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Chapter 1

1st-order propositional logic

This chapter is concerned with first-order propositional logic. First-order here
means that there is no quantification over propositions, and propositional means
that there is no quantification over terms. We consider mainly intuitionistic
logic, where A ∨ ¬A is not valid in general. We also study classical logic. In
addition, we consider minimal logic, which is the subset of intuitionistic logic
with implication as only connective. In this setting we study detours and detour
elimination.

1.1 Formulas

In this section we introduce the formulas of first-order propositional logic.

Symbols. We assume a set of propositional variables, written as a, b, c, d, . . ..
A formula or proposition in first-order propositional logic is built from propo-
sitional variables and logical connectives. We have the following binary con-
nectives: → for implication, ∧ for conjunction, and ∨ for disjunction. Further
there is a constant (or zero-ary connective) falsum, denoted by ⊥, and one for
true, denoted by >.

Formulas. The set of formulas is inductively defined by the following clauses:

1. a propositional variable a is a formula,

2. the constant ⊥ is a formula,

3. the constant > is a formula,

4. if A and B are formulas, then (A → B) is a formula,

5. if A and B are formulas, then (A ∧B) is a formula,

6. if A and B are formulas, then (A ∨B) is a formula.

3



4 1st-order propositional logic

Notation. We write arbitrary, unspecified, formulas as A,B,C, D, . . .. Ex-
amples of formulas are: (a → a), (a → (b → c)), ((a ∨ b) ∧ c). A formula in
which we use some unspecified formulas, like (A → A), is also called a formula
scheme. Usually we call a formula scheme somewhat sloppily also a formula.

As usual, we adopt some conventions that permit to write as few parentheses
as possible, in order to make reading and writing of formulas easier:

1. We omit outermost parentheses.

2. Implication is supposed to be right associative.

3. ∧ binds stronger than ∨ and →, and ∨ binds stronger than →.

For example: instead of (A → B) we write in the sequel A → B, instead of
(A → (B → C)) we write A → B → C, and instead of ((A → B) → C) we
write (A → B) → C. Further, we write A ∧ B → C instead of ((A ∧ B) → C)
and sometimes A ∧B ∨ C instead of ((A ∧B) ∨ C).

Negation. We have one defined connective which takes one argument: nega-
tion, written as ¬. Its definition is as follows: ¬A := A → ⊥.

1.2 Natural deduction for intuitionistic logic

In this section we consider a natural deduction proof system for intuitionistic
first-order propositional logic.

There are various proof systems for natural deduction, that differ mainly in
notation. Here we write proofs as trees. Using the tree notation, an unspecified
proof of the formula A is written as follows:

A

...

The most important characteristic of a natural deduction proof system, which
all systems have in common, is that for every logical connective there are intro-
duction and elimination rules. An introduction rule for a connective describes
how a formula with that connective can be derived (or introduced). An elimi-
nation rule for a connective describes how a formula with that connective can
be used (or eliminated). A proof further makes use of assumptions also called
hypotheses. The intuition is that if there is a proof of B using assumptions
A1, . . . , An, then B is a logical consequence of A1, . . . , An.

Proof rules. Below the rules for a natural deduction proof system for intuiti-
onistic first-order propositional logic are given. In the implication introduction
rule the phenomenon of cancelling assumptions occurs. We label the assump-
tions in a proof with labels x, y, z, . . . in order to make explicit which assumption
is cancelled in an application of the implication introduction rule.
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1. The assumption rule.

A labelled formula Ax is a proof.

Ax

Such a part of a proof is called an assumption.

2. The implication introduction rule.

If

B

...

is a proof, then we can introduce an implication by cancelling all assump-
tions of the form Ax. In this way we obtain the following proof:

A → B
I[x]→

B

...

Note that we mention explicitly the label indicating which occurrences of
assumption A are cancelled. All occurrences of the assumption A hav-
ing label x are cancelled. Assumptions A with a different label are not
cancelled.

3. The implication elimination rule.

If we have a proof of A → B and one of A, as follows:

A → B

...

A

...

then we can combine both proofs by applying the implication elimination
rule. This yields a (one) proof of B, as follows:

B
E→

A → B

...

A

...
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4. The conjunction introduction rule.

If we have a proof of A and a proof of B, then those two proofs can be
combined to form a proof of A ∧B:

A ∧B

A

...

B

...

I∧

5. The conjunction elimination rules.

There are two elimination rules for the conjunction: one used to turn a
proof of A ∧ B into a proof of A, and one to turn a proof of A ∧ B into
a proof of B. The first one is called the left conjunction elimination rule
and the second one is called the right conjunction elimination rule. They
are as follows:

A

A ∧B

...

El∧
B

A ∧B

...

Er∧

6. The disjunction introduction rules.

For disjunction, there are two introduction rules. The first one is used to
turn a proof of A into a proof of A ∨ B, and the second one is used to
turn a proof of B into a proof of A∨B. They are called the left and right
disjunction introduction rule. They are as follows:

A ∨B

A

...

Il∨
A ∨B

B

...

Ir∨

7. The disjunction elimination rule.

The disjunction elimination rule expresses how a formula of the form A∨B
can be used. If both from A and from B we can conclude C, and in
addition we have A ∨ B, then we can conclude C. This is expressed by
the disjunction elimination rule:



1st-order propositional logic 7

C
E∨

A ∨B

...

A → C

...

B → C

...

8. The falsum rule.

There is no introduction rule for falsum. The falsum rule expresses how
a proof with conclusion falsum can be transformed into a proof of an
arbitrary formula A, so it is fact an elimination rule. It is as follows:

A

⊥

...

9. The true rule.

There is only one rule for >, namely the following introduction rule with-
out premisses:

>

Comments.

• The last formula of a proof is called its conclusion.

• The implication elimination rule, the conjunction introduction rule, and
the disjunction elimination rule combine two or three proofs into one. It
is due to these rules that the proofs have a tree-like structure.

• The most complicated aspect of proofs in natural deduction is the man-
agement of cancelling assumptions. If an assumption is cancelled, this is
indicated by putting brackets ([, ]) around it. See also the examples.

• Assumptions are labelled in order to be able to make explicit which as-
sumptions are cancelled using an implication introduction rule. This is the
only reason of using labels; that is, labels are not carried around elsewhere
in the proof. For instance in the proof

A → A
I[x]→

[Ax]
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the occurrences of A in the conclusion A → A are not labelled.

• We assume that distinct assumptions have distinct labels. So it is not
possible to have assumptions Ax and Bx in one and the same proof.

• It is possible to have a certain formula A more than once as an assumption
in a proof. Those assumptions do not necessarily have the same label. For
instance, we can have a proof with assumptions Ax, Ax, Ay, or Ax, Ay, Az,
or Ax, Ax, Ax, etcetera.

Tautologies. If there is a proof of A using zero assumptions, that is, all
assumptions are cancelled (using the implication introduction rule), then A is
said to be a tautology or theorem. Note that if a formula A is a tautology, then
B → A is a tautology as well: we can extend the proof of A

A

...

by adding an implication introduction rule that cancels zero assumptions B:

B → A
I[x]→

A

...

Here the label x must be fresh, that is, not used elsewhere in the proof of A.

Examples. We consider a few proofs in first-order propositional logic.

1. A proof showing that A → A is a tautology:

A → A
I[x]→

[Ax]

2. A proof showing that A → B → A is a tautology:

A → B → A
I[x]→

B → A
I[y]→

[Ax]

3. A proof showing that (A → B → C) → (A → B) → A → C is a tautology:
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(A → B → C) → (A → B) → A → C
I[x]→

(A → B) → A → C
I[y]→

A → C
I[z]→

C
E→

B → C B

[(A → B → C)x] [Az]
E→

[(A → B)y] [Az]
E→

4. We give two different proofs showing that A → A → A is a tautology. The
difference is in the cancelling of assumptions. In the next chapter we will
see that the two different proofs correspond to two different λ-terms.

A first proof:

A → A → A
I[x]→

A → A
I[y]→

[Ax]

A second proof:

A → A → A
I[y]→

A → A
I[x]→

[Ax]

5. (permutation)
(A → B → C) → (B → A → C).

6. (weak law of Peirce)
(((((A → B) → A) → A) → B) → B).

7. (contrapositive)

A proof showing that (A → B) → ¬B → ¬A is a tautology:

[B → ⊥y]
[A → Bx] [Az]

B
E →

⊥ E →
A → ⊥ I[z] →

¬B → ¬A
I[y] →

(A → B) → (¬B → ¬A)
I[x] →
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8. A proof showing that A → ¬¬A is a tautology:

[A → ⊥y] [Ax]
⊥ E →

(¬A) → ⊥
I[y] →

A → ¬¬A
I[x] →

NB: the implication ¬¬A → A is not valid in intuitionistic logic.

9. ¬¬(¬¬A → A).

Intuitionism. Proof checkers based on type theory, like for instance Coq,
work with intuitionistic logic, sometimes also called constructive logic. This is
the logic of the natural deduction proof system discussed so far. The intuition
is that truth in intuitionistic logic corresponds to the existence of a proof. This
is particularly striking for disjunctions: we can only conclude A∨B if we have a
proof of A or a proof of B. Therefore, A∨¬A is not a tautology of intuitionistic
logic: it is not the case that for every proposition A we have either a proof of
A or a proof of ¬A.

In classical logic, the situation is different. Here the notion of truth that
is absolute, in the sense that it is independent of whether this truth can be
observed. In classical logic, A ∨ ¬A is a tautology because every proposition is
either true or false.

Interpretation. There is an intuitive semantics of intuitionistic logic due to
Brouwer, Heyting and Kolmogorov. It is also called the BHK-interpretation.
This interpretation explains what it means to prove a formula in terms of what
it means to prove its components. It is as follows:

• A proof of A → B is a method that transforms a proof of A into a proof
of B.

• A proof of A ∧B consists of a proof of A and a proof of B.

• A proof of A∨B consists of first, either a proof of A or a proof of B, and
second, something indicating whether it is A or B that is proved.

• (There is no proof of ⊥.)

1.3 Detours in minimal logic

We study a subset of intuitionistic logic which is called minimal logic. In minimal
logic, the only logical connective is the one for implication. Also the proof
rules are restricted accordingly: there are only the rules for assumption and
implication. We are interested in minimal logic because, as we will see in the
next chapter, it corresponds to simply typed λ-calculus.
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Detours. We have seen already that the formula A → B → A is a tautology:

[Ax]
B → A

I[y]→

A → B → A
I[x]→

This is in fact in some sense the easiest way to show that A → B → A is a
tautology. An example of a more complicated way is the following:

[Ax]
[Az]

A → A
I[z]→

A
E→

B → A
I[y]→

A → B → A
I[x]→

This proof contains an application of the implication introduction rule immedi-
ately followed by an application of the implication elimination rule:

[Ax]
[Az]

A → A
I[z]→

A
E→

Such a part is called a detour.
More generally, a detour in minimal first-order propositional logic is a part

of a proof consisting of the introduction of an implication immediately followed
by the elimination of that implication. A detour has the following form:

...
B

A → B
I[x]→

...
A

B
E→

Detour elimination. In the example above, instead of the fragment

[Ax]
[Az]

A → A
I[z]→

A
E→

we can use the smaller fragment
[Ax]

The replacement of the fragment with the detour by the more simple fragment
is called detour elimination or proof normalization.

The general rule for detour elimination or proof normalization in minimal
first-order propositional logic is as follows:
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...
B

A → B
I[x]→

...
A

B
E→

→
...
B

A proof that does not contain a detour is said to be a normal proof. As another
example, consider the following proof:

[Ax]
B → A

I[y]→

A → B → A
I[x]→

...
A

B → A
E→

...
B

A
E→

One step of proof normalization results in this proof:

...
A

B → A
I[y]→

...
B

A
E→

In another step we obtain:

...
A

Every proof can be transformed into a proof without detours by detour elimi-
nation.

1.4 From intuitionistic to classical logic

Intuitively, a formula in intuitionistic logic is valid if it has a proof, and a
formula in classical logic is valid if it is true. There are several ways of extending
intuitionistic logic to classical logic. One way is by adding the axiom scheme of
the law of excluded middle (tertium non datur), which is as follows:

A ∨ ¬A

This means that for any formula A we have A∨¬A. Here A can be instantiated
by any formula.
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Illustration. As an illustration (which uses predicates) of the fact that in
intuitionistic logic less can be proved than in classical logic, we consider the
following question:
Are there real numbers m and n such that m and n are irrational and mn is

rational?
In classical logic, we can prove that the answer is yes. In intuitionistic logic, this
is not possible. The non-constructive proof, making use of the A ∨ ¬A axiom,

is as follows. Let m =
√

2 and n =
√

2
√

2
. Two cases are distinguished: either

n is irrational, or not.

• If n is irrational, then consider

nm = (
√

2
√

2
)
√

2 = (
√

2)2 = 2

which is rational.

• If n is rational, then we are done immediately.

Here we use the elimination rule for ∨ in the following form:

• If
√

2
√

2
is rational, then the answer is yes.

• If
√

2
√

2
is not rational (that is, irrational), then the answer is yes.

• We have that
√

2
√

2
is either rational or irrational (because of the axiom

scheme A ∨ ¬A).

The conclusion is then that the answer is yes.
This proof doesn’t yield a concrete example of two irrational numbers that

have a rational exponentiation. In constructive logic this would be required.

Alternative approaches. It turns out that there are several alternative ap-
proaches to obtain classical logic from intuitionistic logic. Here we mention
three of them:

• Add A ∨ ¬A (the law of excluded middle, EM) as an axiom.

• Add ¬¬A → A (the rule for double negation, DN) as an axiom.

• Add ((A → B) → A) → A (Peirce’s law, PL) as an axiom.

These three approaches are equivalent.
In the practical work, we prove EM → PL (Lemma one), PL → DN (Lemma

two), DN → EM (Lemma three).
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Examples. We give a few examples of proofs in classical first-order proposi-
tional logic.

We show EM → DN. Recall that ¬¬A is defined as (A → ⊥) → ⊥.

[Az]
A → A

I[z] →
A ∨ ¬A

[¬¬Ax] [¬Ay]
⊥ E →
A

¬A → A
I[y] →

A
E∨

¬¬A → A
I[x] →

Note that ((A → ⊥) → ⊥) → A is not a tautology in intuitionistic logic.
However, A → ¬¬A is a tautology of intuitionistic logic.

Another example: Using both the law of the excluded middle, and the double
negation rule derived above, we can show that the formula ((A → B) → A) → A
is a tautology of classical logic. This formula is known as Peirce’s Law. A proof
showing that Peirce’s law is a tautology of classical propositional logic:

[(A → ⊥)y]
[((A → B) → A)x]

[(A → ⊥)y] [Az]
⊥ E→
B

A → B
I[z]→

A
E→

⊥ E→

¬¬A = (A → ⊥) → ⊥
I[y]→

A
nn

((A → B) → A) → A
I[x]→

Here nn stands for double negation.
Peirce’s Law is another example of a formula that is a tautology of classical

logic but not of intuitionistic logic.

1.5 1st-order propositional logic in Coq

Coq can be used to prove that a formula in first-order propositional logic is a
tautology. First-order propositional logic is decidable, and indeed we could use
just one Coq command, namely tauto, to do this. However, we will use instead
commands that more or less correspond to the natural deduction proof system
given above. This also helps to realize what the internal representation of proofs
in Coq is, a subject that will be treated in Chapters 2 and further.

A proof in Coq is built bottom-up. In every step there are one or more
current goals, and a list of current assumptions. The current goals are the
formulas we wish to prove, and the assumptions are the formulas that may be
used. The first of the current goals is written below, and the assumptions are
written above the line. The remaining subgoals are also mentioned.
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The first step is to specify the lemma we wish to prove. This is done using
the syntax Lemma from the specification language of Coq, called Galina. (There
are alternatives; one can for instance also use Goal.) Then the statement of the
lemma becomes the current goal, and the current list of assumptions is empty.

In the following steps, the user specifies how to transform the current goal
into zero, one or more new goals. This is done using tactics. If there is no
current subgoal anymore, the original goal is proved and we are done. All what
remains is to save the proof, using Save or Qed.

In the Coq session spelled out below, we are concerned with formulas of
minimal logic, only using →. The main two tactics to use are then intro, which
corresponds to the implication introduction rule, and apply, which corresponds
to the implication elimination rule. All unknown formulas in the lemma have
to be declared as variables of type Prop.

If the first of the current goals is a formula of the form A → B, then there are
two possibilities. We can introduce new assumption which is done by applying
the tactic intro. As argument we can give a fresh label, say x. In this way
the list of assumptions is extended with an assumption A with label x. If the
formula A → B happens to be in the current list of assumptions, say with label
x, then we can apply the tactic assumption, or exact with argument x.

If the first of the current goals is a formula B without →, then we look in
the list of assumptions whether there is an assumption of the form A1 → . . . →
An → B, with n ≥ 0. If there is one, say with label x, then we apply the tactic
apply with argument x. This yields n new goals, namely A1, . . . , An. If n = 0
then the goal is proved, and we continue with the remaining ones, if any.

Examples. This is an example of a Coq session in which two formulas are
proved to be tautologies. First we prove A → A in Coq:

Coq < Parameter A B C : Prop .
A is assumed
B is assumed
C is assumed

Coq < Lemma I : A -> A .
1 subgoal

============================
A -> A

I < intro x .
1 subgoal

x : A
============================
A
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I < exact x .
Proof completed.

I < Qed .
intro x.
exact x.
I is defined

We continue the session and prove (A → B → C) → (A → B) → A → C:

Coq < Lemma S : (A -> B -> C) -> (A -> B) -> A -> C .
1 subgoal

============================
(A -> B -> C) -> (A -> B) -> A -> C

S < intro x .
1 subgoal

x : A -> B -> C
============================
(A -> B) -> A -> C

S < intro y .
1 subgoal

x : A -> B -> C
y : A -> B
============================
A -> C

S < intro z .
1 subgoal

x : A -> B -> C
y : A -> B
z : A
============================
C

S < apply x .
2 subgoals

x : A -> B -> C
y : A -> B
z : A
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============================
A

subgoal 2 is:
B

S < exact z .
1 subgoal

x : A -> B -> C
y : A -> B
z : A
============================
B

S < apply y .
1 subgoal

x : A -> B -> C
y : A -> B
z : A
============================
A

S < exact z .
Proof completed.

S < Qed .
intro x.
intro y.
intro z.
apply x.
exact z.
apply y.
exact z.

S is defined

Example. As another example we consider a proof of the formula (A → B) →
(C → A) → C → B. On the left we have the different stages of constructing a
proof in minimal logic, and on the right are the corresponding steps in Coq. To
save space we do not indicate which rule is used in the minimal logic part.



18 1st-order propositional logic

Lemma Lemma example :
(A → B) → (C → A) → C → B. (A->B)->(C->A)->C->B.

Goal:

(A → B) → (C → A) → C → B (A->B)->(C->A)->C->B.

intro x.
Assumption: x:A->B

(C → A) → C → B

(A → B) → (C → A) → C → B Goal: (C->A)->C->B

intro y.
Assumptions:

x:A->B
y:C->A

C → B
(C → A) → C → B

(A → B) → (C → A) → C → B Goal: C->B
intro z.
Assumptions:

x:A->B
y:C->A
z:C

B
C → B

(C → A) → C → B

(A → B) → (C → A) → C → B Goal: B

apply x.
Assumptions do not change

A → B A
B

C → B
(C → A) → C → B

(A → B) → (C → A) → C → B Goal: A
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apply y.
Assumptions do not change

A → B
C → A C

A
B

C → B
(C → A) → C → B

(A → B) → (C → A) → C → B Goal: C

exact z.

done! Proof completed.

Notation.

• ⊥ is in Coq written as False.

• A → B is in Coq written as A -> B.

• A ∧B is in Coq written as A /\ B.

• A ∨B is in Coq written as A \/ B.

• ¬A is in Coq written as ~A or as not A.

Negation is defined in Coq as in propositional logic: an expression not A
in Coq is an abbreviation for A -> False.

Tactics.

• assumption .

This tactic applies to any goal. It looks in the list of assumptions for an
assumption which equals the current goal. If there is such an assumption,
the current goal is proved, and otherwise it fails.

• exact id .

This tactic applies to any goal. It succeeds if the current goal and the
assumption with label id are convertible (to be explained later).

• intro label .

This tactic is applicable if the first of the current goals is of the form
A → B. It extends the list of assumptions with an assumption A with
label label, and transforms the first of the current goals into B.

This tactic corresponds to the implication introduction rule.

There are some variants of the tactic intro of which we mention some.
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• intro .

This does the same as intro label ., except that Coq chooses a label itself.

• intros label1 . . . labeln .

This tactic repeats intro n times. It is applicable if the current goal is of
the form A1 → . . . → An → B with n ≥ 1. It transforms this goal into
the new goal B, and extents the list of assumptions with A1 . . . , An with
labels label1 . . . labeln.

• intros .

This tactic repeats intro as often as possible, and works further in the
same way as Intros label1 . . . labeln ., except that Coq chooses the labels
itself.

• apply label .

This tactic applies to any goal. It tries to match the current goal with the
conclusion of the assumption with label label. If the current goal is B, and
the assumption with label label is A1 → . . . → An → B, then the result of
applying apply is that the new goals are A1, . . . , An. If n = 0, then there
are no new goals.

If the matching fails the goal is not changed, and an error message is given.

• split .

For the moment we use this tactic only in the situation that the current
goal is of the form A /\ B. Applying the tactic Split then yields that the
goal is transformed into two new goals: A and B.

In this use the tactic corresponds to the conjunction introduction rule.

• elim label .

This tactic applies to any goal; label is the label of a hypothesis in the
current list of hypotheses. In general the tactic Elim is used for reasoning
by cases. Here we consider two uses.

If label is the label of a hypothesis of the form A /\ B and the current
goal is C, then elim label transforms the goal into A -> B -> C.

In this use the tactic corresponds roughly to the conjunction elimination
rules.

If label is the label of a hypothesis of the form A \/ B and the current
goal is C, then elim label transforms the goal into two goals: A -> C and
B -> C.

In this use the tactic corresponds to the disjunction elimination rule.

If label is the label of a hypothesis of the form False then the current goal
can be solved using elim label.

In this use the tactic corresponds to the falsum elimination rule.
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• left .

If the current goal is of the form A \/ B, then this tactic transforms it
into the new goal A. (There are other uses of this tactic.)

In this use the tactic corresponds to the left disjunction introduction rule.

• right .

If the current goal is of the form A \/ B, then this tactic transforms it
into the new goal B. (There are other uses of this tactic.)

In this use the tactic corresponds to the right disjunction introduction
rule.

• tauto .

This tactic succeeds if the current goal is an intuitionistic propositional
tautology.

Proof Handling.

• Goal form .

This command switches Coq to interactive editing proof-mode. It set form
as the current goal.

• Lemma id : form .

This command also switches Coq to interactive editing proof-mode. The
current goal is set to form and the name associated to it is id.

• Theorem id : form .

Same as Lemma except that now a theorem instead of a lemma is declared.

• Abort .

This command aborts the current proof session and switches back to Coq
top-level, or to the previous proof session if there was one.

• Undo .

This command cancels the effect of the last tactics command.

• Restart .

This command restarts the proof session from scratch.

• Qed .

This command can be used if the proof is completed. If the name of the
proof session is id, then a proof with name id is stored (and can be used
later).

• Save .

Equivalent to Qed. If an argument is specified, the proof is stored with
that argument as name.
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Miscellaneous.

• Load id .

This command feeds the contents of the file id.v to Coq. The effect is the
same as if the contents of the file id.v is typed in interactive proof editing
mode in Coq.

• Quit .

This command permits to quit Coq.

• Comments can be written between (* and *).
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Chapter 2

Simply typed λ-calculus

The λ-calculus is a language to express functions, and the evaluation of func-
tions applied to arguments. It was developed by Church in the 1930s. The
untyped λ-calculus provides a formalization of the intuitive notion of effective
computability. This is expressed by what is now known as Church’s Thesis: all
computable functions are definable in the λ-calculus. The expressivity of un-
typed λ-calculus is equivalent to that of Turing Machines or recursive functions.

The λ-calculus can be considered as a functional programming language in
its purest form. It indeed forms the basis of functional programming languages
like for instance Lisp, Scheme, ML, Miranda, and Haskell.

This chapter is concerned with simply typed λ-calculus. We discuss the
correspondence between simply typed λ-calculus and minimal first-order propo-
sitional logic. This correspondence is called the Curry-Howard-De Bruijn iso-
morphism and forms the basis of Coq and other proof checkers that are based
on type theory.

2.1 Types

Simple types. We assume a set of type variables, written as a, b, c, d, . . .. A
simple type is either a type variable or an expression of the form A→B, with A
and B simple types. So the set of simple types is inductively defined as follows:

1. a type variable a is a simple type,

2. if A and B are simple types, then (A→B) is a simple type.

We write arbitrary simple types as A,B,C, D, . . .. If it is clear that we work in
simply typed λ-calculus, then we often say type instead of simple type. Examples
of simple types are (A→A), (A→(B→C)), and ((A→B)→C).

As in the case of formulas, we adopt two conventions concerning the notation
of simple types that make reading and writing them easier:

• Outermost parentheses are omitted.

25
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• The type constructor → is assumed to be associative to the right.

For example: instead of (A→B) we write A→B, instead of (A→(B→C)) we
write A→B→C, and instead of ((A→B)→C) we write (A→B)→C.

A type of the form A→B is called a function type. For example, nat→bool
is the type of a function that takes an argument of type nat and yields a result
of type bool. Further, nat→nat→bool is the type of a function that takes an
argument of type nat and yields as a result a function of type nat→bool.

2.2 Terms

Abstraction and application. The λ-calculus can be used to represent func-
tions, and the application of a function to its argument.

A function that assigns the value M to a variable x, with x of type A, is
written as the abstraction λx:A.M . Since we consider only typed terms here,
the term M has a type, say B. The function λx:A.M then has type A→B. For
instance, the identity function on natural numbers is written as λx:nat. x.

If F is a function of type A→B, and P is of type A, then we can form the
application of F to P , written as (F P ). The application of the identity function
to the argument 5 is written as ((λx:nat. x) 5).

Environments. An environment is a finite set of type declarations for distinct
variables of the form x : A. Examples of environments are x : A, y : B and
x : A, y : A. The set x : A, x : B is not an environment since it contains two
declarations for x. Environments are denoted by Γ,∆, . . .. The order of the
declarations in an environment is irrelevant. If we write Γ, x : A we assume that
Γ does not contain a declaration for x.

Simply typed λ-terms. We assume a countably infinite set of variables writ-
ten as x, y, z, . . .. The set of variables is denoted by Var. Simply typed λ-terms
are built from variables, abstraction and application. The set of simply typed
λ-terms consists of the terms M for which we can derive Γ ` M : A for some
environment Γ and some type A using the following three rules:

1. The variable rule.

If a variable is declared to be of type A, then it is a λ-term of type A.

Γ, x : A ` x : A

2. The abstraction rule.

If M is a simply typed λ-term of type B, and x is a variable of type A,
then (λx:A.M) is a simply typed λ-term of type A → B.

Γ, x : A ` M : B

Γ ` (λx:A.M) : A → B
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3. The application rule.

If F is a simply typed λ-term of type A → B, and N is a simply typed
λ-term of type A, then (F N) is a simply typed λ-term of type B.

Γ ` F : A → B Γ ` N : A
Γ ` (F N) : B

Parentheses. Again we adopt some conventions concerning parentheses:

• We write (M N P ) instead of ((M N) P ), so application is assumed to be
associative to the left.

• We write (λx:A. λy:B.M) instead of (λx:A. (λy:B.M)).

• We write (λx:A.M N) instead of (λx:A. (M N)).

• We write (M λx:A.N) instead of (M (λx:A.N)).

Then, we also adopt the following convention:

• Outermost parentheses are omitted.

Of course, we may add parentheses for the sake of clarity.

Comments.

• We denote the set consisting of simply typed λ-terms of type A by Λ→A ,
and the set consisting of all simply typed λ-terms by Λ→.

• Note that the type of a variable in a given environment is unique, because
of the definition of environment.

• Instead of ∅ ` M : A we write ` M : A.

• If there is a term M and an environment Γ such that Γ ` M : A, then
the type A is said to be inhabited. In that case we also say that M is an
inhabitant of the type A.

• In a term of the form λx:A.M , the sub-term M is the scope of the ab-
straction over the variable x. Every occurrence of x in M is said to be
bound (by the abstraction over x). If all variable occurrences in a term
are bound, then the term is said to be closed.

Examples.

1.

x : A ` x : A
` λx : A. x : A → A
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2.

x : A, y : B ` x : A

x : A ` λy:B. x : B → A

` λx:A. λy:B. x : A → B → A

3. Here we use Γ = x : A → B → C, y : A → B, z : A, Γ1 = x : A → B →
C, y : A → B, and Γ2 = x : A → B → C.

Γ ` x : A → B → C Γ ` z : A
Γ ` xz : B → C

Γ ` y : A → B Γ ` z : A

Γ ` yz : B

Γ ` xz(yz) : C

Γ1 ` λz:A. xz(yz) : A → C

Γ2 ` λy:A → B. λz:A. xz(yz) : (A → B) → A → C

` λx:A → B → C. λy:A → B. λz:A. xz(yz) : (A → B → C) → (A → B) → A → C

2.3 Substitution

Lambda terms are evaluated by means of β-reduction, and the crucial notion in
the definition of β-reduction is the one of substitution. This section is concerned
with substitution. We consider some problems that may arise and how they can
be avoided.

Renaming of bound variables. The aim is to define the substitution of a
term N for all free occurrences of x in a term M . This is denoted by M [x := N ].
The rough idea of such a substitution is as follows: Imagine the tree correspond-
ing to the term M . The leaves are variables. Replace all leaves that are labeled
with x by the tree corresponding to the term N . Before giving the formal
definition we discuss some subtleties.

A first important thing to notice is that the intention of a substitution
M [x := N ] is that only free occurrences of x in M are replaced by N . Re-
call that a variable x occurs free if it is not in the scope of a λx. It occurs bound
otherwise. Note that a variable may occur both free and bound in a term. This
is for example the case for the variable x in the term z (λx:A. x) x. The following
two ‘substitutions’ are not correct :

• (λx:A. x)[x := y] = λx:A. y,

• (z (λx:A. x) x)[x := y] = z (λx:A. y) y.

A second important point is that it is not the intention that by calculating
a substitution M [x := N ] a free variable x in N is captured by a λx in M . For
instance the following ‘substitutions’ are not correct :

• (λy:A. x)[x := y] = λy:A. y,



Simply typed λ-calculus 29

• (z (λy:A. x) x)[x := y] = z (λy:A. y) y.

Third, notice that of course the variables in bindings like λx have nothing
to do with substitution. For instance the following ‘substitution’ is nonsense:

• (λx:A. z)[x := y] = λy:A. z.

The third issue is only mentioned for curiosity. The usual solution to the
first two problems is to rename bound variables in such a way that bound and
free variables have different names, and such that free variables are not captured
by a substitution. Renaming of bound variables works as follows: in a term M
we replace a part of the form λx:A.P by λx′:A.P ′, where P ′ is obtained from
P by replacing all occurrences of x by x′. Here x′ is supposed to be fresh, that
is, not used in building P . For instance, λx:A. x can be renamed to λx′:A. x′.

Note that bound variables occur also in predicate logic (∀x.R(x, y)), and cal-
culus (

∫
f(x)dx). There it is also usual to rename bound variables: we identify

for instance ∀x.R(x, y) with ∀x′. R(x′, y), and
∫

f(x)dx with
∫

f(x′)dx′.
If a term M ′ is obtained from a term M by renaming bound variables, then

we say that M and M ′ are α-equivalent. This is explicitly denoted by M ≡ M ′.
However, sometimes we will sloppily write M = M ′ for two α-equivalent terms.

Some examples:

• λx:A. x ≡ λy:A. y,

• λx:A. z x x ≡ λy:A. z y y,

• λx:A. z x x 6≡ λy:A. z y x,

• x (λx:A. x) ≡ x (λy:A. y),

• x (λx:A. x) 6≡ y (λy:A. y).

In order to avoid the problems mentioned above, we adopt the following:

• Terms that are equal up to a renaming of bound variables are identified.

• Bound variables are renamed whenever necessary in order to prevent un-
intended capturing of free variables.

The second point is an informal formulation to what is called the Variable
Convention which is more precisely stated as follows: if terms M1, . . . ,Mn occur
in some context (for instance a proof), then in these terms all bound variables
are chosen to be different form the free variables.

Substitution. Assuming the variable convention, the definition of the sub-
stitution of N for the free occurrences of x : A in M , notation M [x := N ], is
defined by induction on the structure of M as follows:

1. (a) x[x := N ] = N ,

(b) y[x := N ] = y,



30 Simply typed λ-calculus

2. (λy:B.M0)[x := N ] = λy:B. (M0[x := N ]),

3. (M1 M2)[x := N ] = (M1[x := N ]) (M2[x := N ]).

Note that in the second clause by the variable convention we have that y is not
free in N , and that x 6= y.

2.4 Beta-reduction

The β-reduction relation expresses how the application of a function to an
argument is evaluated. An example of a β-reduction step is for example:
(λx:nat. x) 5 →β 5. Here the application of the identity function on natural
numbers applied to the argument 5 is evaluated. In general, the β-reduction
rule is as follows:

(λx:A.M) N →β M [x := N ].

A β-reduction step, or β-rewrite step, is obtained by applying the β-reduction
rule somewhere in a term. So a β-reduction step looks like the following:

. . . (λx:A.M) N . . . →β . . .M [x := N ] . . .

The more technical definition is as follows. The β-reduction relation, denoted
by →β , is defined as the smallest relation on the set of λ-terms that satisfies

(λx:A.M)N →β M [x := N ]

and that is moreover closed under the following three rules:

M →β M ′

λx:A.M →β λx:A.M ′

M →β M ′

M P →β M ′ P

M →β M ′

P M →β P M ′

A sub-term of the form (λx:A.M) N is called a β-redex. Applying the β-
reduction rule to such a sub-term is called contracting the redex (λx:A.M) N .
A β-reduction or β-rewrite sequence is a finite or infinite sequence

M0 →β M1 →β . . .

obtained by performing zero, one or more β-rewrite steps. A β-reduction can
be seen as a computation. A term where no β-reduction step is possible, so
a term where nothing remains to be computed, is said to be a β-normal form
(or shortly normal form). We can think of a β-normal form as the result of a
computation.
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Examples.

• (λx:A. x) a →β x[x := a] = a

• (λx:A. λy:B. x) a b →β ((λy:B. x)[x := a]) b = (λy:B. a) b →β a[y := b] =
a

• (λf :A → A. f) (λx:A. x) a′ →β (λx:A. x) a′ →β a′

• λx:A. (λy:A. λz:B. y) x →β λx:A. λz:B. x

•

(λf :A→A. λx:A. f (f x)) (λy:A. y) 5 →β (λx:A. (λy:A. y) ((λy:A. y) x)) 5
→β (λy:A. y) ((λy:A. y) 5)
→β (λy:A. y) 5
→β 5

Note that in a β-reduction step, an argument can be erased or multiplied.
Further, the argument is an arbitrary λ-term. In particular, it can be a function
itself. This higher-order behavior also occurs in programming languages where
a procedure can receive another procedure as argument.

Notation. We write �β or →∗
β for the reflexive-transitive closure of →β . We

sometimes omit the subscript β. If M �β M ′, then M reduces to M ′ in zero,
one or more steps.

Normal forms. A term is said to be in normal form if it does not contain
a redex. That is, it does not contain a subterm of the form (λx:A.M) N .
Examples of normal forms: x, λx:A. x, z (λx:A. x) y. The term a ((λx:A. x) y)
is not a normal form.

Shape of the normal forms. We define the set NF inductively by the fol-
lowing clauses:

1. if x : A1→ . . .→An→B, and M1, . . . ,Mn ∈ NF with M1 : A1, . . . ,Mn :
An, then xM1 . . .Mn ∈ NF,

2. if M ∈ NF, then λx:A.M ∈ NF.

We can show the following:

• If M is a normal form, then M ∈ NF.

• If M ∈ NF, then M is a normal form.

That is, NF is a characterization of the β-normal forms.
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Weak normalization. A term is said to be weakly normalizing if it has a
normal form.

Untyped λ-calculus is not weakly normalizing: for instance the term Ω =
(λx. xx)(λx. xx) does not have a normal form.

The simply typed λ-calculus is weakly normalizing. A proof analyzing the
complexity of the types in a term along a reduction is due to Turing and Prawitz.

Termination or strong normalization. A term M is said to be terminating
or strongly normalizing if all rewrite sequences starting in M are finite. If a
term is strongly normalizing then it is also weakly normalizing. If a term is
weakly normalizing it is not necessarily strongly normalizing: the untyped λ-
term (λx.λy. y)Ω is weakly normalizing but not strongly normalizing.

The simply typed λ-calculus is terminating. (And hence also weakly nor-
malizing.) This means that there are no infinite reduction sequences. So every
computation eventually ends in a normal form.

Confluence. A term M is said to be confluent if whenever we have M →∗
β N

and M →∗
β N ′, there exists a term P such that N →∗

β P and N ′ →∗
β P . A

rewriting system is said to be confluent if all its terms are confluent. A conse-
quence of confluence is that a term has at most one normal form. Both untyped
and simply typed λ-calculus are confluent. Since simply typed λ-calculus is also
terminating, we have that every term has a unique normal form.

Subject reduction. Subject reduction is the property that types are pre-
served under computation. More formally: if Γ ` M : A and M �β M ′, then
Γ ` M ′ : A. Simply typed λ-calculus has the property subject reduction.

2.5 Curry-Howard-De Bruijn isomorphism

There exist amazing correspondences between various typed λ-calculi on the
one hand, and various logics on the other hand. These correspondences are
known as the Curry-Howard-De Bruijn isomorphism. This isomorphism forms
the basis of proof checkers based on type theory, like Coq. Here we focus on the
correspondence between simply typed λ-calculus and first-order minimal propo-
sitional logic. Recall that in first-order minimal propositional logic there is only
one logical connective: → for implication. So we do not consider conjunction,
disjunction, and negation.

The static part of the isomorphism states that formulas correspond to types,
and proofs to derivations showing that a term is of a certain type. This is
summarized by the slogan formulas as types and proofs as terms.

Formulas as types. The first part of the Curry-Howard-De Bruijn isomor-
phism concerns the correspondence between formulas in minimal logic on the
one hand, and types of simply typed λ-calculus on the other hand. Here the
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correspondence is literally: we can choose to see an expression A either as a
formula in minimal logic or as a simple type. This formulas as types part can
be summarized as follow:

propositional variable ∼ type variable
the connective → ∼ the type constructor →
formula ∼ type

Proofs as terms. The second part of the isomorphism concerns the cor-
respondence between proofs in natural deduction of first-order propositional
minimal logic on the one hand, and derivations showing that a term has a cer-
tain type on the other hand. Since there is moreover an exact correspondence
between a simply typed term M of type A and the derivation showing that
M : A, we can identify a term M of type A with the derivation showing that
M : A. This part is summarized by the slogan proofs as terms and consists of
the following correspondences:

assumption ∼ term variable
implication introduction ∼ abstraction
implication elimination ∼ application
proof ∼ term

The examples of type derivations given in the previous section correspond to
the proofs given in Chapter 1. Further, the two different proofs of A→A→A
given there correspond to type derivations of λx:A. λy:A. x and λx:A. λy:A. y.

Provability and inhabitation. The type inhabitation problem is the ques-
tion whether, given a type A, there is a closed inhabitant of A. Sometimes this
is abbreviated as `? : A. This problem corresponds to the provability question:
this is the question whether, given a formula A, there is a proof showing that
A is a tautology.

Note that the provability question becomes trivial if we remove the word
‘tautology’: an assumption A is a proof of A (but not a proof that A is a
tautology). Similarly, the inhabitation problem becomes trivial if we remove the
word ‘closed’: a variable of type A is an inhabitant of the type A (but not a
closed inhabitant).

Proof checking and type checking. The type checking problem is the ques-
tion whether, given an environment Γ, a term P and a type A, the term M is of
type A. Sometimes this is abbreviated as Γ ` P : A?. This problem corresponds
to the proof checking problem: given a proof P and a formula A, is P a proof
of A?

Note that we are a bit sloppy, because whereas A-seen-as-a-formula is lit-
erally the same as A-seen-as-a-type, this is not the case for proofs on the one
hand and type derivations on the other hand. It is however possible to see a
proof of the formula A as a derivation showing that a certain term has type A,
even if the two expressions are not literally the same.
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Coq. The Curry-Howard-De Bruijn isomorphism forms the essence of proof
checkers like Coq. The user who wants to show that a formula A is a tautology
construct, using the proof-development system, a closed inhabitant of A now
viewed as a type. A type checking algorithm verifies whether the found term is
indeed of type A. If this is the case, then we indeed have a proof of A.

Example. We recall the example that was already partly given in Chapter 1.
On the left is a we have the different stages of constructing a proof in minimal
logic, and on the right are the corresponding steps in Coq. To save space we do
not indicate which rule is used in the minimal logic part.
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Lemma Lemma DrieA :
(A → B) → (C → A) → C → B. (A->B)->(C->A)->C->B.

Goal:

(A → B) → (C → A) → C → B (A->B)->(C->A)->C->B.

intro x.
Assumption: x:A->B

(C → A) → C → B

(A → B) → (C → A) → C → B Goal: (C->A)->C->B

intro y.
Assumptions:

x:A->B
y:C->A

C → B
(C → A) → C → B

(A → B) → (C → A) → C → B Goal: C->B
intro z.
Assumptions:

x:A->B
y:C->A
z:C

B
C → B

(C → A) → C → B

(A → B) → (C → A) → C → B Goal: B

apply x.
Assumptions do not change

A → B A
B

C → B
(C → A) → C → B

(A → B) → (C → A) → C → B Goal: A

apply y.
Assumptions do not change

A → B
C → A C

A
B

C → B
(C → A) → C → B

(A → B) → (C → A) → C → B Goal: C

exact z.

done! Subtree proved!
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The corresponding type derivation is as follows:

Γ ` x : A → B

Γ ` y : C → A Γ ` z : C

Γ ` (y z) : A

Γ ` (x (y z)) : B

Γ1 ` λz:C. (x (y z)) : C → B

Γ2 ` λy:C → A. λz:C. (x (y z)) : (C → A) → C → B

` λx:A → B. λy:C → A. λz:C. (x (y z)) : (A → B) → (C → A) → C → B

Here we use Γ = x : A → B, y : C → A, z : C, Γ1 = x : A → B, y : C → A, and
Γ2 = x : A → B.

Now we turn to the dynamic part of the Curry-Howard-De Bruijn isomorphism:
β-reduction in the λ-calculus corresponds to proof normalization or detour elim-
ination in minimal logic.

The key observation here is that a β-redex

(λx:A.M) N

in some λ-term corresponds to a detour (an introduction rule immediately fol-
lowed by an elimination rule) in some proof:

...
B

A → B
I[x] →

...
A

B
E →

This correspondence is more clearly visible if we consider the relevant part of a
typing derivation for a redex:

Γ, x : A ` M : B

Γ ` λx:A.M : A → B Γ ` N : A
Γ ` (λx:A.M) N : B

We consider β-reduction and proof normalization, by listing first the important
notions for β-reduction and then the corresponding ones for proof normalization.

Beta Reduction.

• The β-reduction rule is

(λx:A.M) N →β M [x := N ].

• The substitution of a term N :A for a variable x:A in a term M is defined
by induction on the structure of M .

• A β-redex is a term of the form (λx:A.M) N .

A sub-term of P of the form (λx:A.M) N is called a β-redex in P .
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• A β-reduction step P →β P ′ is obtained by replacing in P a β-redex
(λx:A.M) N by M [x := N ]. We then say that this β-redex is contracted.

The formal definition of the β-reduction relation is given by an axiom (for
β-reduction) and three rules that express how β-reduction takes place in
a context.

• A β-normal form is a term that cannot perform a β-reduction step, or
equivalently, that does not contain a β-redex.

Proof Normalization.

• The proof normalization rule is as follows:

...
B

A → B
I[x] →

...
A

B
E →

is replaced by

...
B

where every occurrence of the assumption Ax is replaced by the proof

...
A

• The substitution operation ‘replace all assumptions Ax by a proof of A’
remains informal.

• A detour is a proof of the form

...
B

A → B
I[x] →

...
A

B
E →

A proof contains a detour if a sub-proof (also this notion remains informal)
is a detour as above, that is, an introduction rule immediately followed by
an elimination rule.

• A proof normalization step is obtained by replacing a detour
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...
B

A → B
I[x] →

...
A

B
E →

in a proof by

...
B

that is, by applying the proof normalization rule.

• A normal proof is a proof that cannot perform a proof normalization step,
or equivalently, that does not contain a detour.

Summary. So in summary, one can say that the dynamic part of the Curry-
Howard-De Bruijn isomorphism consists of the following ingredients:

β-redex ∼ detour
β-reduction step ∼ proof normalization step
β-normal form ∼ normal proof

2.6 Coq

• Notation of λ-terms in Coq:

An abstraction λx:A.M is written in Coq as fun x:A => M.

An application F N is written in Coq as F N.

The λ-term λx:A. λx′:A. λy:B.M can be written in Coq in the following
ways:

fun (x:A) (x’:A) (y:B) => M
fun (x x’:A) (y:B) => M

• Reduction in Coq.

Coq uses β-reduction, but also other reduction relations.

We can use the combination of tactics Eval cbv beta in with argument
a term to β-reduce the term using the call-by-value evaluation strategy.

• Print id .

This command displays on the screen the information concerning id.

• Check term .

This command displays the type of term.
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• Load id .

If you start Coq in unix without using Proof General, by typing coqtop,
then you can easily check whether a file id.v is accepted by Coq: use the
command Load id. (without the v).

• Proof .

It is nice to start a proof with this command.

• Qed .

This closes a finished proof.

• Section id .

This opens a section. It is closed by

End id .

• Local declarations.

A declaration gives the type of an identifier but not its value. The scope
of a local declaration is the section where it occurs. Outside the section
the declaration is unknown. Local declarations are given using Variable,
for example Variable A B C : Prop.

Instead of Variable we can also use Hypothesis. The idea of Hypothesis
p : A is to declare p as representing an arbitrary (unknown) proof of A.

• Global declarations. The syntax for a global declaration is Parameter, for
instance :
Parameter A : Prop. By using a global declaration, the current environ-
ment is extended with this declaration. It is not local to a section.

Instead of Parameter we can also use Axiom.

• Local definitions.

A definition gives the value of an identifier, and hence its type. The
syntax of a local definition is Let v := fun x:A => x or, giving the type
explicitly, Let v : A -> A := fun x:A => x. This definition also can
be written as Let v (x:A) : A := x. The scope of a local definition is
the section where it occurs.

• Global definitions.

The syntax of a global definition is Definition. For example:
Definition v := fun x:A => x, or, giving the type explicitly,
Definition v : A -> A := fun x:A => x. It also can be written as
Definition v (x:A) : A := x.





Chapter 3

Inductive types

This chapter is concerned with inductive definitions in Coq. A lot of data
types can be defined in λ-calculus. This yields however representations that are
not always very efficient. More efficient representations can be obtained using
inductive types.

3.1 Expressivity

Untyped lambda calculus. In the course Introduction to theoretical com-
puter science, we have seen representations of the data types natural numbers,
booleans, and pairs with some elementary operations. Moreover, in untyped
λ-calculus a fixed point operator can be defined. A fixpoint of a function
f : X → X is an x ∈ X such that f(x) = x. For untyped λ-calculus there
is the following important result:

Theorem 3.1.1. For every λ-term F there is a term M such that

FM =β M.

The proof can be given by using the fixed point combinator

Y = λf. (λx. f(xx))(λx. f(xx))

The fixed point operator can be used to defined recursive functions, like for
instance

0! = 1,

(n + 1)! = (n + 1) · n!.

in λ-calculus. Here a function is defined in terms of itself. The important thing
is that on the right-hand side, it is applied to an argument that is essentially
simpler than the argument on the left-hand side.

The class of recursive functions is the smallest class of functions N → N that
contains the initial functions

41
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1. projections:
Um

i (n1, . . . , nm) = ni for all i ∈ {1, . . . ,m},

2. successor :
Suc(n) = n + 1,

3. zero:
Zero(n) = 0,

and that is moreover closed under the following:

1. composition:
if g : Nk → N and h1, . . . , hk : Nm → N are recursive, then f : Nm → N
defined by

f(n1, . . . , nm) = g(h1(n1, . . . , nm), . . . , hk(n1, . . . , nm))

is also recursive,

2. primitive recursion:
if g : Nk → N and h : Nk+2 → N are recursive, then f : Nk+1 → N defined
by

f(0, n1, . . . , nk) = g(n1, . . . , nk)
f(n + 1, n1, . . . , nk) = h(f(n, n1, . . . , nk), n, n1, . . . , nk)

is also recursive,

3. minimalization:
if g : Nk+1 → N is recursive, and for all n1, . . . , nk there exists an n such
that g(n, n1, . . . , nk) = 0, then f : Nk → N defined by

f(n1, . . . , nk) = µn.g(n, n1, . . . , nk)

is also recursive.

In the last clause, µn.g(n, n1, . . . , nk) denotes the smallest natural number m
such that g(m,n1, . . . , nk) = 0.

Kleene has shown the following:

Theorem 3.1.2. All recursive functions are λ-definable.

The proof is given using the following lemma:

Lemma 3.1.3.

1. The initial functions are λ-definable.

2. The λ-definable functions are closed under composition, primitive recur-
sion, and minimalization.
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Simply typed lambda calculus. The fixpoint combinator Y is not typable
in the simply typed λ-calculus. As a matter of fact, the simply typed λ-calculus
has essentially less expressive power than the untyped λ-calculus. A result
by Schwichtenberg, given below, states that the functions that are definable in
simply typed λ-calculus are exactly the extended polynomials, which is a smaller
class than the one of all recursive functions.

The class of extended polynomials is the smallest class of functions N → N
that contains

1. projections:
Um

i (n1, . . . , nm) = ni for all i ∈ {1, . . . ,m},

2. constant function:
k(n) = k,

3. signum function:
sig(0) = 0,
sig(n + 1) = 1,

and that is moreover closed under the following:

1. addition:
if f : Ni → N and g : Nj → N are extended polynomials, then (f + g) :
Ni+j → N defined by

(f + g)(n1, . . . , ni,m1, . . . ,mj) = f(n1, . . . , ni) + g(m1, . . . ,mj)

is also an extended polynomial,

2. multiplication:
if f : Ni → N and g : Nj → N are extended polynomials, then (f · g) :
Ni+j → N defined by

(f · g)(n1, . . . , ni,m1, . . . ,mj) = f(n1, . . . , ni) · g(m1, . . . ,mj)

is also an extended polynomial.

Theorem 3.1.4. The functions definable in simply typed λ-calculus are exactly
the extended polynomials.

An example of a function that is definable in λ-calculus but not in simply typed
λ-calculus is Ackermann’s Function, denoted by A, that is defined as follows:

A(0, n) = n + 1,

A(m + 1, 0) = A(m, 1),
A(m + 1, n + 1) = A(m,A(m + 1, n)).
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A representation of the natural numbers. Let A be some type. The
natural numbers can be represented as countably infinitely many different closed
inhabitants in normal form of type (A → A) → (A → A): represent k ∈ N as
λs:A → A. λA:n. sk(n) where we use the notation k defined as follows:

F 0(P ) = P,
Fn+1(P ) = F (Fn(P )).

A few natural numbers in their encoding as Church numeral:

• The representation of 0 is λs:A → A. λn:A.n. As a proof:

[An]
A → A

I[n] →

(A → A) → (A → A)
I[s] →

• The representation of 1 is λx:A → A. λn:A. (s n). As a proof:

[A → As] [An]
A

E →
A → A

I[n] →

(A → A) → (A → A)
I[s] →

• The representation of 2 is λx:A → A. λn:A. (s (s n)). As a proof:

[A → As]
[A → As] [An]

A
E →

A
E →

A → A
I[n] →

(A → A) → (A → A)
I[s] →

Below we will see an easier encoding of natural numbers as an inductive type.

3.2 Universes of Coq

Every expression in Coq is typed. The type of a type is also called a sort. The
three sorts in Coq are the following:

• Prop is the universe of logical propositions. If A:Prop then A denotes the
class of terms representing proofs of the proposition A.

• Set is the universe of program types or specifications. Besides programs
also well-knows sets as the booleans and the natural numbers are in Set.

• Type is the universe of Prop and Set. In fact there is in infinite hierarchy
of sorts Type(i) with Type(i) : Type(i + 1). From the user point of view
we have Prop:Type and Set:Type, and further Type:Type. This can be
seen using Check.
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3.3 Inductive types

Inductive types: introduction. In order to explain the notion of inductive
type we consider as an example the inductive type representing the natural
numbers. Its definition is as follows:

Inductive nat : Set := O : nat | S : nat->nat.

This definition is already present in Coq, check this with Check nat.. Let us
comment on the definition. A new element of Set is declared with name nat.
The constructors of nat are O and S. Because this is an inductive definition, the
set nat is the smallest set that contains O and is closed under application of
S, so O and S determine all elements of nat. The constructors of an inductive
definition correspond to introduction rules. In this case, the introduction rules
for nat can be seen as follows:

O : nat
p : nat

(S p) : nat

Recursive definitions. In Coq recursive functions can be defined using the
Fixpoint construction. For non-recursive functions the Definition construc-
tion is used. In case a recursive function is defined where the input is of an
inductive type, in the definition all constructors of the inductive type are con-
sidered in turn. This is done using the match construction. As an example we
consider the definition of the function plus: nat -> nat -> nat:

Fixpoint plus (n m : nat) {struct n} : nat :=
match n with
| O => m
| S p => S (plus p m)

end.

Here the recursion is in the first argument of plus. In the recursive call, the
argument p is strictly smaller than the original argument n which is (S p).

The first line of the definition reads as follows: a recursive function plus
is defined. It takes as input one argument of type nat which is bound to the
parameter n. Then the output is a function of type nat -> nat. The output is
the function that is on the second till the last line: it takes as input an argument
of type nat which is bound to the argument m. Then the behaviour is described
distinguishing cases: either n is O or n is of the form (S p).

Inductive types: elimination. Elimination for nat corresponds to reason-
ing by cases: for an element n of nat there are two possibilities: either n = O
or n = (S p) for some p in nat. With the definition of an inductive type,
automatically three terms that implement reasoning by cases are defined. In
the case of nat, we have
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nat_ind
nat_rec
nat_rect

Here we consider only the first one. Using the command Check, we find:

nat_ind : forall P : nat -> Prop,
P 0 ->
(forall n : nat, P n -> P (S n)) ->
forall n : nat, P n

This type can be read as follows. For every property P of the natural numbers,
if we have that

• the property P holds for O, and

• the property P holds for n implies that the property P holds for the suc-
cessor of n,

then the property P holds for every natural number.
The tactic elim tries to apply nat ind. That is, if the current goal G concerns

an element n of nat, then elim tries to find an abstraction P of the current goal
such that Pn = G. Then it applies nat ind P. See also the use of elim in the
following example.

Example. This example concerns the proof of an elementary property of the
function plus. On the left is the ‘normal’ proof and on the right are the corre-
sponding steps in Coq.



Inductive types 47

Lemma. ∀n ∈ N : n = plus n 0 Lemma plus_n_O :
forall n : nat, n = plus n O.

Let n ∈ N. intro n.
To Prove: n = plus n 0. Goal: n = plus n O.
induction on n. elim n.

Basisstep
To Prove: 0 = plus 0 0. Goal 1: O = plus O O.
Definition of plus yields simpl.

plus 0 0 = 0.
To Prove: 0 = 0. Goal 1: O = O.

reflexivity.

Inductionstep
To Prove: Goal:

∀m ∈ N : forall m : nat,
m = plus m 0→ m = plus m O ->
Sm = plus (Sm) 0. S m = plus (S m) 0).

Let m ∈ N. intro m.
Suppose that m = plus m 0. intro IH.
To Prove: Sm = plus (Sm) 0 Goal: S m = plus (S m) O.
Definition of plus yields simpl.

plus (Sm) 0 = S(plus m 0).
To Prove: Sm = S(plus m 0). Goal: S m = S(plus m 0).
By the induction hypothesis rewrite <- IH.

plus m 0 = m.
To Prove: Sm = Sm. Goal: S m = S m.

reflexivity.

Prop and bool. Prop is the universe of the propositions in Coq. We have
True : Prop and False : Prop. The proposition True denotes the class of
terms representing proofs of True. It has one inhabitant. The proposition False
denotes the class of terms representing proofs of False. It has no inhabitants
since we do not have a proof of False. Both True and False are defined
inductively:

Inductive True : Prop := I : True .
Inductive False : Prop := .

Further, bool is the inductive type of the booleans:

Inductive bool : Set := true : bool | false : bool .

We have bool:Set. Operations on elements of Prop, like for instance not,
cannot be applied to elements of bool. If in doubt, use Check.
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3.4 Coq

• Inductive

This is not the complete syntax! The construct Inductive is used to give
an inductive definition of a set, as in the example of natural numbers. Use
Print nat. and Print bool. to see examples of inductive types.

• match ... with ... end.

This construct is used to distinguish cases according to the definition of
an inductive type. For instance, if m is of type nat, we can make a case
distinction as follows:

match m with
| O => t1
| S p => t2

end.

Here the case distinction is: m is either O or of the form (S p). The | is
used to separate the cases, and t1 and t2 are terms.

• Fixpoint

This construct is used to give a recursive definition. (For a non-recursive
definition, use Definition.) To illustrate its use we consider as an exam-
ple an incomplete definition of plus:nat->nat->nat.

Fixpoint plus (n m : nat) {struct n} : nat :=
match n with
| O => m
| S p => S (plus p m)

end.

Here a recursive definition of the function plus taking as input two natural
numbers is given; the recursion is in the first argument (indicated by the
parameter n). An alternative definition is:

Fixpoint plus (n m : nat) {struct m} : nat :=
match m with
| O => n
| S p => S (plus n p)
end.

Here the recursion is on the second argument (indicated by the parameter
m).
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• elim

So far we have seen the use of elim x if x is the label of a hypothesis of
the form A ∧B or A ∨B.

In fact then elim x applies either and_ind or or_ind.

In case that x is of some inductive type, say t, then elim x tries to apply
t_ind. The result is that induction on x is started.

• induction id .

This tactic does intros until id ; elim id. In the example, instead
of the two first steps

intro n .
elim .

we can use

induction n .

• Eval compute in

This is an abbreviation for Eval cbv iota beta zeta delta in. We
will see more about this later on; for now: it can be used to compute the
normal form of a term.

• simpl .

This tactic can be applied to any goal. The goal is simplified by performing
βι-reduction. This means that β-redexes are contracted, and also redexes
for definitions like for instance the function plus are reduced.

• rewrite id . Let id be of type forall (x1:A1) . . . (xn:An), t1 = t2,
so some universal quantifications followed by an equality.

An application of rewrite id or equivalently rewrite -> id yields that
in the goal all occurrences of t1 are replaced by t2.

An application of rewrite <- id yields that in the goal all occurrences of
t2 are replaced by t1.

• reflexivity .

This tactic can be applied to a goal of the form t=u. It checks whether
t and u are convertible (using βι-reduction) and if this is the case solves
the goal.
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3.5 Inversion

The tactic inversion is, very roughly speaking, used to put a hypothesis in
a form that is more useful. It can be used with argument label if label is the
label of a hypothesis that is built from an inductive predicate. We consider two
examples of the use of inversion.

In the first example we use the predicate le and a declared variable P:

Inductive le (n:nat) : nat -> Prop :=
le_n : le n n

| le_S : forall m : nat, le n m -> le n (S m).
Variable P : nat -> nat -> Prop .

Suppose we want to prove an implication of the following form:

Lemma een : forall n m : nat, le (S n) m -> P n m .

We start with the necessary introductions. This yields:

1 subgoal

n : nat
m : nat
H : le (S n) m
============================
P n m

Now inversion H . generates two new goals, one for each of the ways in which
H could have been derived from the definition of le:

2 subgoals

n : nat
m : nat
H : le (S n) m
H0 : S n = m
============================
P n (S n)

subgoal 2 is:

n : nat
m : nat
H : le (S n) m
m0 : nat
H0 : le (S n) m0
H1 : S m0 = m
============================
P n (S m0)
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In the second example, we again use P and in addition the predicate leq:

Inductive leq : nat -> nat -> Prop :=
leq_O : forall m : nat, leq O m |
leq_s : forall n m : nat, leq n m -> leq (S n) (S m) .

Suppose we wish to prove the following implication:

Lemma twee : forall n m : nat, leq (S n) m -> P n m .

We start with the necessary introductions. This yields:

1 subgoal

n : nat
m : nat
H : leq (S n) m
============================
P n m

Now inversion H . yields one new goal, since there was only one possible way
in which H could have been concluded from the definition of leq:

1 subgoal

n : nat
m : nat
H : leq (S n) m
n0 : nat
m0 : nat
H1 : leq n m0
H0 : n0 = n
H2 : S m0 = m
============================
P n (S m0)





Chapter 4

1st-order predicate logic

This chapter is concerned with first-order predicate logic. This is an extension
of first-order propositional logic obtained by adding universal quantification (∀)
and existential quantification (∃) over terms. There is no quantification over
formulas or predicates. We consider a proof system for natural deduction, and
first-order predicate logic in Coq. In order to study the theory of Coq later on,
we distinguish minimal, intuitionistic, and classical first-order predicate logic.
Partly we recapitulate what was already introduced in the previous chapter.

4.1 Terms and formulas

Symbols. To start with, we assume:

• a countably infinite set of variables, written as x, y, z, . . ..

Further, we have a signature consisting of:

• a set of function symbols, written as f, g, . . .,

• a set of predicate symbols, written as R,S, . . ..

Every function symbol and every predicate symbol has a fixed arity, which is a
natural number that prescribes the number of arguments it is supposed to have.
Finally, we make use of the following logical connectives:

• → for implication,

• ∧ for conjunction,

• ∨ for disjunction,

• ⊥ for falsum,

• > for truth,
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• ∀ for universal quantification,

• ∃ for existential quantification.

Only the last two are new compared to first-order propositional logic.

Algebraic terms. Let Σ be a signature consisting of a set of function symbols
F and a set of predicate symbols P. Algebraic terms over Σ are expressions built
from variables and function symbols where the arity of the function symbols is
respected. The inductive definition of the set of algebraic terms is as follows:

1. a variable x is an algebraic term over Σ,

2. if f is a function symbol in F of arity n, and M1, . . . ,Mn are algebraic
terms over Σ, then f(M1, . . . ,Mn) is an algebraic term over Σ.

The terminology algebraic terms is used to distinguish between these terms and
the λ-terms that are considered later on. The shorter terminology term is used
instead if no confusion is expected. Note that for algebraic terms the functional
notation (with parentheses and commas) is used.

Formulas. Let Σ be a signature consisting of a set of function symbols F
and a set of predicate symbols P. The set of first-order formulas over Σ is
inductively defined as follows:

1. if R is a predicate symbol in P of arity n, and M1, . . . ,Mn are algebraic
terms over Σ, then R(M1, . . . ,Mn) is a formula,

2. the constant ⊥ is a formula,

3. the constant > is a formula,

4. if A and B are formulas, then (A → B) is a formula,

5. if A and B are formulas, then (A ∧B) is a formula,

6. if A and B are formulas, then (A ∨B) is a formula,

7. if A is a formula and x is a variable, then (∀x. A) is a formula,

8. if A is a formula and x is a variable, then (∃x. A) is a formula.

A formula of the form R(M1, . . . ,Mn) is called an atomic formula. The atomic
formulas come in the place of the propositional variables in first-order propo-
sitional logic. Further, only the formulas built using universal and existential
quantification are new here.
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Parentheses. For the connectives →, ∧, and ∨, the same conventions con-
cerning parentheses are assumed as for first-order propositional logic. Also,
outermost parentheses are omitted. For the universal quantification, there is no
general consensus about how to minimize the numbers of parentheses. Here we
adopt the convention used by Coq: the quantifier scope extends to the right as
much as possible. So we write for instance ∀x.A→B instead of ∀x. (A→B). For
existential quantification we do the same.

Free and bound variables. The universal quantifier ∀ and the existential
quantifier ∃ bind variables. An occurrence of a variable is bound if it is in the
scope of a ∀ or of a ∃. For instance, in the formula ∀x. P (x) the underlined
occurrence of x is bound. An occurrence of a variable is free if it is not bound.
For instance, in the formula ∀y. P (x) the underlined occurrence of x is free. In
the following, we identify formulas that are equal up to a renaming of bound
variables (or α-conversion). For instance, if R is a unary predicate symbol, then
the formulas ∀x.R(x) and ∀y.R(y) are identified.

Substitution. We need the notion of substitution of a term N for a variable
x in a term M , and of substitution of a term N for a variable x in a formula
A. Both forms of substitution are denoted by [x := N ]. We assume that bound
variables are renamed in order to avoid unintended capturing of free variables.

The inductive definition of the substitution of a term N for a variable x in
a term M , notation M [x := N ], is as follows:

1. x[x := N ] = N ,

2. y[x := N ] = y,

3. f(M1, . . . ,Mn)[x := N ] = f(M1[x := N ], . . . ,Mn[x := N ]).

The inductive definition of the substitution of a term N for a variable x in
a formula A, notation A[x := N ], is as follows:

1. R(M1, . . . ,Mn)[x := N ] = R(M1[x := N ], . . . ,Mn[x := N ]),

2. ⊥[x := N ] = ⊥,

3. >[x := N ] = >,

4. (A1 → A2)[x := N ] = (A1[x := N ]) → (A2[x := N ]),

5. (A1 ∧A2)[x := N ] = (A1[x := N ]) ∧ (A2[x := N ]),

6. (A1 ∨A2)[x := N ] = (A1[x := N ]) ∨ (A2[x := N ]),

7. (∀y.A1)[x := N ] = ∀y.(A1[x := N ]),

8. (∃y.A1)[x := N ] = ∃y.(A1[x := N ]).

Note that in the last two clauses we assume the name y to be chosen such that
the term N does not contain free occurrences of y.
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4.2 Natural deduction

4.2.1 Intuitionistic logic

The rules. The natural deduction proof system for first-order predicate logic
is an extension of the one for first-order propositional logic. There are two new
connectives: ∀ and ∃. So there are four new rules: the introduction and elim-
ination rule for universal quantification, and the introduction and elimination
rule for existential quantification. For completeness we give here all the rules.

1. The assumption rule.

A labeled formula Ax is a proof.

Ax

Such a part of a proof is called an assumption.

2. The implication introduction rule:

A → B
I[x]→

B

...

3. The implication elimination rule:

B
E→

A → B

...

A

...

4. The conjunction introduction rule:

A ∧B

A

...

B

...

I∧

5. The conjunction elimination rules:
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A

A ∧B

...

El∧
B

A ∧B

...

Er∧

6. The disjunction introduction rules:

A ∨B

A

...

Il∨
A ∨B

B

...

Ir∨

7. The disjunction elimination rule:

C

A ∨B A → C

...

B → C

...

8. The falsum rule:

A

⊥

...

9. The universal quantification introduction rule:

A
∀x.A

I∀

with x not in uncanceled assumptions.

10. The universal quantification elimination rule:

∀x.A
A[x := M ] E∀

Here M is an algebraic term.
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11. The existential quantification introduction rule:

A[x := M ]
∃x. A

I∃

12. The existential quantification elimination rule:

∃x. A ∀x. (A → B)
B

E∃

with x not free in B.

Comments.

• In the rule I→ zero, one, or more assumptions A are canceled. Those are
exactly the assumptions that are labeled with x.

• In the rule I∀ the side-condition is that the variable x does not occur in
any uncanceled assumption. Intuitively, the derivation does not depend
on x.

• In the rule E∀ there is the usual assumption concerning substitution: no
free variables in M are captured by the substitution.

• In the I∃ rule, there is the usual assumption concerning substitution: no
variables in M are captured by the substitution.

• In the E∃ rule, there is the following side-condition: x is not free in B.
Intuitively, nothing special about x is assumed.

Tautologies. As in the case of first-order propositional logic, a formula is said
to be a tautology if there exists a proof of it with no uncanceled assumptions.

Examples. We assume unary predicates P and Q, and a nullary predicate A.
In addition we assume a term N .

1.

[∀x.P (x)w]
P (N) E∀

(∀x.P (x)) → P (N)
I[w]→

2.

[Aw]
∀x.A

I∀
A → ∀x.A

I[w]→
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3.

[(∀x.P (x) → Q(x))w]
P (y) → Q(y) E∀

[∀x.P (x)v]
P (y) E∀

Q(y) E→

∀y.Q(y) I∀

(∀x.P (x)) → ∀y.Q(y)
I[v]→

(∀x.P (x) → Q(x)) → (∀x.P (x)) → ∀y.Q(y)
I[w]→

4.

[(A → ∀x.P (x))v] [Aw]
∀x.P (x) E→

P (y) E∀

A → P (y)
I[w]→

∀y.A → P (y) I∀

(A → ∀x.P (x)) → ∀y.A → P (y)
I[v]→

5.

[∀y. P (x) → A]
P (x) → A [P (x)]

A
(∀y. P (y) → A) → A

P (x) → (∀y. P (y) → A) → A

∀x. (P (x) → (∀y. P (y) → A) → A)

6. The following proof is not correct:

[P (x)w]
∀x. P (x) I∀

P (x) → ∀x. P (x)
I[w]→

7. The following proof is not correct:

[(∃x. P (x))v]

[P (x)w]
P (x) → Px

I[w] →

∀x. P (x) → P (x) I∀

P (x) E∃

∀z. P (z) I∀

(∃x. P (x)) → ∀z. P (z)
I[v]→
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8. We abbreviate ∃x. P (x) ∨ ∃x.Q(x) as A.

(∃xP (x) ∨Q(x))

P (y) ∨Q(y) P (y) → A Q(y) → A

∃x. P (x) ∨ ∃x.Q(x)
(P (y) ∨Q(y)) → (∃x. P (x)) ∨ (∃x.Q(x))

∀x. (P (x) ∨Q(x)) → ((∃x. P (x)) ∨ (∃x.Q(x)))
(∃x. P (x)) ∨ (∃x. Q(x))

(∃x. P (x) ∨Q(x)) → (∃x. P (x)) ∨ (∃x.Q(x))

What remains to be shown is P (y) → A and Q(y) → A. We give a proof
of the first:

P (y)
∃x. P (x)

(∃x. P (x)) ∨ (∃x. Q(x))
P (y) → ((∃x. P (x)) ∨ (∃x.Q(x)))

Intuitionism. The proof system presented above is intuitionistic. For in-
stance the formula A ∨ ¬A is not a tautology.

Interpretation. The interpretation due to Brouwer, Heyting and Kolmogorov
given in Chapter 1 is extended to the case of first-order predicate logic:

• A proof of A → B is a method that transforms a proof of A into a proof
of B.

• A proof of A ∧B consists of a proof of A and a proof of B.

• A proof of A∨B consists of first, either a proof of A or a proof of B, and
second, something indicating whether it is A or B that is proved.

• (There is no proof of ⊥.)

• A proof of ∀x.A is a method that transforms a term M into a proof of
A[x := M ].

• A proof of ∃x.A consists of first a term M , and second a proof of A[x :=
M ]. The term M is called a witness.

4.2.2 Minimal logic

Minimal first-order predicate logic is the fragment where we only use the con-
nectives → and ∀. So a formula is either of the form R(M1, . . . ,Mn), or of
the form A → B, or of the form ∀x. A. We mention this fragment separately
because of its correspondence with dependently typed λ-calculus, which is im-
portant for the study of the foundations of Coq (see Chapter 6). The notions of
detour and detour elimination are studied here only for minimal logic, not for
full intuitionistic logic.
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Detours. A detour is an introduction rule for a connective, immediately fol-
lowed by an elimination rule for the same connective. Since here we consider
two connectives, namely → and ∀, there are two kinds of detours:

• An application of the I→ rule immediately followed by an application of
the E→ rule. The schematic form of such a detour is:

B

A → B A

B

E→

I[x]→

• An application of the I∀ rule immediately followed by an application of
the E∀ rule. The schematic form of such a detour is:

A
∀x.A

I∀

A[x := M ] E∀

Detour elimination. Detour elimination, or proof normalization, consists of
elimination of detours. This is done according to the following two rules:

B

A → B A

...
B

E→

I[x]→

→ B

A
∀x.A

I∀

A[x := M ] E∀ → A

In the first rule, all assumptions A in the proof of B that are labeled with x
are replaced by the proof of A indicated by the dots. In the second rule, all
occurrences of the variable x in A are replaced by M .

Examples. Two examples of proof normalization steps:

1.

E→

I[y]→

I[z]→

B → (A → A)

(A → A) → B → (A → A)

B → (A → A)

[(A → A)y]

A → A

[Ax]
I[x]→

→
I[z]→

I[x]→

B → (A → A)

A → A

[Ax]
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2.

E∀

I∀

I[w]→

P (f(a)) → P (f(a))

∀x.P (x) → P (x)

P (x) → P (x)

[P (x)w]

→
I[w]→

P (f(a)) → P (f(a))

[P (f(a))w]

4.3 Coq

Algebraic Terms in Coq.

• The set of algebraic terms is represented by a variable Terms that is as-
sumed, with declaration Terms:Set.

• A variable x is represented in Coq as a variable in Terms, so with decla-
ration x : Terms.

• A n-ary function symbol f is represented in Coq as a variable of type
Terms -> ... -> Terms -> Terms with n + 1 times terms, so with dec-
laration f : Terms -> ... -> Terms -> Terms.

For instance, a binary symbol f is represented as a variable with declara-
tion f : Terms -> Terms -> Terms.

• In this way, all algebraic terms are represented in Coq as a term of type
Terms.

Formulas in Coq.

• An n-ary predicate P is represented in Coq as a variable of type
Terms -> ... -> Terms -> Prop with n times Terms, so with declara-
tion P : Terms -> ... -> Terms -> Prop.

For instance, a binary predicate P is represented as a variable with dec-
laration P : Terms -> Terms -> Prop.

• The formula ⊥ is represented in Coq as False.

• A formula of the form A → B is represented in Coq as A -> B.

Note that A and B may be composed formulas; the definition of the repre-
sentation is in fact an inductive definition. Here with A the representation
of A in Coq is meant, and with B the representation of B in Coq.

Note that we may write forall x:A, B instead of A -> B. The reason is
that universal quantification over a variable that does notx occur in the
body and an implication are represented in Coq by the same type.

• A formula of the form A ∧B is represented in Coq as A /\ B.
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• A formula of the form A ∨B is represented in Coq as A \/ B.

• A formula of the form ∀x.A is represented in Coq as forall x:Terms, A.

Note that in Coq we need to give the domain of the bound variable x
explicitly.

Note further that both in predicate logic and in Coq the convention is that
the scope of the universal quantification is as far as possible to the right. So
for instance in predicate logic ∀x. A → B is ∀x. (A → B), and analogously
in Coq forall x:Terms, A -> B is forall x:Terms, (A -> B).

• A formula of the form ∃x.A can be written in Coq in two different ways.

The first possibility is to write exists x:Terms, A. This is an expression
of type Prop.

The second possibility is to write { x:Terms | A }. This is an expression
of type Set.

These two ways of expressing the existential quantifier behave differently
with respect to program extraction, as we will see later. Here we will use
the first representation.

• Of course quantification may occur over another domain than the one
of Terms: we have in general forall x:D, A and exists x:D, A and
{ x:D | A } for some D in Set.

• In this way, all formulas of predicate logic are represented in Coq as a
term in Prop.

Tactics.

• intro

This tactic can be used both for introduction of the implication and for
introduction of the universal quantification. That is:

If the current goal is of the form A -> B, then intro x. transforms the
goal into the new goal B, and a new hypothesis x : A is added to the list
of hypotheses.

If the current goal is of the form forall x:A, B, then intro x. trans-
forms the goal into the new goal B, and a new hypothesis x : A is added
to the list of hypotheses.

NB: if the current goal is of the form forall x:A, B, then intro y.
transforms the goal into the new goal B’, where B’ is obtained from B
by replacing x by y, and a new hypothesis y : A is added to the list of
hypotheses.

• apply

This tactic can be used both for elimination of the implication and for
elimination of the universal quantification.
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If the current goal is of the form B and in the list of hypotheses there is
a hypothesis x : A1 -> ... -> An -> B, then apply x transforms the
goal into n new subgoals, namely A1, . . . , An.

If the current goal is of the form B and in the list of hypotheses there is a
hypothesis x : forall (y1:A1) ... (yn:An), C, then apply x tries to
match B with C, that is, it tries to find the right instance of the universal
quantification forall (y1:A1) ... (yn:An), C.

Sometimes you need to give explicitly the form in which you want to use a
hypothesis of the form x : forall (y1:A1) ... (yn:An), C. This can
be done by stating apply (x a1 ... an): here the hypothesis is used
with instance C[y1 := a1, . . . , yn := an]. An alternative for
apply (x a1 ... an) is apply x with a1 ... an, and yet another al-
ternative is apply x with (x1 := a1) ... (xn := an).

If apply H gives an error in Coq of the following form: ‘Error: Cannot
refine to conclusions with meta-variables’ then try to use apply with the
arguments of H given explicitly.

• exists

This tactic can be used for the introduction of the existential quantifica-
tion.

If the current goal is of the form exists x:D, A then exists d transforms
the goal into A where free occurrences of x are replaced by d. Here we must
have d : D in the current context. The term d is said to be a witness for
the existential proof.

• elim

This tactic can be applied to any goal.

If the current goal is G and there is a hypothesis H : exists x:D, A then
elim H transforms the goal into forall x:D, A -> G.

If label is the label of a hypothesis of the form A /\ B and the current
goal is G, then elim label transforms the goal into A -> B -> G.

If label is the label of a hypothesis of the form A \/ B and the current
goal is G, then elim label transforms the goal into two goals: A -> G and
B -> G.
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Chapter 5

Program extraction

Constructive functional programming is done in three steps, the last one being
program extraction:

1. program specification

2. proof of existence

3. program extraction

In the practical work we consider the specification of a sorting algorithm from
which we extract a program for insertion sort.

5.1 Program specification

Here we discuss the general form of a specification. If we are concerned with
program abstraction we often consider formulas of the following form:

∀a : A.P (a) → ∃b : B.Q(a, b)

with P a predicate on A and Q a predicate on A×B, and consider such formula
as a specification. According to the interpretation discussed above, a program
that verifies this specification should do the following:

It maps an input a : A to an object b : B together with a program
that transforms a program that verifies P (a) into a program that
verifies Q(a, b).

The aim of program extraction is to obtain from a proof of a formula of the
form ∀a : A.P (a) → ∃b : B.Q(a, b) a function or program

f : A → B

with the following property:

∀a : A.P (a) → Q(a, f(a)).
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This is not possible for all formulas. Coq contains a module, called Extraction,
that permits one to extract in some cases a program from a proof.

5.2 Proof of existence

Most of the work is in this part. The style and contents of the program that is
extracted in the third step originate from the style and contents of the proof of
existence in the second step.

5.3 Program extraction

This part is automated. Roughly, the part of the proof which is about proving is
erased. This is the part in Prop. The part of the proof which is about calculating
remains. This is the part in Set. The extracted program is CAML or Haskell.
Recently a new extraction module was written for Coq, for more information
see the homepage of the Coq project.

5.4 Insertion sort

We consider a formula that can be seen as the specification of a sorting algo-
rithm. We assume the type natlist for the finite lists of natural numbers, and
in addition the following predicates:

• The predicate Sorted on natlist that expresses that a list is sorted (that
is, the elements form an increasing list of natural numbers).

• The predicate Permutation taking two elements of natlist as input, that
expresses that those two lists are permutations of each other (that is, they
contain exactly the same elements but possibly in a different order).

• The predicate Inserted is used in the definition of Permutation. It takes
as input a natural number, a natlist, and another natlist. It expresses
that the second natlist is obtained by inserting the natural number in
some position in the first natlist.

The formula or specification we are interested in is then the following:

Theorem Sort : forall l : natlist,
{l’ : natlist | Permutation l l’ /\ Sorted l’}.

Note the use of the existential quantification in Set (not in Prop): this is essen-
tial for the use of Extraction. The aim of the practical work of this week is to
prove this formula correct, and extract from the proof a mapping

f : natlist→ natlist

in the form of a ML program, that verifies the following:

∀l : natlist. Sorted(f(l)) ∧ Permutation(l, f(l)).
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Proof of Sort. The proof of sort proceeds by induction on the natlist l.
The base case (for the empty list), follows from the definition of Sorted and
the definition of Permutation. In the induction step, the predicates Insert and
Permutation are used, in a somewhat more difficult way.

5.5 Coq

Existential quantification in Coq. There are two different ways to write
an existential quantification ∃x : A.P in Coq:

exists x:A, P

with exists x:A, P : Prop, and

{x:A | P}

with {x:A | P} : Set. The existential quantification exists x:A, P in Prop
is considered as a logical proposition without computational information. It is
used only in logical reasoning. The existential quantification {x:A | P} in Set
is considered as the type of the terms in A that verify the property P. It is used
to extract a program from a proof.





Chapter 6

λ-calculus with dependent
types

This chapter contains first an informal introduction to lambda calculus with
dependent types (λP ). This is an extension of simply typed λ-calculus with the
property that types may depend on terms. It is explained how predicate logic
can be coded in λP . Then we give a formal presentation of λP .

6.1 Dependent types: introduction

We consider some examples from the programming point of view. One of the
reasons to consider typed programming languages is that type checking can
reveal programming errors at compile time. The more informative the typing
system is, the more errors can be detected. Of course it is a trade-off: type
checking becomes harder for more complex typing systems.

Mapping from natural numbers to lists. We consider a mapping zeroes
with the following behaviour:

zeroes 0 = nil
zeroes 1 = (cons 0 nil)
zeroes 2 = (cons 0 (cons 0 nil))

...

The mapping zeroes takes as input a natural number and yields as output a finite
list of natural numbers, so a possible type for zeroes is nat → natlist. However,
a careful inspection of the specification of F reveals that more can be said: the
function F maps a natural number n to a list of natural numbers of length
exactly n. From a programming point of view, it may be important to express
this information in the typing. This is because the more information a type
provides, the more errors can be detected by type checking. In the example, if
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the typing provides the information that the term zeroes 2 is a list of natural
numbers of length 2, then it is clear by only inspecting the types that taking the
3rd element of zeroes 2 yields an error. In order to detect the error you don’t
need to compute zeroes 2.

So what we need here are types

• zeronatlist representing the lists of natural numbers of length 0,

• onenatlist representing the lists of natural numbers of length 1,

• twonatlist representing the lists of natural numbers of length 2,

• . . .

Then we need a typing system to derive

• zeroes 0 : zeronatlist,

• zeroes 1 : onenatlist,

• zeroes 2 : twonatlist,

• . . .

We will see below how this is done in a systematic way.

Append. The function append takes as input two finite lists of natural num-
bers and returns the concatenation of these lists. In Coq:

Fixpoint append (k l : natlist) {struct k} : natlist :=
match k with
nil => l

| cons h t => cons h (append t l)
end.

Here the type of append is natlist → natlist → natlist. If the length of the list
is relevant, then a more informative type for append is a type expressing that if
append takes as input a list of length n and a list of length m, then it yields as
output a list of length n + m.

Reverse. The function reverse reverses the contents of a list. In Coq:

Fixpoint reverse (k : natlist) : natlist :=
match k with
nil => nil

| cons h t => append (reverse t) (cons h nil)
end.

The type of reverse is here natlist → natlist. The length of a list is invariant
under application of reverse. So a more informative type for reverse should
express that if reverse takes as input a list of length n, then it yields as output
a list of length n.



λ-calculus with dependent types 73

Constructors. In order to express the type representing the lists of length
n in a systematic way, we use a constructor natlist dep that takes as input a
natural number n and yields as output the type representing the lists of length
n. What is the type of this constructor? Recall that data types like nat and
natlist live in Set. The type of natlist dep is then: nat → Set. Now the desired
typings for the first example above are:

• zeroes 0 : natlist dep 0,

• zeroes 1 : natlist dep 1,

• zeroes 2 : natlist dep 2

• . . .

A first observation is that in this way types and terms are no longer separate
entities. For instance natlist dep 0 is the type of zeroes 0 and contains application
and a sub-term of type nat. So it also seems to be a term. Indeed in λP all
expressions are called terms, although we still also use the terminology ‘type’:
if M : A then we say that A is a type of M .

A second observation is that with dependent types, types may be reducible.
For instance, intuitively we have besides zeroes 0 : natlist dep 0 also

zeroes 0 : natlist dep ((λx:nat. x) 0)

Indeed in λP there is the conversion rule in the typing system, which roughly
speaking expresses that if we have M : A and A = A′, then we also have M : A′.
The question arises what the = means. In pure λP , this is β-equality. In Coq,
besides β we also use for instance δ reduction.

A third issue is the following. In the simply typed λ-calculus, the statement
‘nat is a type’ is done on a meta-level. That is, there is no formal system to
derive this. In λP , we derive nat : Set in a formal system. (This formal system
is given later on in the course notes.) We have for instance

0 : nat : Set : Type
S : nat → nat : Set : Type
nil : natlist : Set : Type
cons : nat → natlist → natlist : Set : Type

And also
natlist dep : nat → Set : Type

nil : natlist dep 0 : Set : Type

If K : Type, then K is called a kind. If C : K for some kind K, then C is called
a constructor.
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Application. We now know the type of natlist dep and of for instance zeroes 0,
but we still have to discuss the type zeroes, and the way the type of zeroes 0 is
obtained using the application rule.

First concerning the type of zeroes: the intuition is: for all n in nat, zeroes
is of type natlist depn. This is denoted as follows:

zeroes : Πn:nat. natlist dep n

Such a type is called a product type.
Concerning application, we first recall that the application rule in simply

typed λ-calculus can be instantiated as follows:

S : nat → nat 0 : nat
S 0 : nat

The application rule in λP generalizes the one for simply typed λ-calculus. So
in λP we still have the previous application.

The application rule in λP expresses that a term of type Πx:A.B can be
applied to a term of type A. For example:

zeroes : Πn:nat. natlist depn 0 : nat

zeroes 0 : natlist dep 0

and
zeroes : Πn:nat. natlist depn S 0 : nat

zeroes (S 0) : natlist dep (S 0)

It illustrates the use of dependent types. In general, if a term F has a type of
the form Πx:A.B, then F can be applied to a term M of type A, and this yields
the term F M of type B where x is replaced by M . Still informally, application
with dependent types is according to the following rule:

F : Πx:A.B M : A
F M : B[x := M ]

So it seems that at this point we have two application rules:

F : Πx:A.B M : A
F M : B[x := M ]

F : A → B M : A
F M : B

The first rule is for application with dependent types, and the second one for
application with function types. The second rule can however be seen as an
instance of the first one: observe that B is the same as B[x := M ] if x does not
occur in B, and write a function type A → B as a dependent type Πx:A.B.
This makes the presentation of λP more uniform. We will still use the notation
A → B instead of Πx:A.B in cases that x does not occur in B.

The types of the functions in the examples are as follows:

zeroes : Πn:nat. natlist depn
append : Πn, m:nat. natlist depn → natlist depm → natlist dep (plus n m)
reverse : Πn:nat. natlist depn → natlist depn
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6.2 λP

In this section we give a formal presentation of λP . First we build a set of
pseudo-terms. Then the terms are selected from the pseudo-terms using a type
system.

Symbols. We assume the following:

• a set Var consisting of infinitely many variables, written as x, y, z, . . .,

• a symbol ∗,

• a symbol �.

Besides these symbols, ingredients to build pseudo-terms are:

• an operator λ : . for λ-abstraction,

• an operator Π : . for product formation,

• an operator ( ) for application.

We often omit the outermost parentheses in an application.

Pseudo-terms. The set of pseudo-terms of λP is defined by induction ac-
cording to the following grammar:

P ::= Var | ∗ | � | ΠVar:P.P | λVar:P.P | (P P).

Some intuition about pseudo-terms:

• ∗ both represents the set of data-types and the set of propositions.

In Coq ∗ is split into two kinds, Set and as Prop. In λP both of these are
identified. This means that λP does not make the distinction between Set
and Prop that Coq makes.

• � represents the set of kinds.

In Coq � is written as Type.

• A product Πx:A.B is the type of a function that takes as input an argu-
ment of type A, and gives back an output of type B where all occurrences
of x are replaced by the argument.

If a product is not dependent, that is, if x doesn’t occur in B, then we
also write A → B instead of Πx:A.B.

• An abstraction λx:A.M is a function that takes as input something of
type A. Here M is sometimes called the body of the abstraction.

• An application (F M) is the application of a function F to an argument
M .
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Examples of pseudo-terms are:

• x (a variable),

• ∗,

• λx:nat. x,

• (∗�),

• (λx:nat. x x) (λx:nat. x x),

• λx: ∗ . x,

• Πx:nat. (natlist depx).

We will see below that not all these pseudo-terms are terms.

Environments. An environment is a finite list of type declarations for distinct
variables of the form x : A with A a pseudo-term. An environment can be empty.
Environments are denoted by Γ,∆, . . ..

Typing system. The typing system is used to select the terms from the
pseudo-terms. In these rules the variable s can be either ∗ or �.

1. The start rule.

` ∗ : �

2. The variable rule.

Γ ` A : s

Γ, x : A ` x : A

3. The weakening rule.

Γ ` A : B Γ ` C : s

Γ, x : C ` A : B

4. The product rule.

Γ ` A : ∗ Γ, x : A ` B : s

Γ ` Πx:A.B : s

5. The abstraction rule.

Γ, x : A ` M : B Γ ` Πx:A.B : s

Γ ` λx:A.M : Πx:A.B

6. The application rule.
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Γ ` F : Πx:A.B Γ ` M : A

Γ ` (F M) : B[x := M ]

7. The conversion rule.

Γ ` A : B Γ ` B′ : s

Γ ` A : B′ with B =β B′

Some remarks concerning the typing system:

• A rule that contains an s is in fact an abbreviation of two rules, one in
which s is ∗ and one in which s is �. For instance, there actually are two
variable rules:

Γ ` A : ∗
Γ, x : A ` x : A

and

Γ ` A : �
Γ, x : A ` x : A

The first is used for variables of which the type is a data-type or a propo-
sition. The second is used for variables that themselves are types, like nat
or natlist dep.

• The start rule is the only rule without a premise. A rule without premise
is sometimes called an axiom. All derivations in the typing system of λP
start (at the top) with a start rule.

• The weakening rule only changes the environment. It is necessary because
if two derivations are combined (this happens besides in the weakening
rule also in the abstraction rule, the application rule, and the conversion
rule), then the two environments of these derivations must be equal.

In logic, the weakening rule is one of the structural rules. In most logics
one may add an assumption and then still the same statements are valid.
(This is not anymore the case in linear logic.)

• There are two product rules.

If B : ∗ where B represents a data-type, then the product rule is used to
build products that are also data-types. An example of such a product is
Πx:nat. nat. (It represents the data-type of functions from nat to nat.)

If B : ∗ where B represent a proposition, then the product rule is used to
build products that are also propositions. An example of such a product
is Πx:nat. A with A : ∗. (It represents the proposition ∀x : nat. A.)

If B : �, then the product rule is used to build products that are kinds.
An example of such a product is Πx:nat. ∗. (It represents in λP the type
of natlist dep.)



78 λ-calculus with dependent types

• The conversion rule permits one to use types that are the same up to
β-conversion (in Coq: βιζδ-conversion) in the same way.

For example, if we have l : (natlist dep ((λx:nat. x) 0)), then we can also
derive l : (natlist dep 0).

Terms. If we can derive Γ ` M : A for some environment Γ, then both
pseudo-terms M and A are terms. Note that not all pseudo-terms are terms.

Examples.

• We have ` ∗ : �. Hence ∗ and � are terms.

• Note that in the typing system given here we cannot derive ` � : �. As
a matter of fact, we cannot derive Γ ` � : A for any Γ and A. In Coq
however, we have from the user’s point of view � : �. In fact there is an
infinite hierarchy of types with Typei : Typei+1. As a consequence, the
pseudo-term (∗�) is not a term.

• An application of the variable rule:

` ∗ : �
X : ∗ ` X : ∗

X : ∗, x : X ` x : X

• A similar application of the variable rule:

` ∗ : �
A : ∗ ` A : ∗

A : ∗, p : A ` p : A

• Note that we cannot declare U : �. We can do that in Coq.

• We have seen a derivation of X : ∗, x : X ` x : X. We can continue using
the weakening rules:

X : ∗, x : X ` x : X

` ∗ : � ` ∗ : �
X : ∗ ` ∗ : �

` ∗ : �
X : ∗ ` X : ∗

X : ∗, x : X ` ∗ : �
X : ∗, x : X, Y : ∗ ` x : X

• We have that Πx:nat. nat (also written as nat → nat) is a term:

` ∗ : �
nat : ∗ ` nat : ∗

` ∗ : �
nat : ∗ ` nat : ∗

` ∗ : �
nat : ∗ ` nat : ∗

nat : ∗, x : nat ` nat : ∗
nat : ∗ ` Πx:nat. nat : ∗
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So here we derive in the formal system that nat → nat is in ∗ (intuition:
is a data-type) whereas in the previous presentation of simply typed λ-
calculus the statement ‘nat → nat is a type’ is stated and proved on a
meta-level.

• We have a similar derivation showing that Πx:A.A (also written as A →
A) is a proposition:

` ∗ : �
A : ∗ ` A : ∗

` ∗ : �
A : ∗ ` A : ∗

` ∗ : �
A : ∗ ` A : ∗

A : ∗, x : A ` A : ∗
A : ∗ ` Πx:A.A : ∗

• The pseudo-term Πx:nat. ∗ is a term:

` ∗ : �
nat : ∗ ` nat : ∗

` ∗ : � ` ∗ : �
nat : ∗ ` ∗ : �

` ∗ : �
nat : ∗ ` nat : ∗

nat : ∗, x : nat ` ∗ : �
nat : ∗ ` Πx:nat. ∗ : �

This derivation shows that if nat is declared as a data-type, so nat : ∗,
then nat→∗ lives in �, so natrightarrow∗ is a kind.

• We have seen a derivation of nat : ∗ ` Πx:nat. nat : ∗. Call that derivation
∆ and use it to derive that nat : ∗ ` λx:nat. x : Πx:nat. nat:

` ∗ : �
nat : ∗ ` nat : ∗

nat : ∗, x : nat ` x : nat ∆
nat : ∗ ` λx:nat. x : Πx:nat. nat

Simply typed λ-calculus. λP is an extension of simply typed λ-calculus.
The presentation of simply typed λ-calculus that we have seen before is different
from the presentation of λP here. How is simply typed λ-calculus a subsystem
of λP?

It is obtained by omitting the product rule with B : �. Then we have only
types like nat → nat or A → B (with A and B in ∗), or nat → B. Then we
don’t have nat → ∗, so there is no type for natlist dep.

6.3 Predicate logic in λP

Lambda calculi with dependent type have been introduced by De Bruijn in order
to represent mathematical theorems and their proofs. The ‘P’ in λP stands for
‘predicate’. We now discuss the Curry-Howard-De Bruijn isomorphism between
a fragment of λP and predicate logic with only → and ∀.

We assume a signature Σ consisting of a set of function symbols F and a set
of predicate symbols P. We define here a fragment of λP that depends on Σ.
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• ? represents the universe of propositions.

• There is a distinguished type variable Terms that intuitively represents
the set of algebraic terms.

• All kinds are of the form Terms → . . .Terms → ? with 0 or more times
Terms. So we have for instance the kinds ? and Terms → Terms → ?.

• For every n-ary function symbol f in F there is a distinguished variable
f of type Terms → . . . → Terms → Terms with n + 1 times Terms.

• For every n-ary relation symbol R in P there is a distinguished variable
R of type Terms → . . . → Terms → ? with n times Terms.

Algebraic terms are translated into λP as follows:

• The algebraic term x in predicate logic is translated into the λ-term x
with x : Terms in λP .

• The algebraic term f(M1, . . . ,Mn) in predicate logic is translated into
the λ-term f M∗

1 . . .M∗
n with M∗

1 , . . . ,M∗
n the translations of M1, . . . ,Mn.

Note that f : Terms → . . . → Terms → Terms with n + 1 times Terms.

Formulas are translated into λP as follows:

• The atomic formula R(M1, . . . ,Mn) in predicate logic is translated into
the λ-term R M∗

1 . . .M∗
n with M∗

1 , . . . ,M∗
n the translations of M1, . . . ,Mn.

Note that R : Terms → . . . → Terms → ? with n times Terms.

• The formula A → B in predicate logic is translated into the λ-term
Πx:A∗. B∗, also written as A∗ → B∗.

• The formula ∀x.A in predicate logic is translated into the λ-term
Πx:Terms. A∗ with A∗ the translation of A.

Note that we have the following:

• The translation of an algebraic term is a λ-term in Terms because we have

x : Terms

and
f M∗

1 . . .M∗
n : Terms

• The translation of a formula is a λ-term in ? because we have

R M∗
1 . . .M∗

n : ?

and, for A : ? and B : ?
Πx:A∗. B∗ : ?

and, for A : Terms and B : ?,

Πx:A∗. B∗ : ?
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The Isomorphism. Using the translation, we find the following correspon-
dence between formulas of predicate logic and types of λP is as follows:

R(M1, . . . ,Mn) ∼ R M∗
1 . . .M∗

n

A→B ∼ Πx:A∗. B∗

∀x. A ∼ Πx:Terms. A∗

Further, we find the following correspondence between the rules of predicate
logic and the rules of λP (we come back to this point later):

assumption ∼ term variable
→ introduction ∼ abstraction
∀ introduction ∼ abstraction
→ elimination ∼ application
∀ elimination ∼ application

Examples. We consider examples corresponding to the examples in Section
7.2.

1. The formula (∀x. P (x)) → P (N) in predicate logic corresponds to the
λP -term (Πx : Terms. P x) → (P N). An inhabitant of this term is:

λw : (Πx : Terms. P x). (w N)

2. The formula A → ∀x.A in predicate logic corresponds to the λP -term
A → Πx : Terms. A. An inhabitant of this term is:

λw : A. λx : Terms. w

3. The formula (∀x.P (x) → Q(x)) → (∀x.P (x)) → ∀y.Q(y) in predicate
logic corresponds to the λP -term (Πx : Terms. P x → Qx) → (Πx :
Terms. P x) → (Πy : Terms. Q y). An inhabitant of this term is:

λw : (Πx : Terms. P x → Qx). λv : (Πx : Terms. P x). λy : Terms. w y (v y)

4. The formula (A → ∀x.P (x)) → ∀y.A → P (y) in predicate logic corre-
sponds to the λP -term (A → (Πx : Terms. P x)) → Πy : Terms. (A → P y).
An inhabitant of this term is:

λv : (A → Πx : Terms. P x). λy : Terms. λw : A. v w y

5. The formula ∀x. (P (x) → (∀y. P (y) → A) → A) in predicate logic corre-
sponds to the λP -term Πx : Terms. (P x → (Πy : Terms. P y → A) → A).
An inhabitant of this term is:

λx : Terms. λu : P x. λv : (Πy : P x → A). v x u





Chapter 7

Second-order propositional
logic

In this chapter first-order propositional logic is extended with universal and
existential quantification over propositional variables. In this way second-order
propositional logic is obtained. We consider a natural deduction proof system.

7.1 Formulas

The formulas of second-order propositional logic are built from the propositional
variables and the connectives mentioned above inductively:

1. a propositional variable a is a formula,

2. the constant ⊥ is a formula,

3. if A and B are formulas, then (A → B) is a formula,

4. if A and B are formulas, then (A ∧B) is a formula,

5. if A and B are formulas, then (A ∨B) is a formula,

6. if A is a formula, then (∀a.A) is a formula,

7. if A is a formula, then (∃a.A) is a formula.

The difference with first-order propositional logic is that now we allow quantifi-
cation over propositional variables. On the one hand, second-order propositional
logic is more restricted than first-order predicate logic, because all predicate
symbols have arity 0 (and are also called propositional letters). Hence propo-
sitional instead of predicate. On the other hand, second-order propositional
logic is more general than first-order predicate logic, because quantification over
propositions is allowed. Hence second-order instead of first-order.
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Order. In the description of systems or problems we often use the terminology
‘nth order’. The n is the order of the variables over which quantification takes
place.

First-order predicate logic is said to be first-order because the (term) vari-
ables over which quantification can be done denote individuals in the domain.
So quantification is over first-order variables. Now we can consider also variables
over functions and predicates, which both take first-order objects as input. Vari-
ables over functions and predicates are second-order. If we also quantify over
those variables, we obtain second-order predicate logic. Then it is for instance
possible to write ∀P.∀x. P (x) → P (x).

Now let’s consider propositional logic. A propositional letter is like a predi-
cate letter with arity 0 (so it expects no arguments). A propositional variable is
a variable over propositions, so a variable of order 2. If we admit quantification
over propositional variables, we obtain 2nd order propositional logic. Then it is
for instance possible to write ∀p. p → p.

Parentheses. We assume the conventions concerning parentheses as for first-
order propositional logic. For instance, we write A → B → C instead of (A →
(B → C)). For the scope of the quantifiers we follow the Coq convention: the
quantifier scope extends to the right as much as possible. So for instance we
may write ∀a. a → b instead of ∀a. (a → b).

It seems there is no generally agreed on convention concerning quantification,
so we use parentheses to avoid confusion.

Free and bound variables. The quantifiers ∀ and ∃ bind propositional vari-
ables. The conventions concerning free and bound variables are the same as
before. For instance, we identify the formulas ∀a. (a → a) and ∀b. (b → b).

Substitution. We need the notion of substitution of a formula A for a propo-
sitional variable a, notation [a := A]. It is assumed that bound propositional
variables are renamed in order to avoid unintended capturing of free proposi-
tional variables. The inductive definition of substitution is as follows:

1. a[a := A] = A,

2. b[a := A] = b,

3. ⊥[a := A] = ⊥,

4. (B → B′)[a := A] = B[a := A] → B′[a := A],

5. (B ∧B′)[a := A] = (B[a := A]) ∧ (B′[a := A]),

6. (B ∨B′)[a := A] = (B[a := A]) ∨ (B′[a := A]),

7. (∀b. B)[a := A] = ∀b. (B[a := A]),

8. (∃b. B)[a := A] = ∃b. B[a := A].
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Impredicativety. The meaning of a formula of the form ∀p.A depends on the
meaning of all formulas A[p := B]. So in A, all p’s can be replaced by some
formula B. The formula B can be simpler than the formula A, but it can also
be A itself, or a formula that is more complex than A. That is, the meaning
of ∀p. A depends on the meaning of formulas that are possibly more complex
than A. This is called impredicativety. It makes that many proof methods, for
instance based on induction on the structure of a formula, fail.

7.2 Intuitionistic logic

The natural deduction proof system for second-order propositional logic is an
extension of the one for first-order propositional logic. The new rules are the
introduction and elimination rules for universal and existential quantification.
These are similar to the rules for quantification in first-order predicate logic;
note however that the domain of quantification is different. For completeness
we give below all the rules for second-order propositional logic.

The introduction and elimination rules.

1. The assumption rule.

A labeled formula Ax is a proof.

Ax

Such a part of a proof is called an assumption.

2. The implication introduction rule:

A → B
I[x] →

B

...

3. The implication elimination rule:

B
E →

A → B

...

A

...

4. The conjunction introduction rule:
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A ∧B

A

...

B

...

I∧

5. The conjunction elimination rules:

A

A ∧B

...

El∧
B

A ∧B

...

Er∧

6. The disjunction introduction rules:

A ∨B

A

...

Il∨
A ∨B

B

...

Ir∨

7. The disjunction elimination rule:

C

A ∨B A → C

...

B → C

...

8. The falsum rule:

A

⊥

...

9. The universal quantification introduction rule.

A
∀a.A

I∀
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with a not in uncancelled assumptions.

10. The universal quantification elimination rule.

∀a.B
B[a := A] E∀

with A some formula.

11. The existential quantification introduction rule.

B[a := A]
∃a.B

I∃

with A some formula.

12. The existential quantification elimination rule.

∃a.A ∀a.A → B
B

E∃

with a not free in B.

Examples. The main difference between tautologies in second-order proposi-
tional logic and the ones that can be derived in (first-order) propositional logic
is that in the first case the quantification over formulas can be done in a formal
way, whereas in the second case the quantification over formulas is informal (on
a meta-level). For instance, in propositional logic the formula A → A is a tau-
tology for all formulas A. In second-order propositional logic this quantification
can be made formal: the formula ∀a. a → a is a tautology.

1.

[ax]
a → a I[x] →

∀a. a → a
I∀

2.

[ax]
b → a

I[y]

a → b → a
I[x] →

∀b.a → b → a
I∀

∀a.∀b. a → b → a
I∀

3. The following proof is not correct:
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a
∀a. a

I∀

4. The following proof is not correct:

∃a. a → b

[a → bx]
(a → b) → (a → b)

I[x] →

∀a. (a → b) → (a → b) I∀

a → b
E∃

Interpretation. The interpretation of second-order propositional logic due to
Brouwer, Heyting and Kolmogorov is as follows:

• A proof of A → B is a method that transforms a proof of A into a proof
of B.

• A proof of A ∧B consists of a proof of A and a proof of B.

• A proof of A∨B consists of first, either a proof of A or a proof of B, and
second, something indicating whether it is A or B that is proved.

• (There is no proof of ⊥.)

• A proof of ∀p. A is a method that transforms every proof of any formula
B into a proof of A[p := B].

• A proof of ∃p. A consists of a proposition B with a proof of B, and a proof
of A[p := B]. The proposition B is called a witness.

7.3 Minimal logic

Minimal second-order propositional logic is the fragment of intuitionistic logic
where we have only the connectives → and ∀. Again, the notions of detour and
detour elimination are studied here only for the minimal fragment.

Detours. In second-order propositional logic there are two kinds of detours:

• An application of the I → rule immediately followed by an application of
the E → rule. The schematic form of such a detour is as follows:

B

A → B A

[Bx]

E →

I[x]→

This kind of detour is also present in minimal first-order propositional
logic and in minimal first-order predicate logic.
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• An application of the I∀ rule immediately followed by an application of
the E∀ rule. The schematic form of such a detour is as follows:

B
∀a.B

I∀

B[a := A] E∀

This kind of detour is similar to a detour present in minimal first-order
predicate logic, but there the universal quantification is different (namely
over term variables, and here over propositional variables).

Detour elimination. Proof normalization or detour elimination in second-
order propositional logic consists of elimination of the detours as given above.
This is done according to the following two rules:

B

A → B A

...
[Bx]

E →

I[x]→

→ B

B
∀a.B

I∀

B[a := A] E∀ → B

The first rule is also present in minimal first-order propositional logic and in
minimal first-order predicate logic. Here all assumptions A in the proof of B
that are labelled with x are replaced by the proof of A indicated by the dots.

The second rule is typical for minimal second-order propositional logic. In
minimal first-order predicate logic a similar rule is present, but for a differ-
ent kind of universal quantification. Here all occurrences of the propositional
variable a in the proof of B are replaced by the formula (or proposition) A.

In Chapter 8 we will study the connection between proofs in minimal second-
order propositional logic and terms in polymorphic λ-calculus, and between
detour elimination in minimal second-order propositional logic and β-reduction
in polymorphic λ-calculus.

An example of proof normalization (labels are omitted):

(A → A) → (A → A)

(A → A)

A

[A → Az] [Ax]

(A → A)

[Ay]

(A → A)

→

A → A

A

(A → A) [Ax]

[Ay]
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→

A → A

[Ax]

And another example:

(A → B) → (A → B)

∀a. a → a

a → a

[a]

→

(A → B) → (A → B)

A → B

7.4 Classical logic

Classical logic is obtained from intuitionistic logic in the usual way, by adding
the law of excluded middle, or Pierce’s Law, or the ex falso sequitur quodlibet
rule.

Intuitively, the intended meaning of ∀p. A (where p may occur in A) is that
A holds for all possible meanings of p. In classical logic, the meaning of p can
be true or false. If true is denoted by >, and false by ⊥, then the formula ∀p. A
is classically equivalent to the formula A[p := >] ∧A[p := ⊥].

Similarly, intuitively the intended meaning of ∃p.A (where p may occur in
A) is that there is a meaning of p for which A holds. The formula ∃p. A is
equivalent to the formula A[p := >] ∨A[p := ⊥].

This shows that every property that can be expressed in second-order propo-
sitional logic can also be expressed in first-order propositional logic (in the
classical case). Indeed, for first-order propositional logic there is the result of
functional completeness stating that every boolean function can be expressed
by means of a first-order proposition. So it is not possible to increase the ex-
pressive power of propositional logic in this respect. In particular, we cannot
express more when we can use quantification over propositional variables, as in
second-order propositional logic.
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Chapter 8

Polymorphic λ-calculus

This chapter is concerned with a presentation of polymorphic λ-calculus: λ2
or F . Typical for λ2 is the presence of polymorphic types like for instance
Πa:∗. a → a. The intuitive meaning of this type is ’a → a for every type a’.
This is the type of the polymorphic identity. We discuss the correspondence
between λ2 and prop2, second-order propositional logic, via the Curry-Howard-
De Bruijn isomorphism.

8.1 Polymorphic types: introduction

In simply typed λ-calculus, the identity on natural numbers

λx:nat. x : nat→nat

and the identity on booleans

λx:bool. x : bool → bool

are two different terms. The difference is only in the type of the function. The
behaviour of both identity functions is the same: they both take one input and
return it unchanged as an output. It may be useful to have just one identity
function for all types, that can be instantiated to yield an identity function for
a particular type. To start with, we write instead of nat or bool a type variable
a, and obtain the identity on a:

λx:a. x : a→a.

We want to be able to instantiate the type variable a by means of β-reduction.
This is done in λ2 by an abstraction over the type variable a, which yields:

λa: ∗ . λx:a. x : Πa: ∗ . a→a.

Here we use ∗ as notation for the set of all types. It corresponds to both Set and
Prop in Coq. The function λa: ∗ . λx:a. x is called the polymorphic identity. The

93



94 Polymorphic λ-calculus

type of this function is Πa: ∗ . a→a. This type can intuitively be seen as ‘for all
types a: a→a’. It is called a polymorphic type. The type constructor Π is used
to build arrow types as in simply typed λ-calculus, and to build polymorphic
types.

The abstraction over type variables as in the type Πa: ∗ . a→a of the poly-
morphic identity is the paradigmatic property of λ2. It is not present in simply
typed λ-calculus.

Application is used to instantiate the polymorphic identity to yield an iden-
tity function of a particular type. For example:

λa: ∗ . λx:a. x : Πa: ∗ . a→a nat : ∗
(λa: ∗ . λx:a. x) nat : nat→nat

and
λa: ∗ . λx:a. x : Πa: ∗ . a→a bool : ∗

(λa: ∗ . λx:a. x) bool : bool→bool

As a second example we consider lists. Suppose we have a type natlist of finite
lists of natural numbers, and a type boollist of finite lists of booleans. Suppose
further for both sorts of lists we have a function that computes the length of a
list:

NLength : natlist→nat

and
BLength : boollist→nat.

The behaviour of both functions is the same, and counting of elements does
not depend on the type of the elements. Therefore also in this case it may be
useful to abstract from the type of the elements of the list. To that end we first
introduce the constructor polylist with (polylist a) the type of finite lists of terms
of type a, for every a. Then we can define the polymorphic length function

polylength : Πa: ∗ . polylist a→nat

Again we use application to instantiate the polymorphic length function to yield
a length function on a particular type. We have for instance

polylength : Πa: ∗ . (polylist a)→nat nat : ∗
polylength nat : polylist nat→nat

and
polylength : Πa: ∗ . (polylist a)→nat bool : ∗

polylength bool : polylist bool→nat

8.2 λ2

The presentation of λ2 is along the lines of the presentation of λP in Chapter 6.
We first build a set of pseudo-terms, and select the terms from the pseudo-terms
using a typing system.
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Symbols. We use the ingredients to build terms as for λP . We assume the
following:

• a set Var consisting of infinitely many variables, written as x, y, z, . . .,

• a symbol ∗,

• a symbol �.

Besides these symbols, ingredients to build pseudo-terms are:

• an operator λ : . for λ-abstraction,

• an operator Π : . for product formation,

• an operator ( ) for application.

We often omit the outermost parentheses in an application.

Pseudo-terms. Also the definition of pseudo-terms is the same as for λP .
The set of pseudo-terms of λP is defined by induction according to the following
grammar:

P ::= Var | ∗ | � | ΠVar:P.P | λVar:P.P | (PP)

Some intuition about pseudo-terms:

• ∗ both represents the set of data-types and the set of propositions.

In Coq ∗ is split into two kinds, Set and Prop. In λP and λ2 both of these
are identified. This means that λP and λ2 do not make the distinction
between Set and Prop that Coq makes.

• � represents the set of kinds.

• A product Πx:A.B is the type of a function that takes as input an argu-
ment of type A, and gives back an output of type B where all occurrences
of x are replaced by the argument.

If a product is not dependent, that is, if x does not occur in B, then we
also write A → B instead of Πx:A.B.

• An abstraction λx:A.M is a function that takes as input something of
type A. Here M is sometimes called the body of the abstraction.

• An application (F M) is the application of a function F to an argument
M .

Not all pseudo-terms are terms. For instance (∗ ∗) is not a term.

Environments. As before, an environment is a finite list of type declarations
for distinct variables of the form x : A with A a pseudo-term. An environment
can be empty. Environments are denoted by Γ,∆, . . ..
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Substitution. The substitution of P for x in M , notation M [x := P ] is
defined by induction on the structure of M as follows:

1. ∗[x := P ] = ∗,

2. �[x := P ] = �,

3. x[x := P ] = P ,

4. y[x := P ] = y,

5. (Πy:A.B)[x := P ] = Πy:A[x := P ]. B[x := P ],

6. (λx:A.M)[x := P ] = λx:A[x := P ].M [x := P ],

7. (M N)[x := P ] = (M [x := P ]) (N [x := P ]).

We assume that bound variables are renamed whenever necessary in order to
avoid unintended capturing of variables.

Typing system. In the typing system we can see the difference between λ→
(simply typed λ-calculus), λP , and λ2.

The typing system is used to select the terms from the pseudo-terms. In
these rules the parameter s can be either ∗ or �.

1. The start rule.

` ∗ : �

2. The variable rule.

Γ ` A : s
Γ, x : A ` x : A

3. The weakening rule.

Γ ` A : B Γ ` C : s
Γ, x : C ` A : B

4. The product rule.

Γ ` A : s Γ, x : A ` B : ∗
Γ ` Πx:A.B : ∗

5. The abstraction rule.

Γ, x : A ` M : B Γ ` Πx:A.B : s

Γ ` λx:A.M : Πx:A.B

6. The application rule.
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Γ ` F : Πx:A.B Γ ` M : A
Γ ` (F M) : B[x := M ]

7. The conversion rule.

Γ ` A : B Γ ` B′ : s
Γ ` A : B′ with B =β B′

Some remarks concerning the typing system:

• As before, we write A → B instead of Πx:A.B if x does not occur in A.

• Both λ2 and λP are extensions of λ→. In λ→ we only have the product
rules with both A and B in ∗.

• The typical products that are present in λP but not in λ→ are the ones
using the rule

Γ ` A : ∗ Γ, x : A ` B : �
Γ ` Πx:A.B : �

This rule is used to build for instance nat → ∗, the type of the dependent
lists.

This rule is present neither in λ→ nor in λ2.

• The typical products that are present in λ2 but not in λ→ are the ones
using the rule

Γ ` A : � Γ, x : A ` B : ∗
Γ ` Πx:A.B : ∗

This rule is used to build for instance Πa:∗. a → a.

This rule is present neither in λ→ nor in λP .

• Instantiation of a polymorphic function is done by means of application.
For instance:

Γ ` polyid : Πa:∗. a → a Γ ` nat : ∗
Γ ` (polyid nat) : nat → nat

• An important difference between λ2 and λP is that in λ2 we can distin-
guish between terms and types whereas in λP we cannot.

Terms. If we can derive Γ ` M : A for some environment Γ, then both
pseudo-terms M and A are terms. Note that not all pseudo-terms are terms.
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8.3 Properties of λ2

We consider some properties of λ2.

• The Type Checking Problem (TCP) is the problem whether Γ ` M : A
(given Γ, M , and A). The TCS is decidable for λ2.

• The Type Synthesis Problem (TSP) is the problem Γ ` M :?. So given Γ
and M , does an A exist such that Γ ` M : A. The TSP is equivalent to
the TCP and hence decidable.

• The Type Inhabitation Problem (TIP) is the problem Γ `? : A. So given
an A, is there a closed inhabitant of A. The TIP is undecidable for λ2.

• Uniqueness of types is the property that a term has at most one type up
to β-conversion. λ2 has the uniqueness of types property.

• Further, λ2 has subject reduction. That is, if Γ ` M : A and M →β M ′,
then Γ ` M ′ : A.

Note that in λ2 types do not contain β-redexes.

• All β-reduction sequences in λ2 are finite. That is, λ2 is terminating, also
called strongly normalizing.

8.4 Expressiveness of λ2

Logic. In practical work 10 we have seen the definition of false, conjunction
and disjunction in λ2. The definitions are as follows:

new false = Πa:∗. a
(new andA B) = Πc:∗. (A → B → c) → c
(new or A B) = Πc:∗. (A → c) → (A → c) → c

The idea is a connective is defined as an encoding of its elimination rule. Now
we indeed have that all propositions follow from new false:

Γ ` P : new false Γ ` A : ∗
Γ ` (P A) : A

As soon as we have an inhabitant (proof) of new false, we can build an inhabitant
(proof) of any proposition A, namely (P A).

Suppose that Γ ` P : (new and A B) with A : ∗ and B : ∗. So P is an
inhabitant (proof) of “A and B”, where conjunction is encoded using new and.
Using L = λl:A. λr:B. l we find an inhabitant (proof) of A as follows:

Γ ` P : Πa:∗. (A → B → a) → a Γ ` A : ∗
Γ ` (P A) : (A → B → A) → A Γ ` L : A → B → A

Γ ` (P AL) : A
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Data-types. In Coq many datatypes like for instance nat and bool are defined
as an inductive type. Often these datatypes can also be directly defined in poly-
morphic λ-calculus. This usually yields a less efficient representation. Here we
consider as an example representations of the natural numbers and the booleans
in λ2. The examples do not quite show the full power of polymorphism.

Natural numbers. The type N of natural numbers is represented as follows;

N = Πa:∗. a → (a → a) → a

The natural numbers are defined as follows:

0 = λa:∗. λo:a. λs:a → a. o
1 = λa:∗. λo:a. λs:a → a. (s o)
2 = λa:∗. λo:a. λs:a → a. (s (s o))
...

That is, a natural number n is represented as follows:

n = λa:∗. λo:a. λs:a → a. sno

with the abbreviation n defined as:

F 0M = M
Fn+1M = F (FnM)

This is the polymorphic version of the Church numerals as for instance consid-
ered in the ITI-course. Note that every natural number is indeed of type N.
Now we can define a term for successor as follows:

S = λn:N. λa:∗. λo:a. λs:a → a. s (n a o s)

We have for instance the following:

S 0 =
(λn:N. λa:∗. λo:a. λs:a → a. s (n a o s)) 0 →β

λa:∗. λo:a. λs:a → a. s (0 a o s) =
λa:∗. λo:a. λs:a → a. s ((λa:∗. λo:a. λs:a → a. o) a o s) →∗

β

λa:∗. λo:a. λs:a → a. s o =
1.

Note that n a o s →∗ sno. An alternative definition for successor is λn:N. λo:a. λs:a → a. n a (s z) s.

Booleans. The booleans are represented by a type B, and true and false are
represented by terms T and F as follows:

B = Πa:∗. a → a → a
T = λa:∗. λx:a. λy:a. x
F = λa:∗. λx:a. λy:a. y
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Note that we have
T : B
F : B

Now we can define a term for conditional as follows:

C = λa:∗. λb:B. λx:a. λy:a. b a x y

with C : Πa:∗.B → a → a → a. The operator C is similar to the conditional c
of system T but there the polymorphism is implicit whereas here it is explicit.

Let A : ∗ and let M : A and N : A. We have the following:

C A TM N =
(λa:∗. λb:B. λx:a. λy:a. b a x y)A TM N →∗

β

TA M N =
(λa:∗. λx:a. λy:a. x)A M N →∗

β

M

and
CA F M N =
(λa:∗. λb:B. λx:a. λy:a. b a x y) A F M N →∗

β

F A M N =
(λa:∗. λx:a. λy:a. y) A M N →∗

β

N.

We can also define negation, conjunction, disjunction, as follows:

not = λb:B. λa: ∗ . λx:a. λy:a. b a y x
and = λb:B. λb′:B. λa: ∗ . λx:a. λy:a. b a (b′ a x y) y
or = λb:B. λb′:B. λa: ∗ . λx:a. λy:a. b a x (b′ a x y)

8.5 Curry-Howard-De Bruijn isomorphism

This section is concerned with the static and the dynamic part of the Curry-
Howard-De Bruijn isomorphism between second-order propositional logic and
λ-calculus with polymorphic types (λ2).

Formulas.

• A propositional variable a corresponds to a type variable a.

• A formula A→B corresponds to a type Πx:A.B, also written as A→B.

• A formula of the form ∀a.A corresponds to a type Πa:∗. B.
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Proofs.

• An assumption A corresponds to a variable declaration x : A.

• The implication introduction rule corresponds to the abstraction rule
where a type of the form Πx:A.B is introduced with A : ∗ and B : ∗.

• The implication elimination rule corresponds to the application rule.

• The universal quantification introduction rule corresponds to the abstrac-
tion rule where a type of the form Πa:∗. B is introduced.

• The universal quantification elimination rule corresponds to the applica-
tion rule.

Questions.

• The question is A provable? in second-order propositional logic corre-
sponds to the question is A inhabited? in λ2.

• The question is A a tautology? in second-order propositional logic cor-
responds to the question is A inhabited by a closed normal form? in
λ2. That is the Type Inhabitation Problem (TIP). That is, provability
corresponds to inhabitation.

• The question is P a proof of A? in second-order propositional logic cor-
responds to the question is P a term of type A? in λ2. That is, proof
checking corresponds to type checking (TCP).

The Dynamic Part.

• A →-detour corresponds to a β-redex in λ2.

• A ∀-detour corresponds to a β-redex in λ2.

• A proof normalization step in second-order propositional logic corresponds
to a β-reduction step in λ2.

Examples. A proof of (∀b. b) → a in prop2:

[(∀b. b)x]
a E∀

(∀b. b) → a
I[x] →

The type (Πb: ∗ . b) → a corresponds to the formula (∀b. b) → a. We assume
a : ?. Then an inhabitant of (Πb: ∗ . b) → a that corresponds to the proof given
above is:

λx : (Πb : ?. b). (x a)





Chapter 9

On inhabitation

This week we study a decision procedure for the inhabitation problem in simply
typed λ-calculus. This problem corresponds to the provability problem in min-
imal logic via the Curry-Howard-De Bruijn isomorphism. Further we consider
inductive predicates.

9.1 More lambda calculus

Shape of the β-normal forms. We recall from Chapter veranderen !! the
definition of the set NF which is inductively defined by the following clauses:

1. if x : A1→ . . .→An→B, and M1, . . . ,Mn ∈ NF with M1 : A1, . . . ,Mn :
An, then xM1 . . .Mn ∈ NF,

2. if M ∈ NF, then λx:A.M ∈ NF.

It can be shown that the set NF contains exactly all λ-terms in β-normal form.

Long Normal Forms. A long normal form or βη-normal form is a term that
is in β-normal form, and that moreover satisfies the property that every sub-
term has the maximum number of arguments according to its type. Sub-terms
are then said to be ‘fully applied’. We give an inductive definition of the set of
long normal forms.

The set LNF of long normal forms is inductively defined as follows:

1. if x : A1→ . . .→An→b with b a type variable, and M1, . . . ,Mn ∈ LNF
with M1 : A1, . . . ,Mn : An, then xM1 . . .Mn ∈ LNF,

2. if M ∈ LNF, then λx:A.M ∈ LNF.

Note that the difference between this definition and the previous one is in the
first clause.

Let a, b, and c be type variables. Some examples:
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• Let x : a → b. Then x ∈ NF but x 6∈ LNF.

• Let x : a → b and y : a. Then x y ∈ NF and x y ∈ LNF.

• Let x : a → b → c and let y : a. Then x y ∈ NF but x y 6∈ LNF.

• Let x : a → b → c, let y : a, and let z : b. Then λx:a → b → c. x y z ∈ NF
and λx:a → b → c. x y z ∈ LNF.

• Let x : (a → b) → c and y : a → b. Then x y ∈ NF but x y 6∈ LNF.

• Let x : (a → b) → c, and y : a → b, and z : a. Then x (λz:a. y z) ∈ NF and
x (λz:a. y z) ∈ LNF.

We will make use of long normal forms in the decision procedure for the inhab-
itation problem.

Eta. So far we have considered λ-calculus with β-reduction, where the β-
reduction rule is obtained by orienting the β-axiom (λx:A.M) N =β M [x := N ].
from left to right.

Another important axiom in the λ-calculus, which we only add if explicitly
mentioned, is the η-axiom. It is as follows:

λx:A. (M x) =η M

where x doesn’t occur free in M . For the decision procedure of the inhabitation
problem we make use of the η-axiom.

The η-reduction rule is obtained by orienting the η-axiom from left to right
(the side condition that x doesn’t occur free in M is then a side condition to
the rule). The η-reduction relation is denoted by →η. The η-expansion rule
is obtained by orienting the η-axiom from right to left. The η-expansion rule
is subject to the side condition concerning the bound variable, and also to
conditions that ensure that η-expansion doesn’t create β-redexes.

We make use of the following two properties:

1. Types are preserved under η-reduction. That is, if Γ ` M : A and M →η

M ′, then Γ ` M ′ : A. This property is called subject reduction for η-
reduction.

2. If Γ ` M : A for a term M in β-normal form, then there exists a term P
in long normal form with Γ ` P : A and P �η M .

Now it is easy to see that if a type is inhabited, then it is inhabited by a long
normal form: Suppose that the type A is inhabited, that is ` M : A for some
M . Because of strong normalization for β-reduction M has a normal form.
Because of confluence for β-reduction this normal form is unique. Let N be
the β-normal form of M . Because of subject reduction for β-reduction, we have
` N : A. Because of the second property mentioned above, there exists a long
normal form P with ` P : A and P �η N .
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9.2 Inhabitation

The provability question in logic corresponds via the Curry-Howard-De Bruijn
isomorphism to the inhabitation question in λ-calculus. The two questions are
stated as follows:

• The provability question.

This is the question whether, given a formula A, there is a proof showing
that A is a tautology.

Sometimes this problem is considered in the situation where we may as-
sume some formulas as hypotheses.

• The type inhabitation problem.

This is the question whether, given a type A, there is a closed inhabitant
of A. Sometimes this is abbreviated as `? : A.

Moreover, also this problem may be considered in a certain given environ-
ment where additional type declarations are given.

Provability in minimal logic is decidable. (Recall from for instance the course
introduction to logic that classical propositional logic is decidable.) Here we
consider the inhabitation problem and explain that it is decidable.

The Decision Procedure. We informally describe a procedure to decide
whether a type A is inhabited by a closed lambda term. Observe that every
simple type A is of the form A1→ . . .→An→b with b a type variable, for some
n ≥ 0. We consider the following question:

? Does a term M exist such that M : A and such that all free variables of
M are among x1 : A1, . . . , xn : An?

We distinguish two cases: the case that A is a type variable, so of the form a,
and the case that A is an arrow type, so of the form D→D′ for some types D
and D′.

1. Suppose that A = a, so a type variable.

If we have that Ai = a for some i ∈ {1, . . . , n}, then we take M = xi and
the procedure succeeds.

If we have that Ai = C1→ . . .→Ck→a for some i ∈ {1, . . . , n}, then we
obtain k new questions:

? Does a term M1 exist such that M1 : C1 and such that all free
variables of M1 are among x1 : A1, . . . , xn : An?
...

? Does a term Mk exist such that Mk : Ck and such that all free
variables of Mk are among x1 : A1, . . . , xn : An?
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Otherwise, if there is no Ai such that Ai = C1→ . . .→Ck→a, then the
procedure fails.

2. Suppose that A = D→D′, so A is an arrow type. Since we work with long
normal forms, we have that M is an abstraction, so of the form λy:D.M ′

with M ′ : D′. We then answer the following new question:

? Does a term M ′ exist such that M ′ : D′ and such that all free vari-
ables of M ′ are among x1 : A1, . . . , xn : An, y : D?

The procedure can be slightly optimized by identifying variables that have the
same type.




