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1. Apply the principal typing algorithm PT to establish whether the following
lambda term is typable in simple type theory:

λfx.f(fxx)

Give all intermediate steps of the algorithm. Also, if this term is typable
then explicitly give a principal type.

We annotate all variables and applicative subterms with type variables:

λ
a
f
b
x.
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: a→ b→ c

This gives rise to the following equations, which we simplify according to the
PT algorithm:
a = e→ c
a = b→ d
d = b→ e

(I)
⇐⇒


a = e→ c

e→ c = b→ d
d = b→ e

(II)
⇐⇒


a = e→ c
e = b
c = d
d = b→ e

(I)
⇐⇒


a = b→ c
e = b
c = d
d = b→ b

(I)
⇐⇒


a = b→ d
e = b
c = d
d = b→ b

(I)
⇐⇒


a = b→ b→ b
e = b
c = b→ b
d = b→ b

Therefore the type a → b → c becomes one of the principal types of this
term:

(b→ b→ b)→ b→ b→ b

2. Consider the following proposition of minimal propositional logic:

((a→ b)→ c)→ b→ c

Now answer the following five sub-questions:

(a) Give a natural deduction proof of this proposition.

[(a→ b)→ cx]

[by]

a→ b
I[z]→

c
E→

b→ c
I[y]→

((a→ b)→ c)→ b→ c
I[x]→
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(b) Does this proof have detours? Explain your answer.

No, there is no introduction rule followed by an elimination rule for the
same connective. There is an implication elimination rule, but it does
not eliminate an implication that was just introduced.

(c) Give the proof term from simple type theory that corresponds to this
proof.

λx : (a→ b)→ c. λy : b. x (λz : a. y)

(d) Give a full type derivation of this proof term in simple type theory.

We abbreviate Γ0 := x : (a→ b)→ c, y : b.

Γ0 ` x : (a→ b)→ c

Γ0, z : a ` y : b

Γ0 ` λz : a. y : a→ b

Γ0 ` x (λz : a. y) : c

x : (a→ b)→ c ` λy : b. x (λz : a. y) : b→ c

` λx : (a→ b)→ c. λy : b. x (λz : a. y) : ((a→ b)→ c)→ b→ c)

(e) Give a Coq proof script for this proposition. You may only use the
tactics intro, intros, apply, exact and assumption. This proof script
should be in the place of the dots in:

Lemma exercise_two (a b c : Prop) : ((a -> b) -> c) -> b -> c.

Proof.

. . .
Qed.

You do not need to copy the lines of the lemma already given here, just
giving the tactics part is enough.

intros x y. apply x. intro z. apply y.

3. In the lecture we defined recursively:

x∗ := x

(λx.M)∗ := λx.M∗

((λx.P )N)∗ := P ∗[x := N∗]

(MN)∗ := M∗N∗ if M is not a λ-abstraction

We use the customary abbreviations:

S := λxyz.xz(yz)

K := λuv.u
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Now compute the four terms K∗, (Kz)∗, (SKK)∗ and (SKK)∗∗

Hint: note that M∗ = M when M does not contain any beta redexes.

We compute:

K∗ = K (K does not contain redexes)

(Kz)∗ = ((λuv.u)z)∗

= (λv.u)∗[u := z∗]

= (λv.u)[u := z]

= λv.z

(SKK)∗ = (SK)∗K∗

=
(
(λyz.xz(yz))∗[x := K∗]

)
K

= (λyz.Kz(yz))K

(SKK)∗∗ = (λz.Kz(yz))∗[y := K∗]

=
(
λz.(Kz)∗(yz)∗

)
[y := K]

=
(
λz.(λv.z)(yz)

)
[y := K]

= λz.(λv.z)(Kz)

4. Consider the following proposition of predicate logic:

∀x.
(
p(x)→ ¬∀y.¬p(y)

)
Now answer the following two sub-questions:

(a) Give a natural deduction proof of this proposition. For all relevant
inference rules, show that the variable condition is satisfied.

[∀y.¬p(y)H1 ]

¬p(x)
E∀

[p(x)H ]

⊥
E¬

¬∀y.¬p(y)
I[H1]¬

p(x)→ ¬∀y.¬p(y)
I[H]→

∀x.(p(x)→ ¬∀y.¬p(y))
I∀

The only rule with a variable condition in this proof is the I∀ rule, and
at that point there are no assumptions yet.

(b) Give the λP proof term that corresponds to this proof. For this term
the context will need to contain ⊥, where we then define ¬A := A→ ⊥.
Therefore, this proof term needs to be well-typed in the context:

D : ∗, p : D → ∗, ⊥ : ∗
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Note that we just ask for the proof term and not for a type derivation
for this term.

You are allowed to either use mathematical notation for this term, or
to use Coq syntax.

λx : D.λH : p x. λH1 : (Πy : D. p y → ⊥). H1xH

fun (x : D) (H : p x) (H1 : forall y : D, p y -> False) =>

H1 x H

5. Consider the following four preterms:

λn : nat. n

λn : nat. nat

Πn : nat. n

Πn : nat. nat

Or in Coq syntax:

fun n : nat => n

fun n : nat => nat

forall n : nat, n

forall n : nat, nat

Now answer the following three sub-questions:

(a) Which of these preterms is well-typed in the calculus of constructions,
with context:

nat : ∗, z : nat, s : nat→ nat

The only one that is not well-typed is Πn : nat. n. In a term Πx : A.B,
the subterm B needs to be a type.

(b) For the ones that are well-typed: give their type.

λn : nat. n : nat→ nat

λn : nat. nat : nat→ ∗
Πn : nat. nat : ∗

(c) Of the ones that are well-typed: which are types?

A type is a term of which the type is a sort. Therefore only Πn : nat. nat
is a type.
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6. Give λP derivations of the following five typing judgments:

a : ∗, x : a ` x : a

a : ∗, x : a ` a : ∗
a : ∗ ` a→ a : ∗
a : ∗ ` (λx : a.x) : a→ a

a : ∗, y : a ` (λx : a.x) y : a

In each derivation, you may replace a sub-derivation of a judgment earlier in
the list by vertical dots. For the rules of λP see page 7.

Hint: it is often efficient to use weakening as early as possible.

` ∗ : �

a : ∗ ` a : ∗
a : ∗, x : a ` x : a

` ∗ : �

a : ∗ ` a : ∗
` ∗ : �

a : ∗ ` a : ∗
a : ∗, x : a ` a : ∗

` ∗ : �

a : ∗ ` a : ∗

...

a : ∗, x : a ` a : ∗
a : ∗ ` a→ a : ∗

...

a : ∗, x : a ` x : a

...

a : ∗ ` a→ a : ∗
a : ∗ ` (λx : a.x) : a→ a

...

a : ∗ ` (λx : a.x) : a→ a

` ∗ : �

a : ∗ ` a : ∗
a : ∗, y : a ` (λx : a.x) : a→ a

...

a : ∗, y : a ` y : a

a : ∗, y : a ` (λx : a.x) y : a

7. Consider the following Coq definition of a type for polymorphic lists:

Inductive list (A : Set) : Set :=

| nil : list A

| cons : A -> list A -> list A.

This type has a dependent recursion principle list_rec with type:
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list_rec

: forall (A : Set) (P : list A -> Set),

P (nil A) ->

(forall (a : A) (l : list A), P l -> P (cons A a l)) ->

forall l : list A, P l

We want to define the function map that maps a function over a list. It has
type:

map

: forall A B : Set, (A -> B) -> list A -> list B

Now answer the following two sub-questions:

(a) Define the function map using Fixpoint and match.

The cases of the match should be written nil and cons a l. Nam-
ing the parameter in the patterns gives an error.

Fixpoint map (A B : Set)

(f : A -> B) (l : list A) {struct l} : list B :=

match l with

| nil _ => nil B

| cons _ a l => cons B (f a) (map A B f l)

end.

(b) Define the function map as an application of list rec to appropriate
arguments.

Definition map (A B : Set)

(f : A -> B) : list A -> list B :=

list_rec A (fun l : list A => list B) (nil B)

(fun (a : A) (l : list A) (l’ : list B) =>

cons B (f a) l’).

8. Consider the following Coq definition:

Inductive foo (A B : Prop) : Prop :=

| bar : A -> B -> foo A B.

Now answer the following three sub-questions:

(a) Which logical connective is defined here under the name of foo.

Conjunction.

(b) Give the type of the dependent induction principle foo ind dep.
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foo_ind_dep

: forall (A B : Prop) (P : foo A B -> Prop),

(forall (a : A) (b : B), P (bar A B a b)) ->

forall H : foo A B, P H

(c) Give the type of the non-dependent induction principle foo ind.

foo_ind

: forall A B P : Prop, (A -> B -> P) -> foo A B -> P

9. The proof of normalization of λ2 associates a saturated set of untyped lambda
terms [[A]]ρ with each type A.

Now answer the following two sub-questions about these sets:

(a) Put the three sets:

SN
{M |M has type A in some context}

[[A]]ρ

in order of inclusion. You do not need to explain this order.

{M |M has type A in some context} ⊆ [[A]]ρ ⊆ SN

(b) In the lecture an important proposition was given, where a property
followed from the assumptions:

x1 : A1, . . . , xk : Ak `M : B

and
N1 ∈ [[A1]]ρ, . . . , Nk ∈ [[Ak]]ρ

in which ρ is an arbitrary valuation that maps variables to saturated
sets. Give the conclusion of this proposition.

M [x1 := N1, . . . , xk := Nk] ∈ [[B]]ρ
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