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Problem Set-Up

Recall.. Martin-Löf introduced I(A, a, a′)

• Elements of I(A, a, a′) are proofs that a and a′ are equal
elements of A.

• Can obtain an infinite tower of higher identity types:

A

I(A, a, a′)

I(I(A, a, a′), p, p′)

I(I(I(A, a, a′), p, p′), θ, θ′)

. . .
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Problem Set-Up

Recall.. Martin-Löf introduced I(A, a, a′)

• Elements of I(A, a, a′) are proofs that a and a′ are equal
elements of A.

• Can obtain an infinite tower of higher identity types:

A

I(A, a, a′)

I(I(A, a, a′), p, p′)

I(I(I(A, a, a′), p, p′), θ, θ′)

. . .

– Collapses in extensional type theory. Why?
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Problem Set-Up

..infinite tower of higher identity types:

A

I(A, a, a′)

I(I(A, a, a′), p, p′)

I(I(I(A, a, a′), p, p′), θ, θ′)

. . .

Works in intensional type theory.

• Proved by Hofmann and Streicher using the groupoid
model.
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Higher Inductive Types (HIT)

Definition

A higher inductive type is a type in which all the iterated
identity types are generated inductively.

Examples:

• 1-hit: I(A, a, a′)

• 2-hit: I(I(A, a, a′), p, p′)

Has a topological interpretation:

• a and a′ are points in space;

• p and p′ are paths from from a to a′;

• θ and θ′ are homotopies between p and p′.
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Higher Inductive Types: Examples

Circle is a 1-hit.

I n d u c t i v e c i r c l e : Type :=
| base : c i r c l e
| l oop : base == base .

Torus is a 2-hit (next presentation).

• 2-path represents the surface that commutes meridional
and longitudinal loops.
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Our Goals

Problem

Formalisation of syntax and semantics is still lacking.

Want to formulate a general theory of higher inductive types:

1 Represent CL as a 1-HIT.

2 Determine general schema for point and path constructors;

3 Construct the elimination and equality rules;
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Dependent Type Theory Background: Notation

Function Types

• Dependent function types: (x : A)→ B(x)

• Non-dependent function types: A→ B

Identity Types

a =A a′ (preferred notation) instead of I(A, a, a′)

Function Application

• If x : A ⊢ C , then we write C (x) to emphasize dependence.

• Write C (a) to denote substituting a for x in C .
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Dependent Type Theory Background: Rules

Introduction Rule

refl : (x : A)→ x =A x

Elimination Rule (Induction Principle)

JC : (x : A)→ C (x , refl(x))→ (y : A)→ (z : x =A y)→ C (y , z)

where x : A, y : A, z : x =A y ⊢ C (y , z).

Equality Rule
JC (x , d , x , refl(x)) = d
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Dependent Type Theory Background: Rules

Heterogeneous Identity Type

a =B
p a′ compares a : B(x) and a′ : B(x ′) where p : x =A x ′

Identity Preservation

apdf : (p : x =A x ′)→ f (x) =B
p f (x ′)
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Dependent Type Theory Background: Rules

Heterogeneous Identity Type

a =B
p a′ compares a : B(x) and a′ : B(x ′) where p : x =A x ′

Identity Preservation
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Combinatory Logic

• examples of combinators: S,I and K

• as 1-hit: CL is a type

Kxy = x

Ix = x

Sxyz = xz(yz)
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Introduction Rules

Point Constructors

K,S : CL and app : CL→ CL→ CL

Path Constructors

• Kconv : (x , y : CL)→ app(app(K, x), y) =CL x

• Sconv : (x , y , z : CL)→ app(app(app(S, x), y), z) =CL

app(app(x , z), app(y , z))

Properties Derived from =CL

• Reflexivity

• Transitivity

• Symmetry

• Application preserves equality
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Elimination Rules

Assumptions

• K̃ : C (K)

• S̃ : C (S)

• ˜app : (x : CL)→ C (x)→ (y : CL)→ C (y)→ C (app(x , y))

Path Assumptions

• K̃conv : (x , y : CL)→ (x̃ : C (x))→ (ỹ : C (y))→
˜app(app(K, x), ˜app(K, K̃, x , x̃), y , ỹ) =C

Kconv (x,y)
x̃

• Analogous for S̃conv

Result
f : (x : CL)→ C (x)
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Equality Rules

Function Equality

• f (K) = K̃

• f (S) = S̃

• f (app(x , y)) = ˜app(x , f (x), y , f (y))

Path Equality

• apdf (Kconv (x , y)) = K̃conv (x , y , f (x), f (y))

• apdf (Sconv (x , y , z)) = S̃conv (x , y , z , f (x), f (y), f (z))
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Setoids

Idea: dependent type theory with (x : A)→ B(x), a =A a′, and
CL, has a setoid model.

Definition

A setoid is a set S equipped with an equivalence relation R.

• Intuitively, can be thought of as a set where elements are
considered equivalent under a given relation.

Examples are:

• Modulo arithmetic: (Z, ≡ mod n)

• Rational numbers: (a, b) ∼ (c , d) ⇐⇒ ad = bc
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Setoid Model

1 Interpret type as a setoid A, consisting of a set A0

together with an equivalence relation R.

– R is represented as a binary family of sets (A1(x , x
′))x,x′∈A0

such that A1(x , x
′) is inhabitated ⇐⇒ R(x , x ′) holds.

2 CL is a setoid (CL0,CL1) where CL0 is an inductive type
generated by K, S and app and CL1 is an inductive family
generated by Kconv and Sconv and the constructors for
transitivity, reflexivity, symmetry and preservation of
equality by app.
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Constructing a General Schema

Use the schema in the style of inductive families:

• point constructor ← constructor for an inductive type

• path constructor ← constructor for a binary inductive
family

General form for an inductive type H:

(x1 : A1)→ · · · → (xm : Am(x1, . . . , xm−1))

→ (B1(x1, . . . , xm)→ H)→ · · ·
→ (Bn(x1, . . . , xm)→ H)→ H

• Am(x1, . . . , xm−1)) is a type if
(x1 : A1, . . . , xm−1 : Am−1(x1, . . . , xm−2));

• B1(. . . ) and Bn(. . . ) are types if
(x1 : A1, . . . , xm : Am(x1, . . . , xm−1)).

• Ai and Bj do not depend on H.
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• B1(. . . ) and Bn(. . . ) are types if
(x1 : A1, . . . , xm : Am(x1, . . . , xm−1)).

• Ai and Bj do not depend on H.
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Constructing a General Schema

Use the schema in the style of inductive families:
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family
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Constructing a General Schema

Use the schema in the style of inductive families:

• point constructor ← constructor for an inductive type

• path constructor ← constructor for a binary inductive
family

General form for an inductive type H:

(x1 : A1)→ · · · → (xm : Am(x1, . . . , xm−1))

→ (B1(x1, . . . , xm)→ H)→ · · ·
→ (Bn(x1, . . . , xm)→ H)→ H

• Am(x1, . . . , xm−1)) is a type if
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Restriction to Finitary HITs

(x1 : A1)→ · · · → (xm : Am(x1, . . . , xm−1))

→ (B1(x1, . . . , xm)→ H)→ · · ·
→ (Bn(x1, . . . , xm)→ H)→ H

If Bj is empty → finitary inductive definition.
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Point Constructors

c0 : (x1 : A1)→ ...→ (xm : Am(x1, ..., xm−1))

→ H→ ...→ H→ H
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Path Constructors

c1 : (x1 : B1)→ · · · → (xn : Bn(x1, . . . , xn))

→ (y1 : H)→ · · · → (yn′ : H)

→ p1(x1, . . . , xn, y1, . . . , yn′) =H q1(x1, . . . , xn, y1, . . . , yn′)

...

→ pn′′(x1, . . . , xn, y1, . . . , yn′) =H qn′′(x1, . . . , xn, y1, . . . , yn′)

→ p′(x1, . . . , xn, y1, . . . , yn′) =H q′(x1, . . . , xn, y1, . . . , yn′)

• yj : H is an inductive premise;

• p ::= y | c0(a1, . . . , am, p1, . . . , pk) - syntax for point
constructor patterns
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Simplified Form for Point and Path Constructors

One point constructor with m = 1:

c0 : A→ H→ H

One path constructor with n = n′ = n′′ = 1:

c1 : (x : B)→ (y : H)→ p(x , y) =H q(x , y)

→ p′(x , y) =H q′(x , y)
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Simplified Form for Point and Path Constructors

One point constructor with m = 1:

c0 : A→ H→ H

One path constructor with n = n′ = n′′ = 1:

c1 : (x : B)→ (y : H)→ p(x , y) =H q(x , y)

→ p′(x , y) =H q′(x , y)
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Elimination and equality rules

Point assumption

c̃0 : (x : A)→ (y : A)→ C (y)→ C (c0(x , y))

Path assumption

c̃1 : (x : B)→ (y : H)→ (ỹ : C (y))→ (z : p =H q)→
T0(p) =

C
z T0(q)→ T0(p

′) =C
c1(x ,y ,z)

T0(q
′)

Result: a function f : (x : H)→ C (x).
Equality rules

f (c0(x , y)) = c̃0(x , y , f (y))

apdf (c1(x , y , z)) = c̃1(x , y , f (y), z , apdf (z))
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Elimination and equality rules

Point assumption

c̃0 : (x : A)→ (y : A)→ C (y)→ C (c0(x , y))

Path assumption

c̃1 : (x : B)→ (y : H)→ (ỹ : C (y))→ (z : p =H q)→
T0(p) =

C
z T0(q)→ T0(p

′) =C
c1(x ,y ,z)

T0(q
′)

Result: a function f : (x : H)→ C (x).
Equality rules

f (c0(x , y)) = c̃0(x , y , f (y))

apdf (c1(x , y , z)) = c̃1(x , y , f (y), z , apdf (z))
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The lifting function: example

• The lifting of p : H is denoted T0(p) : C (p)

• The idea is that T0(p) = f (p) for the resulting function f

Example (K̃conv):

T0(app(app(K , x), y)) = ˜app(app(K , x), ˜app(K , K̃ , x , x̃), y , ỹ)
T0(x) = x̃

This lifting function is defined by:

T0(x) = x̃ ,T0(y) = ỹ ,T0(K ) = K̃ ,T0(S) = S̃ and
T0(app(t, t

′)) = ˜app(t,T0(t), t
′,T0(t

′))
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• The lifting of p : H is denoted T0(p) : C (p)
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The lifting function: general

General definition of (T0(p(x , y)) : C (p(x , y))):

T0(y) = ỹ

T0(c0(a, p)) = c̃0(a, p,T0(p))

Hence, x : B, y : H, ỹ : C (y) ⊢ T0(p(x , y)) : C (p(x , y)) and
T0(p)(x , y , f (y)) = f (p(x , y))
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The lifting function: general

General definition of (T0(p(x , y)) : C (p(x , y))):

T0(y) = ỹ

T0(c0(a, p)) = c̃0(a, p,T0(p))

Hence, x : B, y : H, ỹ : C (y) ⊢ T0(p(x , y)) : C (p(x , y)) and
T0(p)(x , y , f (y)) = f (p(x , y))
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Example: The circle again

I n d u c t i v e c i r c l e : Type :=
| base : c i r c l e
| l oop : base == base .

˜base : C (base) ˜loop : T0(base) =
C
loop T0(base)

f : (x : circle)→ C (x)

• f (base) = ˜base

• apdf (loop) = ˜loop
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Example: Natlist

I n d u c t i v e N a t l i s t : Type :=
| N i l : N a t l i s t
| Cons : nat −> Na t l i s t −> N a t l i s t
| Ni lEq : N i l == N i l
| ConsEq : f o r a l l n1 , n2 : nat −>

f o r a l l l 1 , l 2 : N a t l i s t −>
n1 == n2 −> l 1 == l 2 −>
Cons ( n1 , l 1 ) == Cons ( n2 , l 2 )
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Example: Natlist (elimination rule)

Point constructors:
Ñil : C (Nil)

˜Cons : (n : nat)→ (l : Natlist)→ C (l)→ C (cons(n, l))

Path constructors:

˜nilEq : T0(Nil) =
C
Nileq T0(Nil)

˜ConsEq : (n1, n2 : nat)→ (l1, l2 : Natlist)→ (l̃1 : C (l1))

→ (l̃2 : C (l2))→ (x : n1 =Natlist n2)→ (y : l1 =Natlist l2)

T0(n1) =
C
x T0(n2)→ T0(l1) =

C
y T0(l2)→

T0(Cons(n1, l1)) =
C
ConsEq(n1,n2,l1,l2,x,y) T0(Cons(n2, l2))
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Example: Natlist (equality rule)

f (Nil) = Ñil

f (Cons(n, l)) = ˜Cons(n, l , f (l))

apdf (NilEq) = ˜NilEq

apdf (ConsEq(n1, n2, l1, l2, x , y)) = ˜ConsEq(n1, n2, l1, l2,

f (l1), f (l2), z1, z2,

apdf (z1), apdf (z2)).
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End of presentation

Questions?
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