
Introduction

Problem Set-Up

Combinatory
Logic as a
1-Hit

Dependent Type
Theory Background

Combinatory Logic

Setoid Model

A Schema for
1-Hits

Point Constructors

Path Constructors

Simplified Form for
Point and Path
Constructors

Elimination and
Equality Rules

Lifting Function

Examples

Finitary Higher Inductive Types in the
Groupoid Model

Sections 1-3

Mark Lapidus, Pim Leerkes

December 13, 2024

Introduction

Problem Set-Up

Combinatory
Logic as a
1-Hit

Dependent Type
Theory Background

Combinatory Logic

Setoid Model

A Schema for
1-Hits

Point Constructors

Path Constructors

Simplified Form for
Point and Path
Constructors

Elimination and
Equality Rules

Lifting Function

Examples

Outline

1 Introduction
Problem Set-Up

2 Combinatory Logic as a 1-Hit
Dependent Type Theory Background
Combinatory Logic
Setoid Model

3 A Schema for 1-Hits
Point Constructors
Path Constructors
Simplified Form for Point and Path Constructors
Elimination and Equality Rules
Lifting Function
Examples

Introduction

Problem Set-Up

Combinatory
Logic as a
1-Hit

Dependent Type
Theory Background

Combinatory Logic

Setoid Model

A Schema for
1-Hits

Point Constructors

Path Constructors

Simplified Form for
Point and Path
Constructors

Elimination and
Equality Rules

Lifting Function

Examples

Problem Set-Up

Recall.. Martin-Löf introduced I(A, a, a′)

• Elements of I(A, a, a′) are proofs that a and a′ are equal
elements of A.

• Can obtain an infinite tower of higher identity types:

A

I(A, a, a′)

I(I(A, a, a′), p, p′)

I(I(I(A, a, a′), p, p′), θ, θ′)

. . .

Introduction

Problem Set-Up

Combinatory
Logic as a
1-Hit

Dependent Type
Theory Background

Combinatory Logic

Setoid Model

A Schema for
1-Hits

Point Constructors

Path Constructors

Simplified Form for
Point and Path
Constructors

Elimination and
Equality Rules

Lifting Function

Examples

Problem Set-Up

Recall.. Martin-Löf introduced I(A, a, a′)

• Elements of I(A, a, a′) are proofs that a and a′ are equal
elements of A.

• Can obtain an infinite tower of higher identity types:

A

I(A, a, a′)

I(I(A, a, a′), p, p′)

I(I(I(A, a, a′), p, p′), θ, θ′)

. . .

Introduction

Problem Set-Up

Combinatory
Logic as a
1-Hit

Dependent Type
Theory Background

Combinatory Logic

Setoid Model

A Schema for
1-Hits

Point Constructors

Path Constructors

Simplified Form for
Point and Path
Constructors

Elimination and
Equality Rules

Lifting Function

Examples

Problem Set-Up

Recall.. Martin-Löf introduced I(A, a, a′)

• Elements of I(A, a, a′) are proofs that a and a′ are equal
elements of A.

• Can obtain an infinite tower of higher identity types:

A

I(A, a, a′)

I(I(A, a, a′), p, p′)

I(I(I(A, a, a′), p, p′), θ, θ′)

. . .

– Collapses in extensional type theory. Why?

Introduction

Problem Set-Up

Combinatory
Logic as a
1-Hit

Dependent Type
Theory Background

Combinatory Logic

Setoid Model

A Schema for
1-Hits

Point Constructors

Path Constructors

Simplified Form for
Point and Path
Constructors

Elimination and
Equality Rules

Lifting Function

Examples

Problem Set-Up

..infinite tower of higher identity types:

A

I(A, a, a′)

I(I(A, a, a′), p, p′)

I(I(I(A, a, a′), p, p′), θ, θ′)

. . .

Works in intensional type theory.

• Proved by Hofmann and Streicher using the groupoid
model.

Introduction

Problem Set-Up

Combinatory
Logic as a
1-Hit

Dependent Type
Theory Background

Combinatory Logic

Setoid Model

A Schema for
1-Hits

Point Constructors

Path Constructors

Simplified Form for
Point and Path
Constructors

Elimination and
Equality Rules

Lifting Function

Examples

Higher Inductive Types (HIT)

Definition

A higher inductive type is a type in which all the iterated
identity types are generated inductively.

Examples:

• 1-hit: I(A, a, a′)

• 2-hit: I(I(A, a, a′), p, p′)

Has a topological interpretation:

• a and a′ are points in space;

• p and p′ are paths from from a to a′;

• θ and θ′ are homotopies between p and p′.

Introduction

Problem Set-Up

Combinatory
Logic as a
1-Hit

Dependent Type
Theory Background

Combinatory Logic

Setoid Model

A Schema for
1-Hits

Point Constructors

Path Constructors

Simplified Form for
Point and Path
Constructors

Elimination and
Equality Rules

Lifting Function

Examples

Higher Inductive Types (HIT)

Definition

A higher inductive type is a type in which all the iterated
identity types are generated inductively.

Examples:

• 1-hit: I(A, a, a′)

• 2-hit: I(I(A, a, a′), p, p′)

Has a topological interpretation:

• a and a′ are points in space;

• p and p′ are paths from from a to a′;

• θ and θ′ are homotopies between p and p′.

Introduction

Problem Set-Up

Combinatory
Logic as a
1-Hit

Dependent Type
Theory Background

Combinatory Logic

Setoid Model

A Schema for
1-Hits

Point Constructors

Path Constructors

Simplified Form for
Point and Path
Constructors

Elimination and
Equality Rules

Lifting Function

Examples

Higher Inductive Types (HIT)

Definition

A higher inductive type is a type in which all the iterated
identity types are generated inductively.

Examples:

• 1-hit: I(A, a, a′)

• 2-hit: I(I(A, a, a′), p, p′)

Has a topological interpretation:

• a and a′ are points in space;

• p and p′ are paths from from a to a′;

• θ and θ′ are homotopies between p and p′.

Introduction

Problem Set-Up

Combinatory
Logic as a
1-Hit

Dependent Type
Theory Background

Combinatory Logic

Setoid Model

A Schema for
1-Hits

Point Constructors

Path Constructors

Simplified Form for
Point and Path
Constructors

Elimination and
Equality Rules

Lifting Function

Examples

Higher Inductive Types: Examples

Circle is a 1-hit.

I n d u c t i v e c i r c l e : Type :=
| base : c i r c l e
| l oop : base == base .

Torus is a 2-hit (next presentation).

• 2-path represents the surface that commutes meridional
and longitudinal loops.

Introduction

Problem Set-Up

Combinatory
Logic as a
1-Hit

Dependent Type
Theory Background

Combinatory Logic

Setoid Model

A Schema for
1-Hits

Point Constructors

Path Constructors

Simplified Form for
Point and Path
Constructors

Elimination and
Equality Rules

Lifting Function

Examples

Our Goals

Problem

Formalisation of syntax and semantics is still lacking.

Want to formulate a general theory of higher inductive types:

1 Represent CL as a 1-HIT.

2 Determine general schema for point and path constructors;

3 Construct the elimination and equality rules;

Introduction

Problem Set-Up

Combinatory
Logic as a
1-Hit

Dependent Type
Theory Background

Combinatory Logic

Setoid Model

A Schema for
1-Hits

Point Constructors

Path Constructors

Simplified Form for
Point and Path
Constructors

Elimination and
Equality Rules

Lifting Function

Examples

Our Goals

Problem

Formalisation of syntax and semantics is still lacking.

Want to formulate a general theory of higher inductive types:

1 Represent CL as a 1-HIT.

2 Determine general schema for point and path constructors;

3 Construct the elimination and equality rules;

Introduction

Problem Set-Up

Combinatory
Logic as a
1-Hit

Dependent Type
Theory Background

Combinatory Logic

Setoid Model

A Schema for
1-Hits

Point Constructors

Path Constructors

Simplified Form for
Point and Path
Constructors

Elimination and
Equality Rules

Lifting Function

Examples

Dependent Type Theory Background: Notation

Function Types

• Dependent function types: (x : A)→ B(x)

• Non-dependent function types: A→ B

Identity Types

a =A a′ (preferred notation) instead of I(A, a, a′)

Function Application

• If x : A ⊢ C , then we write C (x) to emphasize dependence.

• Write C (a) to denote substituting a for x in C .

Introduction

Problem Set-Up

Combinatory
Logic as a
1-Hit

Dependent Type
Theory Background

Combinatory Logic

Setoid Model

A Schema for
1-Hits

Point Constructors

Path Constructors

Simplified Form for
Point and Path
Constructors

Elimination and
Equality Rules

Lifting Function

Examples

Dependent Type Theory Background: Notation

Function Types

• Dependent function types: (x : A)→ B(x)

• Non-dependent function types: A→ B

Identity Types

a =A a′ (preferred notation) instead of I(A, a, a′)

Function Application

• If x : A ⊢ C , then we write C (x) to emphasize dependence.

• Write C (a) to denote substituting a for x in C .

Introduction

Problem Set-Up

Combinatory
Logic as a
1-Hit

Dependent Type
Theory Background

Combinatory Logic

Setoid Model

A Schema for
1-Hits

Point Constructors

Path Constructors

Simplified Form for
Point and Path
Constructors

Elimination and
Equality Rules

Lifting Function

Examples

Dependent Type Theory Background: Notation

Function Types

• Dependent function types: (x : A)→ B(x)

• Non-dependent function types: A→ B

Identity Types

a =A a′ (preferred notation) instead of I(A, a, a′)

Function Application

• If x : A ⊢ C , then we write C (x) to emphasize dependence.

• Write C (a) to denote substituting a for x in C .

Introduction

Problem Set-Up

Combinatory
Logic as a
1-Hit

Dependent Type
Theory Background

Combinatory Logic

Setoid Model

A Schema for
1-Hits

Point Constructors

Path Constructors

Simplified Form for
Point and Path
Constructors

Elimination and
Equality Rules

Lifting Function

Examples

Dependent Type Theory Background: Rules

Introduction Rule

refl : (x : A)→ x =A x

Elimination Rule (Induction Principle)

JC : (x : A)→ C (x , refl(x))→ (y : A)→ (z : x =A y)→ C (y , z)

where x : A, y : A, z : x =A y ⊢ C (y , z).

Equality Rule
JC (x , d , x , refl(x)) = d

Introduction

Problem Set-Up

Combinatory
Logic as a
1-Hit

Dependent Type
Theory Background

Combinatory Logic

Setoid Model

A Schema for
1-Hits

Point Constructors

Path Constructors

Simplified Form for
Point and Path
Constructors

Elimination and
Equality Rules

Lifting Function

Examples

Dependent Type Theory Background: Rules

Introduction Rule

refl : (x : A)→ x =A x

Elimination Rule (Induction Principle)

JC : (x : A)→ C (x , refl(x))→ (y : A)→ (z : x =A y)→ C (y , z)

where x : A, y : A, z : x =A y ⊢ C (y , z).

Equality Rule
JC (x , d , x , refl(x)) = d

Introduction

Problem Set-Up

Combinatory
Logic as a
1-Hit

Dependent Type
Theory Background

Combinatory Logic

Setoid Model

A Schema for
1-Hits

Point Constructors

Path Constructors

Simplified Form for
Point and Path
Constructors

Elimination and
Equality Rules

Lifting Function

Examples

Dependent Type Theory Background: Rules

Introduction Rule

refl : (x : A)→ x =A x

Elimination Rule (Induction Principle)

JC : (x : A)→ C (x , refl(x))→ (y : A)→ (z : x =A y)→ C (y , z)

where x : A, y : A, z : x =A y ⊢ C (y , z).

Equality Rule
JC (x , d , x , refl(x)) = d

Introduction

Problem Set-Up

Combinatory
Logic as a
1-Hit

Dependent Type
Theory Background

Combinatory Logic

Setoid Model

A Schema for
1-Hits

Point Constructors

Path Constructors

Simplified Form for
Point and Path
Constructors

Elimination and
Equality Rules

Lifting Function

Examples

Dependent Type Theory Background: Rules

Heterogeneous Identity Type

a =B
p a′ compares a : B(x) and a′ : B(x ′) where p : x =A x ′

Identity Preservation

apdf : (p : x =A x ′)→ f (x) =B
p f (x ′)

Introduction

Problem Set-Up

Combinatory
Logic as a
1-Hit

Dependent Type
Theory Background

Combinatory Logic

Setoid Model

A Schema for
1-Hits

Point Constructors

Path Constructors

Simplified Form for
Point and Path
Constructors

Elimination and
Equality Rules

Lifting Function

Examples

Dependent Type Theory Background: Rules

Heterogeneous Identity Type

a =B
p a′ compares a : B(x) and a′ : B(x ′) where p : x =A x ′

Identity Preservation

apdf : (p : x =A x ′)→ f (x) =B
p f (x ′)

Introduction

Problem Set-Up

Combinatory
Logic as a
1-Hit

Dependent Type
Theory Background

Combinatory Logic

Setoid Model

A Schema for
1-Hits

Point Constructors

Path Constructors

Simplified Form for
Point and Path
Constructors

Elimination and
Equality Rules

Lifting Function

Examples

Combinatory Logic

• examples of combinators: S,I and K

• as 1-hit: CL is a type

Kxy = x

Ix = x

Sxyz = xz(yz)

Introduction

Problem Set-Up

Combinatory
Logic as a
1-Hit

Dependent Type
Theory Background

Combinatory Logic

Setoid Model

A Schema for
1-Hits

Point Constructors

Path Constructors

Simplified Form for
Point and Path
Constructors

Elimination and
Equality Rules

Lifting Function

Examples

Introduction Rules

Point Constructors

K,S : CL and app : CL→ CL→ CL

Path Constructors

• Kconv : (x , y : CL)→ app(app(K, x), y) =CL x

• Sconv : (x , y , z : CL)→ app(app(app(S, x), y), z) =CL

app(app(x , z), app(y , z))

Properties Derived from =CL

• Reflexivity

• Transitivity

• Symmetry

• Application preserves equality

Introduction

Problem Set-Up

Combinatory
Logic as a
1-Hit

Dependent Type
Theory Background

Combinatory Logic

Setoid Model

A Schema for
1-Hits

Point Constructors

Path Constructors

Simplified Form for
Point and Path
Constructors

Elimination and
Equality Rules

Lifting Function

Examples

Introduction Rules

Point Constructors

K,S : CL and app : CL→ CL→ CL

Path Constructors

• Kconv : (x , y : CL)→ app(app(K, x), y) =CL x

• Sconv : (x , y , z : CL)→ app(app(app(S, x), y), z) =CL

app(app(x , z), app(y , z))

Properties Derived from =CL

• Reflexivity

• Transitivity

• Symmetry

• Application preserves equality

Introduction

Problem Set-Up

Combinatory
Logic as a
1-Hit

Dependent Type
Theory Background

Combinatory Logic

Setoid Model

A Schema for
1-Hits

Point Constructors

Path Constructors

Simplified Form for
Point and Path
Constructors

Elimination and
Equality Rules

Lifting Function

Examples

Introduction Rules

Point Constructors

K,S : CL and app : CL→ CL→ CL

Path Constructors

• Kconv : (x , y : CL)→ app(app(K, x), y) =CL x

• Sconv : (x , y , z : CL)→ app(app(app(S, x), y), z) =CL

app(app(x , z), app(y , z))

Properties Derived from =CL

• Reflexivity

• Transitivity

• Symmetry

• Application preserves equality

Introduction

Problem Set-Up

Combinatory
Logic as a
1-Hit

Dependent Type
Theory Background

Combinatory Logic

Setoid Model

A Schema for
1-Hits

Point Constructors

Path Constructors

Simplified Form for
Point and Path
Constructors

Elimination and
Equality Rules

Lifting Function

Examples

Elimination Rules

Assumptions

• K̃ : C (K)

• S̃ : C (S)

• ˜app : (x : CL)→ C (x)→ (y : CL)→ C (y)→ C (app(x , y))

Path Assumptions

• K̃conv : (x , y : CL)→ (x̃ : C (x))→ (ỹ : C (y))→
˜app(app(K, x), ˜app(K, K̃, x , x̃), y , ỹ) =C

Kconv (x,y)
x̃

• Analogous for S̃conv

Result
f : (x : CL)→ C (x)

Introduction

Problem Set-Up

Combinatory
Logic as a
1-Hit

Dependent Type
Theory Background

Combinatory Logic

Setoid Model

A Schema for
1-Hits

Point Constructors

Path Constructors

Simplified Form for
Point and Path
Constructors

Elimination and
Equality Rules

Lifting Function

Examples

Elimination Rules

Assumptions

• K̃ : C (K)

• S̃ : C (S)

• ˜app : (x : CL)→ C (x)→ (y : CL)→ C (y)→ C (app(x , y))

Path Assumptions

• K̃conv : (x , y : CL)→ (x̃ : C (x))→ (ỹ : C (y))→
˜app(app(K, x), ˜app(K, K̃, x , x̃), y , ỹ) =C

Kconv (x,y)
x̃

• Analogous for S̃conv

Result
f : (x : CL)→ C (x)

Introduction

Problem Set-Up

Combinatory
Logic as a
1-Hit

Dependent Type
Theory Background

Combinatory Logic

Setoid Model

A Schema for
1-Hits

Point Constructors

Path Constructors

Simplified Form for
Point and Path
Constructors

Elimination and
Equality Rules

Lifting Function

Examples

Elimination Rules

Assumptions

• K̃ : C (K)

• S̃ : C (S)

• ˜app : (x : CL)→ C (x)→ (y : CL)→ C (y)→ C (app(x , y))

Path Assumptions

• K̃conv : (x , y : CL)→ (x̃ : C (x))→ (ỹ : C (y))→
˜app(app(K, x), ˜app(K, K̃, x , x̃), y , ỹ) =C

Kconv (x,y)
x̃

• Analogous for S̃conv

Result
f : (x : CL)→ C (x)

Introduction

Problem Set-Up

Combinatory
Logic as a
1-Hit

Dependent Type
Theory Background

Combinatory Logic

Setoid Model

A Schema for
1-Hits

Point Constructors

Path Constructors

Simplified Form for
Point and Path
Constructors

Elimination and
Equality Rules

Lifting Function

Examples

Equality Rules

Function Equality

• f (K) = K̃

• f (S) = S̃

• f (app(x , y)) = ˜app(x , f (x), y , f (y))

Path Equality

• apdf (Kconv (x , y)) = K̃conv (x , y , f (x), f (y))

• apdf (Sconv (x , y , z)) = S̃conv (x , y , z , f (x), f (y), f (z))

Introduction

Problem Set-Up

Combinatory
Logic as a
1-Hit

Dependent Type
Theory Background

Combinatory Logic

Setoid Model

A Schema for
1-Hits

Point Constructors

Path Constructors

Simplified Form for
Point and Path
Constructors

Elimination and
Equality Rules

Lifting Function

Examples

Equality Rules

Function Equality

• f (K) = K̃

• f (S) = S̃

• f (app(x , y)) = ˜app(x , f (x), y , f (y))

Path Equality

• apdf (Kconv (x , y)) = K̃conv (x , y , f (x), f (y))

• apdf (Sconv (x , y , z)) = S̃conv (x , y , z , f (x), f (y), f (z))

Introduction

Problem Set-Up

Combinatory
Logic as a
1-Hit

Dependent Type
Theory Background

Combinatory Logic

Setoid Model

A Schema for
1-Hits

Point Constructors

Path Constructors

Simplified Form for
Point and Path
Constructors

Elimination and
Equality Rules

Lifting Function

Examples

Setoids

Idea: dependent type theory with (x : A)→ B(x), a =A a′, and
CL, has a setoid model.

Definition

A setoid is a set S equipped with an equivalence relation R.

• Intuitively, can be thought of as a set where elements are
considered equivalent under a given relation.

Examples are:

• Modulo arithmetic: (Z, ≡ mod n)

• Rational numbers: (a, b) ∼ (c , d) ⇐⇒ ad = bc

Introduction

Problem Set-Up

Combinatory
Logic as a
1-Hit

Dependent Type
Theory Background

Combinatory Logic

Setoid Model

A Schema for
1-Hits

Point Constructors

Path Constructors

Simplified Form for
Point and Path
Constructors

Elimination and
Equality Rules

Lifting Function

Examples

Setoids

Idea: dependent type theory with (x : A)→ B(x), a =A a′, and
CL, has a setoid model.

Definition

A setoid is a set S equipped with an equivalence relation R.

• Intuitively, can be thought of as a set where elements are
considered equivalent under a given relation.

Examples are:

• Modulo arithmetic: (Z, ≡ mod n)

• Rational numbers: (a, b) ∼ (c , d) ⇐⇒ ad = bc

Introduction

Problem Set-Up

Combinatory
Logic as a
1-Hit

Dependent Type
Theory Background

Combinatory Logic

Setoid Model

A Schema for
1-Hits

Point Constructors

Path Constructors

Simplified Form for
Point and Path
Constructors

Elimination and
Equality Rules

Lifting Function

Examples

Setoids

Idea: dependent type theory with (x : A)→ B(x), a =A a′, and
CL, has a setoid model.

Definition

A setoid is a set S equipped with an equivalence relation R.

• Intuitively, can be thought of as a set where elements are
considered equivalent under a given relation.

Examples are:

• Modulo arithmetic: (Z, ≡ mod n)

• Rational numbers: (a, b) ∼ (c , d) ⇐⇒ ad = bc

Introduction

Problem Set-Up

Combinatory
Logic as a
1-Hit

Dependent Type
Theory Background

Combinatory Logic

Setoid Model

A Schema for
1-Hits

Point Constructors

Path Constructors

Simplified Form for
Point and Path
Constructors

Elimination and
Equality Rules

Lifting Function

Examples

Setoid Model

1 Interpret type as a setoid A, consisting of a set A0

together with an equivalence relation R.

– R is represented as a binary family of sets (A1(x , x
′))x,x′∈A0

such that A1(x , x
′) is inhabitated ⇐⇒ R(x , x ′) holds.

2 CL is a setoid (CL0,CL1) where CL0 is an inductive type
generated by K, S and app and CL1 is an inductive family
generated by Kconv and Sconv and the constructors for
transitivity, reflexivity, symmetry and preservation of
equality by app.

Introduction

Problem Set-Up

Combinatory
Logic as a
1-Hit

Dependent Type
Theory Background

Combinatory Logic

Setoid Model

A Schema for
1-Hits

Point Constructors

Path Constructors

Simplified Form for
Point and Path
Constructors

Elimination and
Equality Rules

Lifting Function

Examples

Constructing a General Schema

Use the schema in the style of inductive families:

• point constructor ← constructor for an inductive type

• path constructor ← constructor for a binary inductive
family

General form for an inductive type H:

(x1 : A1)→ · · · → (xm : Am(x1, . . . , xm−1))

→ (B1(x1, . . . , xm)→ H)→ · · ·
→ (Bn(x1, . . . , xm)→ H)→ H

• Am(x1, . . . , xm−1)) is a type if
(x1 : A1, . . . , xm−1 : Am−1(x1, . . . , xm−2));

• B1(. . .) and Bn(. . .) are types if
(x1 : A1, . . . , xm : Am(x1, . . . , xm−1)).

• Ai and Bj do not depend on H.

Introduction

Problem Set-Up

Combinatory
Logic as a
1-Hit

Dependent Type
Theory Background

Combinatory Logic

Setoid Model

A Schema for
1-Hits

Point Constructors

Path Constructors

Simplified Form for
Point and Path
Constructors

Elimination and
Equality Rules

Lifting Function

Examples

Constructing a General Schema

Use the schema in the style of inductive families:

• point constructor ← constructor for an inductive type

• path constructor ← constructor for a binary inductive
family

General form for an inductive type H:

(x1 : A1)→ · · · → (xm : Am(x1, . . . , xm−1))

→ (B1(x1, . . . , xm)→ H)→ · · ·
→ (Bn(x1, . . . , xm)→ H)→ H

• Am(x1, . . . , xm−1)) is a type if
(x1 : A1, . . . , xm−1 : Am−1(x1, . . . , xm−2));

• B1(. . .) and Bn(. . .) are types if
(x1 : A1, . . . , xm : Am(x1, . . . , xm−1)).

• Ai and Bj do not depend on H.

Introduction

Problem Set-Up

Combinatory
Logic as a
1-Hit

Dependent Type
Theory Background

Combinatory Logic

Setoid Model

A Schema for
1-Hits

Point Constructors

Path Constructors

Simplified Form for
Point and Path
Constructors

Elimination and
Equality Rules

Lifting Function

Examples

Constructing a General Schema

Use the schema in the style of inductive families:

• point constructor ← constructor for an inductive type

• path constructor ← constructor for a binary inductive
family

General form for an inductive type H:

(x1 : A1)→ · · · → (xm : Am(x1, . . . , xm−1))

→ (B1(x1, . . . , xm)→ H)→ · · ·
→ (Bn(x1, . . . , xm)→ H)→ H

• Am(x1, . . . , xm−1)) is a type if
(x1 : A1, . . . , xm−1 : Am−1(x1, . . . , xm−2));

• B1(. . .) and Bn(. . .) are types if
(x1 : A1, . . . , xm : Am(x1, . . . , xm−1)).

• Ai and Bj do not depend on H.

Introduction

Problem Set-Up

Combinatory
Logic as a
1-Hit

Dependent Type
Theory Background

Combinatory Logic

Setoid Model

A Schema for
1-Hits

Point Constructors

Path Constructors

Simplified Form for
Point and Path
Constructors

Elimination and
Equality Rules

Lifting Function

Examples

Constructing a General Schema

Use the schema in the style of inductive families:

• point constructor ← constructor for an inductive type

• path constructor ← constructor for a binary inductive
family

General form for an inductive type H:

(x1 : A1)→ · · · → (xm : Am(x1, . . . , xm−1))

→ (B1(x1, . . . , xm)→ H)→ · · ·
→ (Bn(x1, . . . , xm)→ H)→ H

• Am(x1, . . . , xm−1)) is a type if
(x1 : A1, . . . , xm−1 : Am−1(x1, . . . , xm−2));

• B1(. . .) and Bn(. . .) are types if
(x1 : A1, . . . , xm : Am(x1, . . . , xm−1)).

• Ai and Bj do not depend on H.

Introduction

Problem Set-Up

Combinatory
Logic as a
1-Hit

Dependent Type
Theory Background

Combinatory Logic

Setoid Model

A Schema for
1-Hits

Point Constructors

Path Constructors

Simplified Form for
Point and Path
Constructors

Elimination and
Equality Rules

Lifting Function

Examples

Constructing a General Schema

Use the schema in the style of inductive families:

• point constructor ← constructor for an inductive type

• path constructor ← constructor for a binary inductive
family

General form for an inductive type H:

(x1 : A1)→ · · · → (xm : Am(x1, . . . , xm−1))

→ (B1(x1, . . . , xm)→ H)→ · · ·
→ (Bn(x1, . . . , xm)→ H)→ H

• Am(x1, . . . , xm−1)) is a type if
(x1 : A1, . . . , xm−1 : Am−1(x1, . . . , xm−2));

• B1(. . .) and Bn(. . .) are types if
(x1 : A1, . . . , xm : Am(x1, . . . , xm−1)).

• Ai and Bj do not depend on H.

Introduction

Problem Set-Up

Combinatory
Logic as a
1-Hit

Dependent Type
Theory Background

Combinatory Logic

Setoid Model

A Schema for
1-Hits

Point Constructors

Path Constructors

Simplified Form for
Point and Path
Constructors

Elimination and
Equality Rules

Lifting Function

Examples

Restriction to Finitary HITs

(x1 : A1)→ · · · → (xm : Am(x1, . . . , xm−1))

→ (B1(x1, . . . , xm)→ H)→ · · ·
→ (Bn(x1, . . . , xm)→ H)→ H

If Bj is empty → finitary inductive definition.

Introduction

Problem Set-Up

Combinatory
Logic as a
1-Hit

Dependent Type
Theory Background

Combinatory Logic

Setoid Model

A Schema for
1-Hits

Point Constructors

Path Constructors

Simplified Form for
Point and Path
Constructors

Elimination and
Equality Rules

Lifting Function

Examples

Point Constructors

c0 : (x1 : A1)→ ...→ (xm : Am(x1, ..., xm−1))

→ H→ ...→ H→ H

Introduction

Problem Set-Up

Combinatory
Logic as a
1-Hit

Dependent Type
Theory Background

Combinatory Logic

Setoid Model

A Schema for
1-Hits

Point Constructors

Path Constructors

Simplified Form for
Point and Path
Constructors

Elimination and
Equality Rules

Lifting Function

Examples

Path Constructors

c1 : (x1 : B1)→ · · · → (xn : Bn(x1, . . . , xn))

→ (y1 : H)→ · · · → (yn′ : H)

→ p1(x1, . . . , xn, y1, . . . , yn′) =H q1(x1, . . . , xn, y1, . . . , yn′)

...

→ pn′′(x1, . . . , xn, y1, . . . , yn′) =H qn′′(x1, . . . , xn, y1, . . . , yn′)

→ p′(x1, . . . , xn, y1, . . . , yn′) =H q′(x1, . . . , xn, y1, . . . , yn′)

• yj : H is an inductive premise;

• p ::= y | c0(a1, . . . , am, p1, . . . , pk) - syntax for point
constructor patterns

Introduction

Problem Set-Up

Combinatory
Logic as a
1-Hit

Dependent Type
Theory Background

Combinatory Logic

Setoid Model

A Schema for
1-Hits

Point Constructors

Path Constructors

Simplified Form for
Point and Path
Constructors

Elimination and
Equality Rules

Lifting Function

Examples

Simplified Form for Point and Path Constructors

One point constructor with m = 1:

c0 : A→ H→ H

One path constructor with n = n′ = n′′ = 1:

c1 : (x : B)→ (y : H)→ p(x , y) =H q(x , y)

→ p′(x , y) =H q′(x , y)

Introduction

Problem Set-Up

Combinatory
Logic as a
1-Hit

Dependent Type
Theory Background

Combinatory Logic

Setoid Model

A Schema for
1-Hits

Point Constructors

Path Constructors

Simplified Form for
Point and Path
Constructors

Elimination and
Equality Rules

Lifting Function

Examples

Simplified Form for Point and Path Constructors

One point constructor with m = 1:

c0 : A→ H→ H

One path constructor with n = n′ = n′′ = 1:

c1 : (x : B)→ (y : H)→ p(x , y) =H q(x , y)

→ p′(x , y) =H q′(x , y)

Introduction

Problem Set-Up

Combinatory
Logic as a
1-Hit

Dependent Type
Theory Background

Combinatory Logic

Setoid Model

A Schema for
1-Hits

Point Constructors

Path Constructors

Simplified Form for
Point and Path
Constructors

Elimination and
Equality Rules

Lifting Function

Examples

Elimination and equality rules

Point assumption

c̃0 : (x : A)→ (y : A)→ C (y)→ C (c0(x , y))

Path assumption

c̃1 : (x : B)→ (y : H)→ (ỹ : C (y))→ (z : p =H q)→
T0(p) =

C
z T0(q)→ T0(p

′) =C
c1(x ,y ,z)

T0(q
′)

Result: a function f : (x : H)→ C (x).
Equality rules

f (c0(x , y)) = c̃0(x , y , f (y))

apdf (c1(x , y , z)) = c̃1(x , y , f (y), z , apdf (z))

Introduction

Problem Set-Up

Combinatory
Logic as a
1-Hit

Dependent Type
Theory Background

Combinatory Logic

Setoid Model

A Schema for
1-Hits

Point Constructors

Path Constructors

Simplified Form for
Point and Path
Constructors

Elimination and
Equality Rules

Lifting Function

Examples

Elimination and equality rules

Point assumption

c̃0 : (x : A)→ (y : A)→ C (y)→ C (c0(x , y))

Path assumption

c̃1 : (x : B)→ (y : H)→ (ỹ : C (y))→ (z : p =H q)→
T0(p) =

C
z T0(q)→ T0(p

′) =C
c1(x ,y ,z)

T0(q
′)

Result: a function f : (x : H)→ C (x).
Equality rules

f (c0(x , y)) = c̃0(x , y , f (y))

apdf (c1(x , y , z)) = c̃1(x , y , f (y), z , apdf (z))

Introduction

Problem Set-Up

Combinatory
Logic as a
1-Hit

Dependent Type
Theory Background

Combinatory Logic

Setoid Model

A Schema for
1-Hits

Point Constructors

Path Constructors

Simplified Form for
Point and Path
Constructors

Elimination and
Equality Rules

Lifting Function

Examples

The lifting function: example

• The lifting of p : H is denoted T0(p) : C (p)

• The idea is that T0(p) = f (p) for the resulting function f

Example (K̃conv):

T0(app(app(K , x), y)) = ˜app(app(K , x), ˜app(K , K̃ , x , x̃), y , ỹ)
T0(x) = x̃

This lifting function is defined by:

T0(x) = x̃ ,T0(y) = ỹ ,T0(K) = K̃ ,T0(S) = S̃ and
T0(app(t, t

′)) = ˜app(t,T0(t), t
′,T0(t

′))

Introduction

Problem Set-Up

Combinatory
Logic as a
1-Hit

Dependent Type
Theory Background

Combinatory Logic

Setoid Model

A Schema for
1-Hits

Point Constructors

Path Constructors

Simplified Form for
Point and Path
Constructors

Elimination and
Equality Rules

Lifting Function

Examples

The lifting function: example

• The lifting of p : H is denoted T0(p) : C (p)

• The idea is that T0(p) = f (p) for the resulting function f

Example (K̃conv):

T0(app(app(K , x), y)) = ˜app(app(K , x), ˜app(K , K̃ , x , x̃), y , ỹ)
T0(x) = x̃

This lifting function is defined by:

T0(x) = x̃ ,T0(y) = ỹ ,T0(K) = K̃ ,T0(S) = S̃ and
T0(app(t, t

′)) = ˜app(t,T0(t), t
′,T0(t

′))

Introduction

Problem Set-Up

Combinatory
Logic as a
1-Hit

Dependent Type
Theory Background

Combinatory Logic

Setoid Model

A Schema for
1-Hits

Point Constructors

Path Constructors

Simplified Form for
Point and Path
Constructors

Elimination and
Equality Rules

Lifting Function

Examples

The lifting function: example

• The lifting of p : H is denoted T0(p) : C (p)

• The idea is that T0(p) = f (p) for the resulting function f

Example (K̃conv):

T0(app(app(K , x), y)) = ˜app(app(K , x), ˜app(K , K̃ , x , x̃), y , ỹ)
T0(x) = x̃

This lifting function is defined by:

T0(x) = x̃ ,T0(y) = ỹ ,T0(K) = K̃ ,T0(S) = S̃ and
T0(app(t, t

′)) = ˜app(t,T0(t), t
′,T0(t

′))

Introduction

Problem Set-Up

Combinatory
Logic as a
1-Hit

Dependent Type
Theory Background

Combinatory Logic

Setoid Model

A Schema for
1-Hits

Point Constructors

Path Constructors

Simplified Form for
Point and Path
Constructors

Elimination and
Equality Rules

Lifting Function

Examples

The lifting function: general

General definition of (T0(p(x , y)) : C (p(x , y))):

T0(y) = ỹ

T0(c0(a, p)) = c̃0(a, p,T0(p))

Hence, x : B, y : H, ỹ : C (y) ⊢ T0(p(x , y)) : C (p(x , y)) and
T0(p)(x , y , f (y)) = f (p(x , y))

Introduction

Problem Set-Up

Combinatory
Logic as a
1-Hit

Dependent Type
Theory Background

Combinatory Logic

Setoid Model

A Schema for
1-Hits

Point Constructors

Path Constructors

Simplified Form for
Point and Path
Constructors

Elimination and
Equality Rules

Lifting Function

Examples

The lifting function: general

General definition of (T0(p(x , y)) : C (p(x , y))):

T0(y) = ỹ

T0(c0(a, p)) = c̃0(a, p,T0(p))

Hence, x : B, y : H, ỹ : C (y) ⊢ T0(p(x , y)) : C (p(x , y)) and
T0(p)(x , y , f (y)) = f (p(x , y))

Introduction

Problem Set-Up

Combinatory
Logic as a
1-Hit

Dependent Type
Theory Background

Combinatory Logic

Setoid Model

A Schema for
1-Hits

Point Constructors

Path Constructors

Simplified Form for
Point and Path
Constructors

Elimination and
Equality Rules

Lifting Function

Examples

Example: The circle again

I n d u c t i v e c i r c l e : Type :=
| base : c i r c l e
| l oop : base == base .

˜base : C (base) ˜loop : T0(base) =
C
loop T0(base)

f : (x : circle)→ C (x)

• f (base) = ˜base

• apdf (loop) = ˜loop

Introduction

Problem Set-Up

Combinatory
Logic as a
1-Hit

Dependent Type
Theory Background

Combinatory Logic

Setoid Model

A Schema for
1-Hits

Point Constructors

Path Constructors

Simplified Form for
Point and Path
Constructors

Elimination and
Equality Rules

Lifting Function

Examples

Example: Natlist

I n d u c t i v e N a t l i s t : Type :=
| N i l : N a t l i s t
| Cons : nat −> Na t l i s t −> N a t l i s t
| Ni lEq : N i l == N i l
| ConsEq : f o r a l l n1 , n2 : nat −>

f o r a l l l 1 , l 2 : N a t l i s t −>
n1 == n2 −> l 1 == l 2 −>
Cons (n1 , l 1) == Cons (n2 , l 2)

Introduction

Problem Set-Up

Combinatory
Logic as a
1-Hit

Dependent Type
Theory Background

Combinatory Logic

Setoid Model

A Schema for
1-Hits

Point Constructors

Path Constructors

Simplified Form for
Point and Path
Constructors

Elimination and
Equality Rules

Lifting Function

Examples

Example: Natlist (elimination rule)

Point constructors:
Ñil : C (Nil)

˜Cons : (n : nat)→ (l : Natlist)→ C (l)→ C (cons(n, l))

Path constructors:

˜nilEq : T0(Nil) =
C
Nileq T0(Nil)

˜ConsEq : (n1, n2 : nat)→ (l1, l2 : Natlist)→ (l̃1 : C (l1))

→ (l̃2 : C (l2))→ (x : n1 =Natlist n2)→ (y : l1 =Natlist l2)

T0(n1) =
C
x T0(n2)→ T0(l1) =

C
y T0(l2)→

T0(Cons(n1, l1)) =
C
ConsEq(n1,n2,l1,l2,x,y) T0(Cons(n2, l2))

Introduction

Problem Set-Up

Combinatory
Logic as a
1-Hit

Dependent Type
Theory Background

Combinatory Logic

Setoid Model

A Schema for
1-Hits

Point Constructors

Path Constructors

Simplified Form for
Point and Path
Constructors

Elimination and
Equality Rules

Lifting Function

Examples

Example: Natlist (equality rule)

f (Nil) = Ñil

f (Cons(n, l)) = ˜Cons(n, l , f (l))

apdf (NilEq) = ˜NilEq

apdf (ConsEq(n1, n2, l1, l2, x , y)) = ˜ConsEq(n1, n2, l1, l2,

f (l1), f (l2), z1, z2,

apdf (z1), apdf (z2)).

Introduction

Problem Set-Up

Combinatory
Logic as a
1-Hit

Dependent Type
Theory Background

Combinatory Logic

Setoid Model

A Schema for
1-Hits

Point Constructors

Path Constructors

Simplified Form for
Point and Path
Constructors

Elimination and
Equality Rules

Lifting Function

Examples

End of presentation

Questions?

	Introduction
	Problem Set-Up

	Combinatory Logic as a 1-Hit
	Dependent Type Theory Background
	Combinatory Logic
	Setoid Model

	A Schema for 1-Hits
	Point Constructors
	Path Constructors
	Simplified Form for Point and Path Constructors
	Elimination and Equality Rules
	Lifting Function
	Examples

