Type Theory and Coq 2024-2025
(resit)
04-03-2025
12:45-14:45

Write your name and student number on each paper that you hand in.

This exam consists of 9 exercises. Each exercise is worth 10 points. The first
10 points are free. The final mark is the number of points divided by 10.

Write all natural deduction proofs and type derivations using the notation from
Femke’s course notes.

Good luck!

1. Apply the principal typing algorithm PT to establish whether the following
lambda term is typable in simple type theory:
Aryz.xyz(zy)
Give all intermediate steps of the algorithm. Also, if this term is typable
then explicitly give a principal type.
2. Consider the following proposition of minimal propositional logic:
(a—b)— (b—=a)— (a—a)
Someone gives the following proof term from simple type theory for this:
Af:a—=bAg:b—adr:a.g(fr)

Now answer the following four sub-questions:

(a) Give the natural deduction proof for this proposition that corresponds
to this proof term.

(b) Does this proof term have a detour? Explain your answer.
(c) Give the full type derivation of this proof term in simple type theory.

(d) Give a Coq proof script for this proposition that corresponds to the
proof term. You may only use the tactics intro, intros, apply, exact
and assumption. This proof script should be in the place of the dots
in:

Lemma exercise_two (a b : Prop)
(a->b) > (b > a) > (a -> a).
Proof.

Qed.



You do not need to copy the lines of the lemma already given here, just
giving the tactics part is enough.

3. In the Church-Rosser proof that was presented in the lectures, the relation
of parallel reduction is inductively defined by the four rules:
M = M’ P—P N=N M=—=M P= P

(8) AP — P (app)

(var) 7 (N —
r=x o.M = \e.M (Az.P)N = P'[z := N']

Furthermore, an operation M* on preterms is defined by:
=z
(Az.M)* :== Xe.M™
(ALP)N)* := P*[x := N*|
(MN)*:= M*N* if M is not a A-abstraction
The key theorem then is:
VM, P (it M = P then P — M*)

This theorem is proved by induction. Give the details of the case of that
inductive proof for the (\) rule. Be explicit about what is inducted over,
what is the induction hypothesis of this case, and what is to be proved from
that.

4. Consider the following proposition of predicate logic:

V. (=p(x) = =Vy.p(y))

Now answer the following two sub-questions:

(a) Give a natural deduction proof of this proposition. For all relevant
inference rules, show that the variable condition is satisfied.

(b) Give the AP proof term that corresponds to this proof. For this term
the context will need to contain L, where we then define -4 := A — L.
Therefore, this proof term needs to be well-typed in the context:

D:x, p:D—x 1 :x

Note that we just ask for the proof term and not for a type derivation
for this term.

You are allowed to either use mathematical notation for this term, or
to use Coq syntax.

5. Consider the following four preterms:

An : nat. Am : nat. nat
An : nat. IIm : nat. nat
IIn : nat. A\m : nat. nat

IIn : nat. IIm : nat. nat

Or in Coq syntax:



fun (n m : nat) => nat
fun (n : nat) => forall (m : nat), nat
forall (n : nat), fun (m : nat) => nat
forall (n m : nat), nat

Now answer the following three sub-questions:

(a) Which of these four preterms is well-typed in the calculus of construc-
tions, with context:

nat : %, z : nat, s : nat — nat

(b) For each of these four preterms that are well-typed: give their type.

(c) Of each of these four preterms that are well-typed: which are types
themselves?

6. Give AP derivations of the following three typing judgments:

a:x Fa—a:x*
a:%, f:a—akla:x
a:x, f:a—a,x:abF fr:a
In each derivation, you may replace a sub-derivation of a judgment earlier in
the list by vertical dots. For the rules of AP see page 5.

Hint: it is often efficient to use weakening as early as possible.

7. Consider the following Coq definitions of the natural numbers and of option
types.

Inductive nat : Set :=
| 0 : nat
| S : nat -> nat.

Inductive option (A : Set) : Set :=
| None : option A
| Some : A -> option A.

Note that in contrast with the Coq standard library, with these definitions
the argument A of the option constructors is not implicit.

We want to define a predecessor function pred with type:

pred
: nat -> option nat



for which the following equalities hold:

pred O —»gs¢, None nat
pred (S n) —»gscn, Some nat n

Now answer the following two sub-questions:

(a) Define this function pred using match.

(b) Define this function pred using an application of nat_rec.

. Consider the following Coq definition:

Inductive foo (A B : Prop) : Prop :=
| bar : A -> foo A B.
| baz : B -> foo A B.

Now answer the following three sub-questions:

(a) Which logical connective is defined here under the name of foo.
(b) Give the type of the dependent induction principle foo_ind_dep.
(c¢) Give the type of the non-dependent induction principle foo_ind.

. Answer the following two sub-questions:

(a) What property of a type system is abbreviated as SR. Give both the
term that this is an abbreviation of, as well as the statement of this
property.

(b) One proves SR with induction on a type derivation, together with a

basic property called the substitution property. Give the statement of
this property.

(Do not give any proofs, neither of SR nor of the substitution property.)



axiom

variable

weakening

application

abstraction

product

conversion

Typing rules of AP

Fx:

'EA:s
e:AFaoz: A

' A:B I'FC:s
Iz:CHA:B

'-M:llx: A B -N:A

I - MN : Bz := N]

'z:A+-M:B 'FIlz:AB:s

F''FXe:AM:1lz: A.B

' A:x I'z:AF B:s

F''FIlz: A B:s

'-A:B ' B :s
r-A:p

when B =5 B’



