
Inductive Families

Inductive Families
(Part 2)

Peter Dybjer, Formal Aspects of Computing 6(4), 1994, Sections 4-6

Erik Oosting
Niels van Duijl

● Section 3 continued
● Section 6: Simultaneous Induction
● Section 4: Recursive Definitions
● Section 5: Lots of examples!

Contents

• Recursion principle!
• Major premise c
• One minor premise e for each constructor, corresponding to each induction step

Elimination rule
Section 3 continued

• One equality rule for each constructor
• First parentheses should be read as ∀

Equality rule
Section 3 continued

Example of a function: forgetlength
Section 3 continued

• A :: 𝛔 means
A1,…,An : 𝛔1,…,𝛔n

Overview of rules
Section 3 continued

● Very similar to the rules from Section 3
○ But now they can depend on each other

Section 6: Simultaneous Induction

Simultaneous Induction
Rules (in comparison to normal induction)

● Rules are indexed by a variable K

● For elimination, we need to consider all
formation rules that we defined our types with
in C.

Simultaneous Induction
Example: Even and odd numbers

Elimination for even and odd numbers
Simultaneous Induction

Section 4: Recursive Definitions

Scheme for Recursive Definitions
Introduction

• Using elim, we can only eliminate to types in
set

• Problem: we don’t have type:type
• Solution: introduce a new scheme
• Induction vs. Recursion

A new elimination scheme

● B are the parameters of f
● a and Q[B] are used for our set former P
● (Q[B] is a sequence of constants)
● c are the major premises
● 𝝍 is a type under the previous

assumptions

Scheme for Recursive Definitions

Example: forgetlength
Scheme for Recursive Definitions

Equality

• Eq rule from Section 3:
• New eq rule:

Scheme for Recursive Definitions

● A becomes Q[B]
● elimA,C becomes fB
● e and C disappeared, as they are not used in f

Section 5
● Predicate Logic

○ Implication
○ Equality

● Generalised Induction
○ Well-Orderings (W-types)
○ Well-Founded part of a Relation

● Finite Sets and n-Tuples
● Untyped 𝜆-Calculus

Section 5
● Predicate Logic

○ Implication
○ Equality

● Generalised Induction
○ Well-Orderings (W-types)
○ Well-Founded part of a Relation

● Finite Sets and n-Tuples
● Untyped 𝜆-Calculus

Two types of equality

• In coq:• Martin-Löf and Paulin
• Difference in parameters and indices
• Martin-Löf:

• A parameter
• a1 , a2 : A indices

• Paulin:
• A and a1 : A parameters
• a2 : A index

Formation Rule

• General Scheme:

• Coq:

• Equality à la Martin-Löf

•

• Equality à la Paulin

Equality using the inductive scheme

● The difference is in what A and a are, but this is invisible!

Introduction rule

• Equality à la Martin-Löf
•
•
•

• Equality à la Paulin

Equality using the inductive scheme

• General Scheme:

• Coq:

Elimination rule

• Equality à la Martin-Löf
•
•
•

• Equality à la Paulin

Equality using the inductive scheme

• General Scheme:

•
•
•
• Coq:

Coq
Well-Orderings

Rules
Well-Orderings

• Accessibility
• Given a binary relation R over an arbitrary type A, the accessible elements of R are those a:A from

which there is no infinite chain a R a1 R a2 R a3, etc.
• If A1 is a set and A2 is a binary relation on that set, then AccA1,A2(a) is true iff a is in the well-founded

part of A2.
• The entire relation is well-founded if every element of A is accessible.

Well-Founded part of a Relation
What is it?

Coq
Well-Founded part of a Relation

• For Well-Founded relations, we have:

• Equivalent to Acc_ind in Coq:

Well-Founded part of a Relation
Elimination rule

Acc_inv_dep in Coq:

Rules
Well-Founded part of a Relation

● Finite Sets of size N force you to specify
a number between 0 and (N - 1)

● We can then define an n-Tuple, and use
the finite sets to access elements of the
tuple

Finite Sets and SnocVecs n-Tuples
A practical example

● A mapping function to map over all
elements

● A projection function to access elements
in an n-Tuple

Using Fins and n-Tuples
A practical example

● id(n) gives us all the elements of Fin n in
an n-tuple

● up(n) is similar but for the successors of
all elements of Fin n (in Fin (S n))

Some generators for n-Tuples
A practical example

● No names, so α-equivalence is trivial
● Has the number of free variables as a

parameter
● Λ(0) is a fully bound term

DeBruijn-based untyped lambda calculus
A practical example

● Basically just replace variables by their
definitions

● When we enter a lambda term, our

Substitution
A practical example

● Lift renames all Var i by Var (i+1) in a
lambda expression for all free variables
in that expression

● rename is just a helper function that
helps lift apply numbers to lambda
expressions

Some helper functions
A practical example

● A bit primitive
● Proves β-equivalence!

A simple prover!
And finally…

The end

