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— Collapses in extensional type theory. Why?
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Problem Set-Up

..infinite tower of higher identity types:

A
I(A, a,a)
I(1(A,a,4'),p, p')
I(1(1(A,a,4'),p, p'),0,0")

Works in intensional type theory.

e Proved by Hofmann and Streicher using the groupoid
model.
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Higher Inductive Types (HIT)

Definition

A higher inductive type is a type in which all the iterated
identity types are generated inductively.
Examples:

e 1-hit: I1(A, a,d)

e 2-hit: I(I(A,a,4d),p,p')

Has a topological interpretation:
e 2 and 2’ are points in space;
e p and p’ are paths from from a to &’;

e 0 and ¢’ are homotopies between p and p’.
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Dependent Type Theory Background: Notation

Function Types

e Dependent function types: (x : A) — B(x)
e Non-dependent function types: A — B

Identity Types

a=pa (preferred notation) instead of (A, a,a’)

Function Application

e If x: AF C, then we write C(x) to emphasize dependence.
e Write C(a) to denote substituting a for x in C.
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Dependent Type Theory Background: Rules
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Equality Rule
Je(x,d, x, refl(x)) = d
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Dependent Type Theory Background: Rules

Heterogeneous Identity Type

compares a: B(x) and a’ : B(x')

where p:x=ax
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e Transitivity
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e Application preserves equality
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Elimination Rules

Assumptions

e o K:C(K)
e - 5 C()
e app : (x: CL) = C(x) = (v : CL) = C(y) — C(app(x,y))

Path Assumptions

° r(fo,,v C(x,y CL)N—> (X:C(x)) = (y:Cy)) —
app(app(K, x), app(K, K, x, %),y 7) =g _ () X

A Schema for

e Analogous for Scony

Result
f:(x:CL)— C(x)
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Equality Rules

Function Equality

f(K) =K
f(S)=S
f(app(x,y)) = app(x, f(x),y, f(y))
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Elimination and equality rules

Point assumption

G:(x:A)—=(y:A) = C(y) = C(co(x,y))



Elimination and equality rules
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Introduction

brsbem 5o Up G:(x:A)=(y:A) — C(y) = Cla(x,y))
Combinatory

Logic as a Path assumption

51:(X:B)—>(y:H)—>()7:C(y))—>(z P=Hq)—
To(p) =5 To(q) = To(p') =5 (y.z) To(d

Result: a function f : (x : H) — C(x).
Equality rules

f(co(x,y)) = &(x,y,f(y))

apdf(cl(xaya Z)) = 51(X>y7 f(y), Z, apdf(z))
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The lifting function: example
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Logic as a e The idea is that To(p) = f(p) for the resulting function £

Example (Rcom,):

i To(app(app(K, x), y)) = abp(app(K. x), app(K, K, x, %), v, 7)
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The lifting function: example

Introduction

Prabem Set.Up e The lifting of p : H is denoted To(p) : C(p)

Combinatory

Logic as a e The idea is that To(p) = f(p) for the resulting function f
Example (Rcom,):

ToEa/)vp(app(K,X),y)) = app(app(K, x), app(K, K, x,%), v, 7)
To(x) = X

This lifting function is defined by:
To(X) = )?, To(y) = )7, To(K) = K, To(S) = S and
TO(app(t7 tl)) = aﬁp(t7 TO(t)7 t/a TO(tl))
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The lifting function: general
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To(y) =¥
TO(CO(av P)) = 60(37 P, To(p))

Hence, x : B,y : H,y : C(y) F To(p(x,y)) : C(p(x,y)) and
To(p)(x,y, £(y)) = f(p(x,y))
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Example: The circle again

| base

| loop base

Inductive circle

Type

circle

base.

base : C(base)

loop : To(base)

_Ioop

f:(x:circle) = C(x)

f(base) = base
apdy¢(loop) = loop

To(base)




Example: Natlist

Introduction
Problem Set-Up

Combinatory Inductive Natlist: Type :=

Logic as a

e | Nil : Natlist

e | Cons : nat —> Natlist — Natlist
ot e | NilEq: Nil = Nil

Setoid Model

A Slhcrmoe | ConsEq : forall nl, n2 : nat —
s forall 11, 12 : Natlist —
Path Constructors n 1 — n 2 — I 1 JE— | 2 N

Simplified Form for
Point and Path

Comsraon Cons(nl,11) = Cons(n2,12)
Elimi and
Equality Rules

Lifting Function

Examples



Example: Natlist (elimination rule)

Point constructors:
Introduction NII . C(NI/)

Problem Set-Up

Combinatory Cons : (n: nat) — (I : Natlist) — C(I) — C(cons(n, 1))

Logic as a

Path constructors:

nilEq : To(Nil) =Fieq To(Nil)
A Sf:hema for
ConsEq : (nl,n2:nat) — (/1,12 : Natlist) — (/1 : C(/1))
— (/~2 1 C(12)) = (x : nl =paist 12) = (¥ : 11 =natiist 12)
To(nl) =S To(n2) — To(/1) =S To(I2) —
To(Cons(nl, /1)) = ccnsEq(nl,n2,/1,/2,x,y) To(Cons(n2, 12))



Example: Natlist (equality rule)

Introduction

Problem Set-Up

Combinatory
Logic as a

f(Nil) = Nil

: : f(Cons(n, 1)) = Cons(n, I, (1))
A Schems o apd,(NilEq) = NifEq
apd;(ConsEq(ny, n2, h, b, x, y)) = ConsEq(ny, no, I, b,
f(h),f(h),z, 2,

apd(z1), apd¢(22)).




End of presentation
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