha) := \max(h_1(\sigma_1), \ldots, h_1(\sigma_n)) + 1.$
- $h_2(\alpha) := 0$,
- $h_2(\sigma \to \tau) := \max(h_2(\sigma) + 1, h_2(\tau)).$

We prove that $h_1(\sigma) = h_2(\sigma)$ for all σ by induction on σ . For type variables this is the case. Case $\sigma = \sigma_1 \to \ldots \to \sigma_n \to \alpha$:

$$h_2(\sigma) = \max(h_2(\sigma_1) + 1, h_2(\sigma_2 \rightarrow \dots \rightarrow \sigma_n \rightarrow \alpha))$$

$$\stackrel{\text{IH}}{=} \max(h_1(\sigma_1) + 1, h_1(\sigma_2 \rightarrow \dots \rightarrow \sigma_n \rightarrow \alpha))$$

$$= \max(h_1(\sigma_1) + 1, \max(h_1(\sigma_2), \dots, h_1(\sigma_n)) + 1)$$

$$= \max(h_1(\sigma_1), \dots, h_1(\sigma_n)) + 1$$

$$= h_1(\sigma)$$

End Answer

2. Consider the following term N:A, where $A=\alpha \rightarrow \alpha$ and $\mathbf{I}_1:A$ and $\mathbf{I}_2:A\rightarrow A$ and $\mathbf{I}_3:A$ and $\mathbf{I}_4:A$ are copies of the well-known λ -term \mathbf{I} $(:=\lambda x.x)$.

$$N := \lambda y : \alpha . (\lambda x : A \rightarrow A . \mathbf{I}_1 (x \mathbf{I}_4 (\mathbf{I}_3 y))) \mathbf{I}_2$$

(a) Determine m(N), the measure of N as defined in the weak normalization proof.

Answer:

There are three redexes:

- $R_1 := \mathbf{I}_1 (x \mathbf{I}_4 (\mathbf{I}_3 y))$ of height the type of \mathbf{I}_1 , which is h(A) = 1.
- $R_2 := (\lambda x: A \rightarrow A.\mathbf{I}_1 (x \mathbf{I}_4 (\mathbf{I}_3 y))) \mathbf{I}_2$ of height the type of $\lambda x: A \rightarrow A.\mathbf{I}_1 (x \mathbf{I}_4 (\mathbf{I}_3 y))$, which is $h((A \rightarrow A) \rightarrow \alpha) = 3$.
- $R_3 := \mathbf{I}_3 y$ of height the type of \mathbf{I}_3 , which is h(A) = 1.

NB. the sub-term \mathbf{I}_4 ($\mathbf{I}_3 y$) is not a redex, as a matter of fact, it isn't a sub-term as the brackets should be read as follows: $(x \mathbf{I}_4)$ ($\mathbf{I}_3 y$)! So m(N) = (3, 1).

End Answer

(b) Determine which redex will be contracted following the strategy in the weak normalization proof, obtaining a term N'.

Answer:

We contract redex R_2 , obtaining

$$N' := \lambda y : \alpha . \mathbf{I}_1 \left(\mathbf{I}_2 \, \mathbf{I}_4 \left(\mathbf{I}_3 \, y \right) \right)$$

End Answer

(c) Determine m(N'), the measure of this reduct of N.

Answer: N' still has redexes R_1 and R_3 that have height 1. We have a new

N' still has redexes R_1 and R_3 that have height 1. We have a new redex $\mathbf{I}_2 \mathbf{I}_4$ whose height is $h(A \rightarrow A)$ (the height of the type of \mathbf{I}_2), which is 2. So m(N') = (2,1)

End Answer

3. In the proof of WN for $\lambda \to$, it is stated that, if $M \to_{\beta} N$ by contracting a redex of maximum height, h(M), that does not contain any other redex of height h(M), then this does not create a new redex of maximum height. Show that this holds for the case

$$M = (\lambda x : A.x (\lambda v : B.x \mathbf{I}))(\lambda z : C.z (\mathbf{II}))$$

$$\longrightarrow_{\beta} (\lambda z : C.z (\mathbf{II}))(\lambda v : B.(\lambda z : C.z (\mathbf{II})) \mathbf{I}) = P$$

where $B = \alpha \rightarrow \alpha$, $C = B \rightarrow B$ and $A = C \rightarrow B$.

Also show that $m(M) >_l m(P)$.

Answer:

In M there are two redexes:

- $R_1 := \mathbf{II}$, whose height is the height of the type of the \mathbf{I} on the left, which is C. So the height of R_1 is h(C).
- $R_2 := (\lambda x : A.x (\lambda v : B.x \mathbf{I}))(\lambda z : C.z (\mathbf{II}))$, the whole term, whose height is the height of the type of $\lambda x : A.x (\lambda v : B.x \mathbf{I})$, which is $A \rightarrow B$. So the height of R_2 is $h(A \rightarrow B)$.

h(B) = 1, h(C) = 2 and h(A) = 3. Redex R_2 is the single redex of maximum height, which is 4, so m(M) = (4,1). Note that redex R_1 has height h(C) which is 2.

In N we have two copies of redex R_1 (of height 2) and two new redexes whose height is the height of the type of $\lambda z : C.z(\mathbf{II})$, which is $C \rightarrow B$. We have $h(C \rightarrow B) = 3$, so we have m(N) = (3, 2). We see that $m(M) = (4, 1) >_l (3, 2) = m(P)$.

End Answer

- 4. Suppose X, Y, and Z are properties of λ -terms. Then we can have the following situations: If M satisfies property X and N satisfies property Y, then
 - (a) Yes, property Z always holds (so $\forall M, N(M \in X \land N \in Y \Rightarrow M N \in Z)$
 - (b) No, property Z never holds (so $\forall M, N(M \in X \land N \in Y \Rightarrow M N \notin Z)$
 - (c) Undec, property Z holds for some M,N, and doesn't hold for some other M,N (so $\exists M,N(M\in X\wedge N\in Y\wedge M\ N\in Z$ and $\exists M,N(M\in X\wedge N\in Y\wedge M\ N\notin Z)$

Fill in the following diagram with Yes, No and Undec and motivate your answers. In case of Undec, give M, N for both cases.

	$N \in WN$	$N \in \neg SN$
	$MN \in WN$?	
$M\inSN$	$MN \in SN$?	$MN \in \neg SN$?

Answer:

We have

For Undec^1 and Undec^3 consider $M, N = \lambda x. \, x \, x$ for a negative example and $M, N = \lambda x. \, x$ for a positive example.

For No^2 and Yes^4 , if $N \in \neg SN$, then N has an infinite reduction path, so MN has an infinite reduction path (no matter what M is).

End Answer

5. Prove that type reduction is SN for $\lambda 2$ a la Church. (Define a simple measure on terms that decreases with type reduction.)

Answer:

Define the measure f(M) as f(M) := the number of type-abstractions in M, so recursively:

$$f(x) := 0$$

$$f(PN) := f(P) + f(N)$$

$$f(\lambda \alpha. N) := 1 + f(N)$$

$$\begin{array}{rcl} f(P\,\sigma) &:=& f(P) \\ f(\lambda x:\sigma.\,N) &:=& f(N) \\ f(P\,N) &:=& f(P)+f(N) \end{array}$$

Then we have that if $M \longrightarrow_{\beta} N$ by a type-reduction (i.e. a redex contraction of the form $(\lambda \alpha. P)\sigma \longrightarrow_{\beta} P[\alpha := \sigma]$), then f(M) > f(N), which is easily proved by induction on M.