

Introduction Problem Set-Up

Combinatory Logic as a 1-Hit

Dependent Type Theory Background Combinatory Logic Setoid Model

A Schema for 1-Hits

Point Constructors Path Constructors Simplified Form for Point and Path Constructors Elimination and Equality Rules Lifting Function Examples Finitary Higher Inductive Types in the Groupoid Model Sections 1-3

Mark Lapidus, Pim Leerkes

December 13, 2024

*ロ * * ● * * ● * * ● * ● * ● * ●

Outline

- Introduction Problem Set-Up
- Combinatory Logic as a 1-Hit
- Dependent Type Theory Background Combinatory Logic Setoid Model

A Schema for 1-Hits

- Point Constructors Path Constructors Simplified Form for Point and Path Constructors Elimination and Equality Rules Lifting Function
- Examples

1 Introduction

Problem Set-Up

2 Combinatory Logic as a 1-Hit

- Dependent Type Theory Background
- Combinatory Logic
- Setoid Model

3 A Schema for 1-Hits

- Point Constructors
- Path Constructors
- Simplified Form for Point and Path Constructors

- Elimination and Equality Rules
- Lifting Function
- Examples

Recall.. Martin-Löf introduced I(A, a, a')

- Elements of I(A, a, a') are proofs that a and a' are equal elements of A.
- Can obtain an infinite tower of higher identity types:

$$A \\ I(A, a, a') \\ I(I(A, a, a'), p, p') \\ (I(I(A, a, a'), p, p'), \theta, \theta')$$

Introduction Problem Set-Up

Combinatory Logic as a 1-Hit

Dependent Type Theory Background Combinatory Logic Setoid Model

A Schema for 1-Hits

Point Constructors Path Constructors Simplified Form for Point and Path Constructors Elimination and Equality Rules Lifting Function Examples

Introduction Problem Set-Up

Combinatory Logic as a 1-Hit

Dependent Type Theory Background Combinatory Logic Setoid Model

A Schema for 1-Hits

Point Constructors Path Constructors Simplified Form for Point and Path Constructors Elimination and Equality Rules Lifting Function Examples

Recall.. Martin-Löf introduced I(A, a, a')

- Elements of I(A, a, a') are proofs that a and a' are equal elements of A.
- Can obtain an infinite tower of higher identity types:

$$A \\ I(A, a, a') \\ I(I(A, a, a'), p, p') \\ (I(I(A, a, a'), p, p'), \theta, \theta')$$

. . .

Introduction Problem Set-Up

Combinatory Logic as a 1-Hit

Dependent Type Theory Background Combinatory Logic Setoid Model

A Schema for 1-Hits

Point Constructors Path Constructors Simplified Form for Point and Path Constructors Elimination and Equality Rules Lifting Function Examples Recall.. Martin-Löf introduced I(A, a, a')

- Elements of I(A, a, a') are proofs that a and a' are equal elements of A.
- Can obtain an infinite tower of higher identity types:

$$A \\ I(A, a, a') \\ I(I(A, a, a'), p, p') \\ (I(I(A, a, a'), p, p'), \theta, \theta')$$

. . .

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● ● ● ● ●

- Collapses in extensional type theory. Why?

Introduction Problem Set-Up

Combinatory Logic as a 1-Hit

Dependent Type Theory Background Combinatory Logic Setoid Model

A Schema for 1-Hits

Point Constructors Path Constructors Simplified Form for Point and Path Constructors Elimination and Equality Rules Lifting Function Examples .. infinite tower of higher identity types:

$$A \\ I(A, a, a') \\ I(I(A, a, a'), p, p') \\ (I(I(A, a, a'), p, p'), \theta, \theta')$$

. . .

Works in intensional type theory.

• Proved by Hofmann and Streicher using the groupoid model.

Higher Inductive Types (HIT)

Introduction Problem Set-Up

Combinatory Logic as a 1-Hit

Dependent Type Theory Background Combinatory Logic Setoid Model

A Schema for 1-Hits

Point Constructors Path Constructors Simplified Form for Point and Path Constructors Elimination and Equality Rules Lifting Function Examples

Definition

A **higher inductive type** is a type in which all the iterated identity types are generated inductively.

Examples:

- 1-hit: I(A, a, a')
- 2-hit: I(I(A, a, a'), p, p')

Has a topological interpretation:

- *a* and *a*' are points in space;
- p and p' are paths from from a to a';
- θ and θ' are homotopies between p and p'.

Higher Inductive Types (HIT)

Introduction Problem Set-Up

Combinatory Logic as a 1-Hit

Dependent Type Theory Background Combinatory Logic Setoid Model

A Schema for 1-Hits

Point Constructors Path Constructors Simplified Form for Point and Path Constructors Elimination and Equality Rules Lifting Function Examples

Definition

A **higher inductive type** is a type in which all the iterated identity types are generated inductively.

Examples:

- 1-hit: I(A, a, a')
- 2-hit: I(I(A, a, a'), p, p')

Has a topological interpretation:

- a and a' are points in space;
- p and p' are paths from from a to a';
- θ and θ' are homotopies between p and p'.

Higher Inductive Types (HIT)

Introduction Problem Set-Up

Combinatory Logic as a 1-Hit

Dependent Type Theory Background Combinatory Logic Setoid Model

A Schema for 1-Hits

Point Constructors Path Constructors Simplified Form for Point and Path Constructors Elimination and Equality Rules Lifting Function Examples

Definition

A **higher inductive type** is a type in which all the iterated identity types are generated inductively.

Examples:

- 1-hit: I(A, a, a')
- 2-hit: I(I(A, a, a'), p, p')

Has a topological interpretation:

- a and a' are points in space;
- p and p' are paths from from a to a';
- θ and θ' are homotopies between p and p'.

Higher Inductive Types: Examples

Introduction Problem Set-Up

Combinatory Logic as a 1-Hit

Dependent Type Theory Background Combinatory Logic Setoid Model

A Schema for 1-Hits

Point Constructors Path Constructors Simplified Form for Point and Path Constructors Elimination and Equality Rules Lifting Function Examples

Inductive circle : Type := | base : circle | loop : base == base.

Torus is a 2-hit (next presentation).

Circle is a 1-hit.

• 2-path represents the surface that commutes meridional and longitudinal loops.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Our Goals

Introduction

Combinatory Logic as a 1-Hit

Dependent Type Theory Background Combinatory Logic Setoid Model

A Schema for 1-Hits

Point Constructors Path Constructors Simplified Form for Point and Path Constructors Elimination and Equality Rules Lifting Function Examples

Problem

Formalisation of syntax and semantics is still lacking.

Want to formulate a general theory of higher inductive types: Represent CL as a 1-HIT.

2 Determine general schema for point and path constructors;

3 Construct the elimination and equality rules;

Our Goals

Introduction Problem Set-Up

Combinatory Logic as a 1-Hit

Dependent Type Theory Background Combinatory Logic Setoid Model

A Schema for 1-Hits

Point Constructors Path Constructors Simplified Form for Point and Path Constructors Elimination and Equality Rules Lifting Function Examples

Problem

Formalisation of syntax and semantics is still lacking.

Want to formulate a general theory of higher inductive types: Represent CL as a 1-HIT.

2 Determine general schema for point and path constructors;

A 日 > 4 H > 4 H > 4 H > 4 H > 4 H > 4 H > 4 H > 4 H > 4

3 Construct the elimination and equality rules;

Dependent Type Theory Background: Notation

Function Types

- Dependent function types: $(x : A) \rightarrow B(x)$
- Non-dependent function types: $A \rightarrow B$

Identity Types

 $a =_A a'$ (preferred notation) instead of I(A, a, a')

Function Application

• If $x : A \vdash C$, then we write C(x) to emphasize dependence.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● ● ● ● ●

• Write C(a) to denote substituting a for x in C.

Introduction

Problem Set-Up Combinatory

Logic as a 1-Hit Dependent Type

Theory Background Combinatory Logic Setoid Model

A Schema for 1-Hits

Point Constructors Path Constructors Simplified Form for Point and Path Constructors Elimination and Equality Rules Lifting Function Examples

Introduction

Problem Set-Up Combinatory

Logic as a 1-Hit Dependent Type

Dependent Type Theory Background: Notation

Function Types

- Dependent function types: $(x : A) \rightarrow B(x)$
- Non-dependent function types: $A \rightarrow B$

Identity Types

A Schema for 1-Hits

Combinatory Logic Setoid Model

Point Constructors Path Constructors Simplified Form for Point and Path Constructors Elimination and Equality Rules Lifting Function Examples

$a =_A a'$ (preferred notation) instead of I(A, a, a')

Function Application

• If $x : A \vdash C$, then we write C(x) to emphasize dependence.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● ● ● ● ●

• Write C(a) to denote substituting a for x in C.

Dependent Type Theory Background: Notation

Function Types

- Dependent function types: $(x : A) \rightarrow B(x)$
- Non-dependent function types: $A \rightarrow B$

Identity Types

$$a =_A a'$$
 (preferred notation) instead of $I(A, a, a')$

Function Application

• If $x : A \vdash C$, then we write C(x) to emphasize dependence.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● ● ● ● ●

• Write C(a) to denote substituting a for x in C.

Introduction Problem Set-Up

Combinatory Logic as a 1-Hit

Dependent Type Theory Background Combinatory Logic Setoid Model

A Schema for 1-Hits

Point Constructors Path Constructors Simplified Form for Point and Path Constructors Elimination and Equality Rules Lifting Function Examples

Introduction Problem Set-Up

Combinatory Logic as a 1-Hit

Dependent Type Theory Background Combinatory Logic Setoid Model

A Schema for 1-Hits

Point Constructors Path Constructors Simplified Form for Point and Path Constructors Elimination and Equality Rules Lifting Function Examples

Introduction Rule

 $\mathsf{refl}:(x:A)\to x=_A x$

Elimination Rule (Induction Principle)

 $J_C: (x:A) \to C(x, \operatorname{refl}(x)) \to (y:A) \to (z:x =_A y) \to C(y, z)$

where $x : A, y : A, z : x =_A y \vdash C(y, z)$.

Equality Rule

$$J_C(x, d, x, \operatorname{refl}(x)) = d$$

Introduction Problem Set-Up

Combinatory Logic as a 1-Hit

Dependent Type Theory Background Combinatory Logic Setoid Model

A Schema for 1-Hits

Point Constructors Path Constructors Simplified Form for Point and Path Constructors Elimination and Equality Rules Lifting Function Examples

Introduction Rule

$$\mathsf{refl}:(x:A)\to x=_A x$$

Elimination Rule (Induction Principle)

 $J_C: (x:A) \rightarrow C(x, \operatorname{refl}(x)) \rightarrow (y:A) \rightarrow (z:x =_A y) \rightarrow C(y, z)$

where $x : A, y : A, z : x =_A y \vdash C(y, z)$.

Equality Rule

 $J_C(x, d, x, \operatorname{refl}(x)) = d$

Introduction Problem Set-Up

Combinatory Logic as a 1-Hit

Dependent Type Theory Background Combinatory Logic Setoid Model

A Schema for 1-Hits

Point Constructors Path Constructors Simplified Form for Point and Path Constructors Elimination and Equality Rules Lifting Function Examples

Introduction Rule

$$\mathsf{refl}:(x:A)\to x=_A x$$

Elimination Rule (Induction Principle)

 $J_C: (x:A) \rightarrow C(x, \operatorname{refl}(x)) \rightarrow (y:A) \rightarrow (z:x =_A y) \rightarrow C(y, z)$

where $x : A, y : A, z : x =_A y \vdash C(y, z)$.

Equality Rule

$$J_C(x, d, x, \operatorname{refl}(x)) = d$$

Introduction Problem Set-Up

Combinatory Logic as a 1-Hit

Dependent Type Theory Background Combinatory Logic Setoid Model

A Schema for 1-Hits

Point Constructors Path Constructors Simplified Form for Point and Path Constructors Elimination and Equality Rules Lifting Function Examples

Heterogeneous Identity Type

$$a = {}^B_p a'$$
 compares $a : B(x)$ and $a' : B(x')$ where $p : x = A x'$

Identity Preservation

$$\operatorname{apd}_f : (p : x =_A x') \to f(x) =_p^B f(x')$$

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Introduction Problem Set-Up

Combinatory Logic as a 1-Hit

Dependent Type Theory Background Combinatory Logic Setoid Model

A Schema for 1-Hits

Point Constructors Path Constructors Simplified Form for Point and Path Constructors Elimination and Equality Rules Lifting Function Examples

Heterogeneous Identity Type

$$a = {}^B_p a'$$
 compares $a : B(x)$ and $a' : B(x')$ where $p : x = A x'$

Identity Preservation

$$\operatorname{apd}_f : (p : x =_A x') \to f(x) =_p^B f(x')$$

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Combinatory Logic

- Introduction Problem Set-Up
- Combinatory Logic as a 1-Hit
- Dependent Type Theory Background Combinatory Logic Setoid Model
- A Schema for 1-Hits
- Point Constructors Path Constructors Simplified Form for Point and Path Constructors Elimination and Equality Rules Lifting Function
- Examples

- examples of combinators: S,I and K
 - as 1-hit: CL is a type

Kxy = xIx = xSxyz = xz(yz)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Introduction Problem Set-Up Combinatory Logic as a 1-Hit Dependent Type Theory Background

Setoid Model

Equality Rules Lifting Function Examples

A Schema for 1-Hits Point Constructors Path Constructors Simplified Form for Point and Path Constructors Elimination and

Introduction Rules

Point Constructors

$\mathsf{K},\mathsf{S}:\mathsf{CL}\quad \mathsf{and}\quad \textbf{app}:\mathsf{CL}\to\mathsf{CL}\to\mathsf{CL}$

Path Constructors

- $K_{conv}: (x, y: CL) \rightarrow app(app(K, x), y) =_{CL} x$
- $S_{conv} : (x, y, z : CL) \rightarrow app(app(app(S, x), y), z) =_{CL} app(app(x, z), app(y, z))$

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● ● ● ● ●

Properties Derived from $=_{CL}$

- Reflexivity
- Transitivity
- Symmetry
- Application preserves equality

Introduction Problem Set-Up Combinatory Logic as a

Combinatory Logic Setoid Model

A Schema for

Equality Rules Lifting Function Examples

1-Hits Point Constructors Path Constructors Simplified Form for Point and Path Constructors Elimination and

1-Hit Dependent Type Theory Background

Introduction Rules

Point Constructors

 $\mathsf{K},\mathsf{S}:\mathsf{CL}\quad \text{and}\quad \textbf{app}:\mathsf{CL}\to\mathsf{CL}\to\mathsf{CL}$

Path Constructors

- $\mathsf{K}_{\textit{conv}}: (x, y:\mathsf{CL}) \to \mathsf{app}(\mathsf{app}(\mathsf{K}, x), y) =_{\mathsf{CL}} x$
- S_{conv} : $(x, y, z : CL) \rightarrow app(app(app(S, x), y), z) =_{CL} app(app(x, z), app(y, z))$

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● ● ● ● ●

Properties Derived from $=_{CL}$

- Reflexivity
- Transitivity
- Symmetry
- Application preserves equality

Introduction Problem Set-Up Combinatory Logic as a

Combinatory Logic Setoid Model

A Schema for

1-Hit Dependent Type Theory Background

1-Hits Point Constructors Path Constructors Simplified Form for Point and Path

Constructors Elimination and

Equality Rules Lifting Function Examples

Introduction Rules

Point Constructors

 $\mathsf{K},\mathsf{S}:\mathsf{CL}\quad \mathsf{and}\quad \textbf{app}:\mathsf{CL}\to\mathsf{CL}\to\mathsf{CL}$

Path Constructors

- $\mathsf{K}_{\textit{conv}}: (x, y:\mathsf{CL}) \to \mathsf{app}(\mathsf{app}(\mathsf{K}, x), y) =_{\mathsf{CL}} x$
- S_{conv} : $(x, y, z : CL) \rightarrow app(app(app(S, x), y), z) =_{CL} app(app(x, z), app(y, z))$

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● ● ● ● ●

Properties Derived from $=_{CL}$

- Reflexivity
- Transitivity
- Symmetry
- Application preserves equality

Introduction

Problem Set-Up

Combinatory Logic as a 1-Hit

Dependent Type Theory Background Combinatory Logic Setoid Model A Schema for 1-Hits Paint Constructors

Path Constructors Simplified Form for Point and Path Constructors Elimination and

Equality Rules Lifting Function Examples

Elimination Rules

Assumptions

- Š: C(S)
- app : $(x : \mathsf{CL}) \to C(x) \to (y : \mathsf{CL}) \to C(y) \to C(\mathsf{app}(x, y))$

Path Assumptions

- $\tilde{\mathsf{K}}_{conv} : (x, y : \mathsf{CL}) \to (\tilde{x} : C(x)) \to (\tilde{y} : C(y)) \to a\tilde{p}(app(\mathsf{K}, x), a\tilde{p}p(\mathsf{K}, \tilde{\mathsf{K}}, x, \tilde{x}), y, \tilde{y}) =_{\mathsf{K}_{conv}(x, y)}^{C} \tilde{x}$
- Analogous for \tilde{S}_{conv}

Result

$$f:(x:\operatorname{CL})\to C(x)$$

Introduction Problem Set-Up

Combinatory Logic as a 1-Hit

Dependent Type Theory Background Combinatory Logic Setoid Model

A Schema for 1-Hits Point Constructors

Path Constructors

Simplified Form for Point and Path Constructors Elimination and

Equality Rules Lifting Function Examples

Elimination Rules

Assumptions

- S̃ : C(S)
- app : $(x : CL) \rightarrow C(x) \rightarrow (y : CL) \rightarrow C(y) \rightarrow C(app(x, y))$

Path Assumptions

- $\tilde{\mathsf{K}}_{conv} : (x, y : \mathsf{CL}) \to (\tilde{x} : C(x)) \to (\tilde{y} : C(y)) \to a\tilde{p}p(app(\mathsf{K}, x), a\tilde{p}p(\mathsf{K}, \tilde{\mathsf{K}}, x, \tilde{x}), y, \tilde{y}) =_{\mathsf{K}_{conv}(x, y)}^{C} \tilde{x}$
- Analogous for \tilde{S}_{conv}

Result

$$f:(x:\mathsf{CL})\to C(x)$$

Introduction Problem Set-Up

Combinatory Logic as a 1-Hit

Dependent Type Theory Background Combinatory Logic Setoid Model

A Schema for 1-Hits Point Constructors

Path Constructors

Simplified Form for Point and Path Constructors Elimination and

Equality Rules Lifting Function Examples

Elimination Rules

Assumptions

- Š: C(S)
- app : $(x : CL) \rightarrow C(x) \rightarrow (y : CL) \rightarrow C(y) \rightarrow C(app(x, y))$

Path Assumptions

- $\tilde{\mathsf{K}}_{conv} : (x, y : \mathsf{CL}) \to (\tilde{x} : C(x)) \to (\tilde{y} : C(y)) \to a\tilde{p}p(app(\mathsf{K}, x), a\tilde{p}p(\mathsf{K}, \tilde{\mathsf{K}}, x, \tilde{x}), y, \tilde{y}) =_{\mathsf{K}_{conv}(x, y)}^{C} \tilde{x}$
- Analogous for \tilde{S}_{conv}

<u>Result</u>

$$f:(x:\mathsf{CL})\to C(x)$$

Equality Rules

Introduction Problem Set-Up

Combinatory Logic as a 1-Hit

Dependent Type Theory Background Combinatory Logic Setoid Model

A Schema for 1-Hits

Point Constructors Path Constructors Simplified Form for Point and Path Constructors Elimination and Equality Rules Lifting Function Examples

Function Equality

•
$$f(K) = \tilde{K}$$

•
$$f(S) = \tilde{S}$$

•
$$f(app(x, y)) = a\tilde{p}p(x, f(x), y, f(y))$$

Path Equality

- $\operatorname{apd}_{f}(\mathsf{K}_{conv}(x,y)) = \widetilde{\mathsf{K}}_{conv}(x,y,f(x),f(y))$
- $\operatorname{apd}_f(S_{conv}(x, y, z)) = \tilde{S}_{conv}(x, y, z, f(x), f(y), f(z))$

Equality Rules

Introduction Problem Set-Up

Combinatory Logic as a 1-Hit

Dependent Type Theory Background Combinatory Logic Setoid Model

A Schema for 1-Hits

Point Constructors Path Constructors Simplified Form for Point and Path Constructors Elimination and Equality Rules Lifting Function Examples

Function Equality

•
$$f(K) = \tilde{K}$$

•
$$f(S) = \tilde{S}$$

•
$$f(app(x, y)) = a\tilde{p}p(x, f(x), y, f(y))$$

Path Equality

- $\operatorname{apd}_{f}(\mathsf{K}_{conv}(x,y)) = \tilde{\mathsf{K}}_{conv}(x,y,f(x),f(y))$
- $\operatorname{apd}_f(S_{conv}(x, y, z)) = \tilde{S}_{conv}(x, y, z, f(x), f(y), f(z))$

Setoids

Introduction Problem Set-Up

Combinatory Logic as a 1-Hit

Dependent Type Theory Background Combinatory Logic Setoid Model

A Schema for 1-Hits

Point Constructors Path Constructors Simplified Form for Point and Path Constructors Elimination and Equality Rules Lifting Function Examples Idea: dependent type theory with $(x : A) \rightarrow B(x)$, $a =_A a'$, and CL, has a setoid model.

Definition

A setoid is a set S equipped with an equivalence relation R.

• Intuitively, can be thought of as a set where elements are considered equivalent under a given relation.

Examples are:

- Modulo arithmetic: $(\mathbb{Z}, \equiv \mod n)$
- Rational numbers: $(a,b) \sim (c,d) \iff ad = bc$

Setoids

Introduction Problem Set-Up

Combinatory Logic as a 1-Hit

Dependent Type Theory Background Combinatory Logic Setoid Model

A Schema for 1-Hits

Point Constructors Path Constructors Simplified Form for Point and Path Constructors Elimination and Equality Rules Lifting Function Examples Idea: dependent type theory with $(x : A) \rightarrow B(x)$, $a =_A a'$, and CL, has a setoid model.

Definition

A setoid is a set S equipped with an equivalence relation R.

• Intuitively, can be thought of as a set where elements are considered equivalent under a given relation.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● ● ● ● ●

Examples are:

- Modulo arithmetic: $(\mathbb{Z}, \equiv \mod n)$
- Rational numbers: $(a, b) \sim (c, d) \iff ad = bc$

Setoids

Introduction Problem Set-Up

Combinatory Logic as a 1-Hit

Dependent Type Theory Background Combinatory Logic Setoid Model

A Schema for 1-Hits

Point Constructors Path Constructors Simplified Form for Point and Path Constructors Elimination and Equality Rules Lifting Function Examples Idea: dependent type theory with $(x : A) \rightarrow B(x)$, $a =_A a'$, and CL, has a setoid model.

Definition

A setoid is a set S equipped with an equivalence relation R.

• Intuitively, can be thought of as a set where elements are considered equivalent under a given relation.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● ● ● ● ●

Examples are:

- Modulo arithmetic: $(\mathbb{Z}, \equiv \mod n)$
- Rational numbers: $(a,b) \sim (c,d) \iff ad = bc$

Setoid Model

- Introduction Problem Set-Up
- Combinatory Logic as a 1-Hit
- Dependent Type Theory Background Combinatory Logic Setoid Model
- A Schema for 1-Hits
- Point Constructors Path Constructors Simplified Form for Point and Path Constructors Elimination and Equality Rules Lifting Function Examples

1 Interpret **type as a setoid** A, consisting of a set A_0 together with an equivalence relation R.

- *R* is represented as a binary family of sets $(A_1(x, x'))_{x,x' \in A_0}$ such that $A_1(x, x')$ is inhabitated $\iff R(x, x')$ holds.

CL is a setoid (CL₀, CL₁) where CL₀ is an inductive type generated by K, S and **app** and CL₁ is an inductive family generated by K_{conv} and S_{conv} and the constructors for transitivity, reflexivity, symmetry and preservation of equality by **app**.

Introduction Problem Set-Up

Combinatory Logic as a 1-Hit

Dependent Type Theory Background Combinatory Logic Setoid Model

A Schema for 1-Hits

Point Constructors Path Constructors Simplified Form for Point and Path Constructors Elimination and Equality Rules Lifting Function Examples Use the schema in the style of inductive families:

- point constructor ← constructor for an inductive type
- path constructor ← constructor for a binary inductive family

General form for an inductive type **H**:

$$(x_1 : A_1) \to \cdots \to (x_m : A_m(x_1, \dots, x_{m-1})) \to (B_1(x_1, \dots, x_m) \to \mathbf{H}) \to \cdots \to (B_n(x_1, \dots, x_m) \to \mathbf{H}) \to \mathbf{H}$$

A_m(x₁,...,x_{m-1})) is a type if
 (x₁: A₁,...,x_{m-1}: A_{m-1}(x₁,...,x_{m-2}));
 B₁(...) and B_n(...) are types if
 (x₁: A₁,...,x_m: A_m(x₁,...,x_{m-1})).
 A_i and B_j do not depend on H.

Introduction Problem Set-Up

Combinatory Logic as a 1-Hit

Dependent Type Theory Background Combinatory Logic Setoid Model

A Schema for 1-Hits

Point Constructors Path Constructors Simplified Form for Point and Path Constructors Elimination and Equality Rules Lifting Function Examples Use the schema in the style of inductive families:

- point constructor ← constructor for an inductive type
- path constructor ← constructor for a binary inductive family

General form for an inductive type \mathbf{H} :

$$(x_1: A_1) \rightarrow \cdots \rightarrow (x_m: A_m(x_1, \dots, x_{m-1}))$$

 $\rightarrow (B_1(x_1, \dots, x_m) \rightarrow \mathbf{H}) \rightarrow \cdots$
 $\rightarrow (B_n(x_1, \dots, x_m) \rightarrow \mathbf{H}) \rightarrow \mathbf{H}$

A_m(x₁,...,x_{m-1})) is a type if
 (x₁: A₁,...,x_{m-1}: A_{m-1}(x₁,...,x_{m-2}));
 B₁(...) and B_n(...) are types if
 (x₁: A₁,...,x_m: A_m(x₁,...,x_{m-1})).
 A_i and B_j do not depend on H.

Introduction Problem Set-Up

Combinatory Logic as a 1-Hit

Dependent Type Theory Background Combinatory Logic Setoid Model

A Schema for 1-Hits

Point Constructors Path Constructors Simplified Form for Point and Path Constructors Elimination and Equality Rules Lifting Function Examples Use the schema in the style of inductive families:

- point constructor ← constructor for an inductive type
- path constructor ← constructor for a binary inductive family

General form for an inductive type $\boldsymbol{\mathsf{H}}:$

$$(x_1: A_1) \rightarrow \cdots \rightarrow (x_m: A_m(x_1, \dots, x_{m-1}))$$

 $\rightarrow (B_1(x_1, \dots, x_m) \rightarrow \mathbf{H}) \rightarrow \cdots$
 $\rightarrow (B_n(x_1, \dots, x_m) \rightarrow \mathbf{H}) \rightarrow \mathbf{H}$

A_m(x₁,...,x_{m-1})) is a type if (x₁: A₁,...,x_{m-1}: A_{m-1}(x₁,...,x_{m-2}));
B₁(...) and B_n(...) are types if (x₁: A₁,...,x_m: A_m(x₁,...,x_{m-1})).
A_i and B_j do not depend on H.

Introduction Problem Set-Up

Combinatory Logic as a 1-Hit

Dependent Type Theory Background Combinatory Logic Setoid Model

A Schema for 1-Hits

Point Constructors Path Constructors Simplified Form for Point and Path Constructors Elimination and Equality Rules Lifting Function Examples Use the schema in the style of inductive families:

- point constructor ← constructor for an inductive type
- path constructor ← constructor for a binary inductive family

General form for an inductive type $\ensuremath{\textbf{H}}$:

$$(x_1: A_1) \rightarrow \cdots \rightarrow (x_m: A_m(x_1, \dots, x_{m-1}))$$

 $\rightarrow (B_1(x_1, \dots, x_m) \rightarrow \mathbf{H}) \rightarrow \cdots$
 $\rightarrow (B_n(x_1, \dots, x_m) \rightarrow \mathbf{H}) \rightarrow \mathbf{H}$

A_m(x₁,..., x_{m-1})) is a type if (x₁ : A₁,..., x_{m-1} : A_{m-1}(x₁,..., x_{m-2}));
B₁(...) and B_n(...) are types if (x₁ : A₁,..., x_m : A_m(x₁,..., x_{m-1})).
A_i and B_i do not depend on **H**.

Introduction Problem Set-Up

Combinatory Logic as a 1-Hit

Dependent Type Theory Background Combinatory Logic Setoid Model

A Schema for 1-Hits

Point Constructors Path Constructors Simplified Form for Point and Path Constructors Elimination and Equality Rules Lifting Function Examples Use the schema in the style of inductive families:

- point constructor ← constructor for an inductive type
- path constructor ← constructor for a binary inductive family

General form for an inductive type $\ensuremath{\textbf{H}}$:

$$(x_1:A_1) o \cdots o (x_m:A_m(x_1,\ldots,x_{m-1}))$$

 $o (B_1(x_1,\ldots,x_m) o \mathbf{H}) o \cdots$
 $o (B_n(x_1,\ldots,x_m) o \mathbf{H}) o \mathbf{H}$

A_m(x₁,...,x_{m-1})) is a type if (x₁: A₁,...,x_{m-1}: A_{m-1}(x₁,...,x_{m-2}));
B₁(...) and B_n(...) are types if (x₁: A₁,...,x_m: A_m(x₁,...,x_{m-1})).

• A_i and B_j do not depend on **H**.

Restriction to Finitary HITs

Introduction Problem Set-Up

Combinatory Logic as a 1-Hit

Dependent Type Theory Background Combinatory Logic Setoid Model

A Schema for 1-Hits

Point Constructors Path Constructors Simplified Form for Point and Path Constructors Elimination and Equality Rules Lifting Function Examples

$$(x_1 : A_1) \rightarrow \cdots \rightarrow (x_m : A_m(x_1, \dots, x_{m-1}))$$

 $\rightarrow (B_1(x_1, \dots, x_m) \rightarrow \mathbf{H}) \rightarrow \cdots$
 $\rightarrow (B_n(x_1, \dots, x_m) \rightarrow \mathbf{H}) \rightarrow \mathbf{H}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

If B_i is empty \rightarrow **finitary inductive definition**.

Point Constructors

- Introduction Problem Set-Up
- Combinatory Logic as a 1-Hit
- Dependent Type Theory Background Combinatory Logic Setoid Model

A Schema for 1-Hits

Point Constructors Path Constructors Simplified Form for Point and Path Constructors Elimination and Equality Rules Lifting Function Examples

$$c_0: (x_1:A_1) o ... o (x_m:A_m(x_1,...,x_{m-1}))
onumber \ o \mathbf{H} o ... o \mathbf{H} o \mathbf{H}$$

Э

Path Constructors

Introduction Problem Set-Up

Combinatory Logic as a 1-Hit

Dependent Type Theory Background Combinatory Logic Setoid Model

A Schema for 1-Hits

Point Constructors Path Constructors Simplified Form for Point and Path Constructors Elimination and Equality Rules Lifting Function Examples

$$c_1: (x_1:B_1) \to \cdots \to (x_n:B_n(x_1,\ldots,x_n))$$

$$\to (y_1:\mathbf{H}) \to \cdots \to (y_{n'}:\mathbf{H})$$

$$\to p_1(x_1,\ldots,x_n,y_1,\ldots,y_{n'}) =_{\mathbf{H}} q_1(x_1,\ldots,x_n,y_1,\ldots,y_{n'})$$

$$\rightarrow p_{n''}(x_1, \ldots, x_n, y_1, \ldots, y_{n'}) =_{\mathbf{H}} q_{n''}(x_1, \ldots, x_n, y_1, \ldots, y_{n'}) \rightarrow p'(x_1, \ldots, x_n, y_1, \ldots, y_{n'}) =_{\mathbf{H}} q'(x_1, \ldots, x_n, y_1, \ldots, y_{n'})$$

- y_i : **H** is an **inductive premise**;
- p ::= y | c₀(a₁,..., a_m, p₁,..., p_k) syntax for point constructor patterns

Simplified Form for Point and Path Constructors

Introduction Problem Set-Up

Combinatory Logic as a 1-Hit

Dependent Type Theory Background Combinatory Logic Setoid Model

A Schema for 1-Hits

Point Constructors Path Constructors Simplified Form for Point and Path Constructors Elimination and Equality Rules Lifting Function

Examples

One point constructor with m = 1:

 $c_0: A \to \mathbf{H} \to \mathbf{H}$

One path constructor with n = n' = n'' = 1:

$$c_1: (x:B) \to (y:H) \to p(x,y) =_H q(x,y)$$
$$\to p'(x,y) =_H q'(x,y)$$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ④ ● ●

Simplified Form for Point and Path Constructors

Introduction Problem Set-Up

Combinatory Logic as a 1-Hit

Dependent Type Theory Background Combinatory Logic Setoid Model

A Schema for 1-Hits

Point Constructors Path Constructors Simplified Form for Point and Path Constructors Elimination and Equality Rules Lifting Function

Examples

One point constructor with m = 1:

$$c_0: A \to \mathbf{H} \to \mathbf{H}$$

One path constructor with n = n' = n'' = 1:

$$c_1: (x:B)
ightarrow (y:\mathbf{H})
ightarrow p(x,y) =_{\mathbf{H}} q(x,y)$$

 $ightarrow p'(x,y) =_{\mathbf{H}} q'(x,y)$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国・の文化

Elimination and equality rules

Point assumption

Introduction Problem Set-Up

Combinatory Logic as a 1-Hit

Dependent Type Theory Background Combinatory Logic Setoid Model

A Schema for 1-Hits

Point Constructors Path Constructors Simplified Form for Point and Path Constructors Elimination and Equality Rules Lifting Function Examples

$\widetilde{c_0}:(x:A) ightarrow (y:A) ightarrow C(y) ightarrow C(c_0(x,y))$

Path assumption

$$\begin{split} \tilde{c_1}: (x:B) \to (y:\mathbf{H}) \to (\tilde{y}:C(y)) \to (z:p=_{\mathbf{H}}q) \to \\ T_0(p) =_z^C T_0(q) \to T_0(p') =_{c_1(x,y,z)}^C T_0(q') \end{split}$$

Result: a function $f : (x : \mathbf{H}) \to C(x)$. Equality rules

$$f(c_0(x,y)) = \tilde{c}_0(x,y,f(y))$$

 $\mathbf{apd}_f(c_1(x, y, z)) = \tilde{c}_1(x, y, f(y), z, \mathbf{apd}_f(z))$

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Elimination and equality rules

Point assumption

Introduction Problem Set-Up

Combinatory Logic as a 1-Hit

Dependent Type Theory Background Combinatory Logic Setoid Model

A Schema for 1-Hits

Point Constructors Path Constructors Simplified Form for Point and Path Constructors Elimination and Equality Rules Lifting Function Examples

$\widetilde{c_0}: (x:A) \rightarrow (y:A) \rightarrow C(y) \rightarrow C(c_0(x,y))$

Path assumption

$$\begin{split} \tilde{c_1}: (x:B) \to (y:\mathbf{H}) \to (\tilde{y}:C(y)) \to (z:p=_{\mathbf{H}}q) \to \\ T_0(p) =_z^C T_0(q) \to T_0(p') =_{c_1(x,y,z)}^C T_0(q') \end{split}$$

Result: a function $f : (x : \mathbf{H}) \to C(x)$. Equality rules

$$f(c_0(x,y)) = \tilde{c}_0(x,y,f(y))$$

 $apd_f(c_1(x,y,z)) = \tilde{c}_1(x,y,f(y),z,apd_f(z))$

イロト 不得 トイヨト イヨト ヨー ろくで

The lifting function: example

Introduction Problem Set-Up

Combinatory Logic as a 1-Hit

Dependent Type Theory Background Combinatory Logic Setoid Model

A Schema for 1-Hits

Point Constructors Path Constructors Simplified Form for Point and Path Constructors Elimination and Equality Rules Lifting Function

Examples

- The lifting of p: **H** is denoted $T_0(p)$: C(p)
- The idea is that $T_0(p) = f(p)$ for the resulting function fExample (\tilde{K}_{conv}) :

 $\overline{T_0(app(app(K,x),y))} = \tilde{app}(app(K,x), \tilde{app}(K,\tilde{K},x,\tilde{x}), y, \tilde{y})$ $T_0(x) = \tilde{x}$

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● ● ● ● ●

This lifting function is defined by: $T_0(x) = \tilde{x}, T_0(y) = \tilde{y}, T_0(K) = \tilde{K}, T_0(S) = \tilde{S} \text{ and}$ $T_0(app(t, t')) = a\tilde{p}p(t, T_0(t), t', T_0(t'))$

The lifting function: example

Introduction Problem Set-Up

Combinatory Logic as a 1-Hit

Dependent Type Theory Background Combinatory Logic Setoid Model

A Schema for 1-Hits

Point Constructors Path Constructors Simplified Form for Point and Path Constructors Elimination and Equality Rules Lifting Function

Examples

- The lifting of $p : \mathbf{H}$ is denoted $T_0(p) : C(p)$
- The idea is that $T_0(p) = f(p)$ for the resulting function fExample (\tilde{K}_{conv}):

 $\overline{T_0(app(app(K,x),y))} = a\tilde{p}p(app(K,x),a\tilde{p}p(K,\tilde{K},x,\tilde{x}),y,\tilde{y})$ $T_0(x) = \tilde{x}$

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● ● ● ● ●

This lifting function is defined by: $T_0(x) = \tilde{x}, T_0(y) = \tilde{y}, T_0(K) = \tilde{K}, T_0(S) = \tilde{S}$ and $T_0(app(t, t')) = a\tilde{p}p(t, T_0(t), t', T_0(t'))$

The lifting function: example

Introduction Problem Set-Up

Combinatory Logic as a 1-Hit

Dependent Type Theory Background Combinatory Logic Setoid Model

A Schema for 1-Hits

Point Constructors Path Constructors Simplified Form for Point and Path Constructors Elimination and Equality Rules Lifting Function

Examples

- The lifting of $p : \mathbf{H}$ is denoted $T_0(p) : C(p)$
- The idea is that $T_0(p) = f(p)$ for the resulting function fExample (\tilde{K}_{conv}):

 $\overline{T_0(app(app(K,x),y))} = a\tilde{p}p(app(K,x),a\tilde{p}p(K,\tilde{K},x,\tilde{x}),y,\tilde{y})$ $T_0(x) = \tilde{x}$

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● ● ● ● ●

This lifting function is defined by: $T_0(x) = \tilde{x} \ T_0(y) = \tilde{y} \ T_0(K) = \tilde{K} \ T_0(S) = \tilde{S}$ and

$$T_0(app(t, t')) = \tilde{app}(t, T_0(t), t', T_0(t'))$$

The lifting function: general

Introduction Problem Set-Up

Combinatory Logic as a 1-Hit

Dependent Type Theory Background Combinatory Logic Setoid Model

A Schema for 1-Hits

Point Constructors Path Constructors Simplified Form for Point and Path Constructors Elimination and Equality Rules Lifting Function

Examples

General definition of $(T_0(p(x, y)) : C(p(x, y)))$:

 $T_0(y) = \tilde{y}$ $T_0(c_0(a, p)) = \tilde{c}_0(a, p, T_0(p))$

Hence, $x : B, y : H, \tilde{y} : C(y) \vdash T_0(p(x, y)) : C(p(x, y))$ and $T_0(p)(x, y, f(y)) = f(p(x, y))$

The lifting function: general

Introduction Problem Set-Up

Combinatory Logic as a 1-Hit

Dependent Type Theory Background Combinatory Logic Setoid Model

A Schema for 1-Hits

Point Constructors Path Constructors Simplified Form for Point and Path Constructors Elimination and Equality Rules Lifting Function

Examples

General definition of $(T_0(p(x, y)) : C(p(x, y)))$:

$$T_0(y) = \tilde{y}$$
$$T_0(c_0(a, p)) = \tilde{c}_0(a, p, T_0(p))$$

Hence, $x : B, y : H, \tilde{y} : C(y) \vdash T_0(p(x, y)) : C(p(x, y))$ and $T_0(p)(x, y, f(y)) = f(p(x, y))$

Example: The circle again

Introduction Problem Set-Up

Combinatory Logic as a 1-Hit

Dependent Type Theory Background Combinatory Logic Setoid Model

A Schema for 1-Hits

Point Constructors Path Constructors Simplified Form for Point and Path Constructors Elimination and Equality Rules Lifting Function Examples Inductive circle : Type :=
| base : circle
| loop : base == base.

$$\frac{\tilde{base}: C(base) \quad \tilde{loop}: T_0(base) = {}^C_{loop}}{f: (x: circle) \to C(x)} T_0(base)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

•
$$f(base) = base$$

Example: Natlist

Introduction Problem Set-Up

Combinatory Logic as a 1-Hit

Dependent Type Theory Background Combinatory Logic Setoid Model

A Schema for 1-Hits

Point Constructors Path Constructors Simplified Form for Point and Path Constructors Elimination and Equality Rules Lifting Function *ロ * * ● * * ● * * ● * ● * ● * ●

Example: Natlist (elimination rule)

Point constructors:

Introduction Problem Set-Up

Combinatory Logic as a 1-Hit

Dependent Type Theory Background Combinatory Logic Setoid Model

A Schema for 1-Hits

Point Constructors Path Constructors Simplified Form for Point and Path Constructors Elimination and Equality Rules Lifting Function Examples

$ilde{Nil}: C(Nil)$ $ilde{Cons}: (n:nat) ightarrow (I:Natlist) ightarrow C(I) ightarrow C(cons(n, I))$

Path constructors:

$$ni\tilde{l}Eq: T_0(Nil) =^C_{Nileq} T_0(Nil)$$

$$\begin{split} \tilde{ConsEq} : & (n1, n2: nat) \to (/1, /2: Natlist) \to (\tilde{I1}: C(/1)) \\ & \to (\tilde{I2}: C(/2)) \to (x: n1 =_{Natlist} n2) \to (y: /1 =_{Natlist} /2) \\ & T_0(n1) =_x^C T_0(n2) \to T_0(/1) =_y^C T_0(/2) \to \\ & T_0(Cons(n1, /1)) =_{ConsEq(n1, n2, /1, /2, x, y)}^C T_0(Cons(n2, /2)) \end{split}$$

Example: Natlist (equality rule)

Introduction Problem Set-Up

Combinatory Logic as a 1-Hit

Dependent Type Theory Background Combinatory Logic Setoid Model

A Schema for 1-Hits

Point Constructors Path Constructors Simplified Form for Point and Path Constructors Elimination and Equality Pules Lifting Function Examples

$$f(\text{Nil}) = \text{Nil}$$

$$f(\text{Cons}(n, l)) = \tilde{\text{Cons}}(n, l, f(l))$$

$$\mathbf{apd}_f(\text{NilEq}) = \text{NilEq}$$

$$\mathbf{apd}_f(\text{ConsEq}(n_1, n_2, l_1, l_2, x, y)) = \tilde{\text{ConsEq}}(n_1, n_2, l_1, l_2, f(l_1), f(l_2), z_1, z_2, f(l_1), f(l_2), z_1, z_2, apd_f(z_1), apd_f(z_2)).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

End of presentation

- Introduction Problem Set-Up
- Combinatory Logic as a 1-Hit
- Dependent Type Theory Background Combinatory Logic Setoid Model
- A Schema for 1-Hits
- Point Constructors Path Constructors Simplified Form for Point and Path Constructors Elimination and Equality Rules Lifting Function
- Examples

Questions?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@