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• Recursion principle! 
• Major premise c
• One minor premise e for each constructor, corresponding to each induction step

Elimination rule 
Section 3 continued



• One equality rule for each constructor
• First parentheses should be read as ∀

Equality rule
Section 3 continued



Example of a function: forgetlength
Section 3 continued



• A :: 𝛔 means
A1,…,An : 𝛔1,…,𝛔n

Overview of rules
Section 3 continued



● Very similar to the rules from Section 3
○ But now they can depend on each other

Section 6: Simultaneous Induction



Simultaneous Induction
Rules (in comparison to normal induction)

● Rules are indexed by a variable K

● For elimination, we need to consider all 
formation rules that we defined our types with 
in C.



Simultaneous Induction
Example: Even and odd numbers



Elimination for even and odd numbers
Simultaneous Induction



Section 4: Recursive Definitions



Scheme for Recursive Definitions
Introduction

• Using elim, we can only eliminate to types in 
set

• Problem: we don’t have type:type
• Solution: introduce a new scheme
• Induction vs. Recursion



A new elimination scheme

● B are the parameters of f
● a and Q[B] are used for our set former P
● (Q[B] is a sequence of constants)
● c are the major premises
● 𝝍 is a type under the previous 

assumptions

Scheme for Recursive Definitions



Example: forgetlength
Scheme for Recursive Definitions



Equality

• Eq rule from Section 3:
• New eq rule:

Scheme for Recursive Definitions

● A becomes Q[B]
● elimA,C becomes fB
● e and C disappeared, as they are not used in f



Section 5
● Predicate Logic

○ Implication
○ Equality

● Generalised Induction
○ Well-Orderings (W-types)
○ Well-Founded part of a Relation

● Finite Sets and n-Tuples
● Untyped 𝜆-Calculus



Section 5
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Two types of equality

• In coq:• Martin-Löf and Paulin
• Difference in parameters and indices
• Martin-Löf: 

• A parameter 
• a1 , a2 : A indices

• Paulin:
• A and a1 : A parameters
• a2 : A index



Formation Rule

• General Scheme: 

• Coq: 

• Equality à la Martin-Löf

•

• Equality à la Paulin   

Equality using the inductive scheme

● The difference is in what A and a are, but this is invisible!



Introduction rule

• Equality à la Martin-Löf
•
•
•

• Equality à la Paulin   

Equality using the inductive scheme

• General Scheme: 

• Coq: 



Elimination rule

• Equality à la Martin-Löf
•
•
•

• Equality à la Paulin   

Equality using the inductive scheme

• General Scheme: 

•
•
•
• Coq: 

 



Coq
Well-Orderings



Rules
Well-Orderings



• Accessibility 
• Given a binary relation R over an arbitrary type A, the accessible elements of R are those a:A from 

which there is no infinite chain a R a1 R a2 R a3, etc.
• If A1 is a set and A2 is a binary relation on that set, then AccA1,A2(a) is true iff a is in the well-founded 

part of A2. 
• The entire relation is well-founded if every element of A is accessible. 

Well-Founded part of a Relation
What is it?



Coq
Well-Founded part of a Relation



• For Well-Founded relations, we have:
 

• Equivalent to Acc_ind in Coq:

Well-Founded part of a Relation
Elimination rule

Acc_inv_dep in Coq:



Rules
Well-Founded part of a Relation



● Finite Sets of size N force you to specify 
a number between 0 and (N - 1)

● We can then define an n-Tuple, and use 
the finite sets to access elements of the 
tuple 

Finite Sets and SnocVecs  n-Tuples
A practical example



● A mapping function to map over all 
elements

● A projection function to access elements 
in an n-Tuple

Using Fins and n-Tuples
A practical example



● id(n) gives us all the elements of Fin n in 
an n-tuple

● up(n) is similar but for the successors of 
all elements of Fin n (in Fin (S n))

Some generators for n-Tuples
A practical example



● No names, so α-equivalence is trivial
● Has the number of free variables as a 

parameter
● Λ(0) is a fully bound term

DeBruijn-based untyped lambda calculus
A practical example



● Basically just replace variables by their 
definitions

● When we enter a lambda term, our 

Substitution
A practical example



● Lift renames all Var i by Var (i+1) in a 
lambda expression for all free variables 
in that expression

● rename is just a helper function that 
helps lift apply numbers to lambda 
expressions

Some helper functions
A practical example



● A bit primitive
● Proves β-equivalence!

A simple prover!
And finally…



The end


