Induction-recursion and induction-induction in Agda

Madelief Slaats, Sophia Lin

December 6, 2024

Introduction

- Dependently typed
- Functional programming
- Martin-Löf's logical framework: (x : A) → B

- Emacs-based
- Interactive: type checker
- Gradual refinement of code

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- Inductive data types
- Pattern matching

Introduction

- Dependently typed
- Functional programming
- Martin-Löf's logical framework: (x : A) → B

Coq

Definition not (b:bool) :=
match b with
| true => false
| false => true
end.

- Emacs-based
- Interactive: type checker
- Gradual refinement of code

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- Inductive data types
- Pattern matching

Agda

- $\begin{array}{rrr} \texttt{not} & : & \texttt{Bool} \to \texttt{Bool} \\ \texttt{not} & \texttt{true} = \texttt{false} \end{array}$
- not false = true

Example



length-concat [] ys = {! !}

length-concat [] ys = $\{! \ !\}$

We need to prove:

length ([] ++ ys) \equiv length [] + length ys

length-concat [] ys = $\{! !\}$

We need to prove:

length ([] ++ ys) \equiv length [] + length ys

length ys

length-concat [] ys = $\{! !\}$

We need to prove:

length ([] ++ ys) \equiv

length [] + length ys
0 + length ys

length-concat [] ys = $\{! !\}$

We need to prove:

length ([] ++ ys) \equiv length ys

length [] + length ys
0 + length ys
length ys

length-concat (x :: xs) ys = $\{! \ !\}$

length-concat (x :: xs) ys = $\{! !\}$

We need to prove:

length ((x :: xs) ++ ys) \equiv length (x :: xs) + length ys

length-concat (x :: xs) ys = $\{! !\}$

We need to prove:

length ((x :: xs) ++ ys) \equiv length (x :: xs) + length ys

By definition of ++, we have: (x :: xs) ++ ys = x :: (xs ++ ys)By definition of length, we have: length (x :: xs) = 1 + length xs

length-concat (x :: xs) ys = $\{! \ !\}$

We need to prove:

length ((x :: xs) ++ ys) \equiv length (x :: xs) + length ys length (x :: (xs ++ ys))

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - の々ぐ

By definition of ++, we have: (x :: xs) ++ ys = x :: (xs ++ ys)By definition of length, we have: length (x :: xs) = 1 + length xs

length-concat (x :: xs) ys = $\{! \ !\}$

We need to prove:

length ((x :: xs) ++ ys) \equiv length (x :: xs) + length ys length (x :: (xs ++ ys)) 1 + length (xs ++ ys)

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - の々ぐ

By definion of ++, we have: (x :: xs) ++ ys = x :: (xs ++ ys) By definition of length, we have:

length (x :: xs) = 1 + length xs

length-concat (x :: xs) ys = $\{! \ !\}$

We need to prove:

length ((x :: xs) ++ ys) \equiv length (x :: xs) + length ys length (x :: (xs ++ ys)) 1 + length xs + length ys 1 + length (xs ++ ys)

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - の々ぐ

By definion of ++, we have: (x :: xs) ++ ys = x :: (xs ++ ys) By definition of length, we have:

length (x :: xs) = 1 + length xs

length-concat (x :: xs) ys = $\{! \ !\}$

We need to prove:

 $\begin{array}{rrrr} \mbox{length} ((x :: xs) ++ ys) &\equiv \mbox{length} (x :: xs) + \mbox{length} ys \\ \mbox{length} (x :: (xs ++ ys)) & 1 + \mbox{length} xs + \mbox{length} ys \\ 1 + \mbox{length} (xs ++ ys) & 1 + (\mbox{length} xs + \mbox{length} ys) \end{array}$

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - の々ぐ

By definion of ++, we have: (x :: xs) ++ ys = x :: (xs ++ ys) By definition of length, we have:

length (x :: xs) = 1 + length xs

1 + length (xs ++ ys) \equiv 1 + (length xs + length ys)

1 + length (xs ++ ys) \equiv 1 + (length xs + length ys) We can prove this if we can prove:

length (xs ++ ys) \equiv length xs + length ys

1 + length (xs ++ ys) \equiv 1 + (length xs + length ys) We can prove this if we can prove: length (xs ++ ys) \equiv length xs + length ys cong : {A B : Set} {x y : A} \rightarrow (f : A \rightarrow B) \rightarrow x \equiv y \rightarrow f x \equiv f y

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

1 + length (xs ++ ys) \equiv 1 + (length xs + length ys) We can prove this if we can prove: length (xs ++ ys) \equiv length xs + length ys cong : {A B : Set} {x y : A} \rightarrow (f : A \rightarrow B) \rightarrow x \equiv y \rightarrow f x \equiv f y Take f to be: λ n \rightarrow 1 + n

 $1 + \text{length}(xs ++ ys) \equiv 1 + (\text{length} xs + \text{length} ys)$ We can prove this if we can prove: length (xs ++ ys) \equiv length xs + length ys cong : {A B : Set} {x y : A} \rightarrow $(f : A \rightarrow B) \rightarrow x \equiv y \rightarrow f x \equiv f y$ Take f to be: λ n \rightarrow 1 + n length-concat : {A : Set} (xs ys : List A) \rightarrow length (xs ++ ys) \equiv length xs + length ys

 $1 + \text{length}(xs ++ ys) \equiv 1 + (\text{length} xs + \text{length} ys)$ We can prove this if we can prove: length (xs ++ ys) \equiv length xs + length ys cong : {A B : Set} {x y : A} \rightarrow $(f : A \rightarrow B) \rightarrow x \equiv y \rightarrow f x \equiv f y$ Take f to be: λ n \rightarrow 1 + n length-concat : {A : Set} (xs ys : List A) \rightarrow length (xs ++ ys) \equiv length xs + length ys

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つくぐ

cong (λ n \rightarrow 1 + n) (length-concat xs ys)

Induction-recursion

Recall: Definition of an **inductive** type together with a **recursive** function.

*ロト * 母 ト * 三 ト * 三 ト つへぐ

Code : Set decode : Code \rightarrow Set eq : (C : Code) \rightarrow (x y : decode C) \rightarrow Code eq ($\prod A B$) x y = {! !} Code : Set decode : Code \rightarrow Set eq : (C : Code) \rightarrow (x y : decode C) \rightarrow Code eq ($\prod A B$) x y = {! !} $\prod A B := \prod_{c:A} B(c)$ \prod : (A : Code) \rightarrow (decode A \rightarrow Code) \rightarrow Code

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つくぐ

Code : Set decode : Code \rightarrow Set eq : (C : Code) \rightarrow (x y : decode C) \rightarrow Code eq (Π A B) x y = {! !} $\Pi A B := \prod_{c \cdot A} B(c)$ $\Box : (A : Code) \rightarrow (decode A \rightarrow Code) \rightarrow Code$ decode (\square A B) = (c : decode A) \rightarrow decode (B c)

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Code : Set decode : Code \rightarrow Set eq : (C : Code) \rightarrow (x y : decode C) \rightarrow Code eq ($\prod A B$) x y = {! !} $\Pi A B := \prod_{c \cdot A} B(c)$ $\Box : (A : Code) \rightarrow (decode A \rightarrow Code) \rightarrow Code$ decode (\square A B) = (c : decode A) \rightarrow decode (B c) x, y = (c : decode A) \rightarrow decode (B c)

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Code : Set decode : Code \rightarrow Set eq : (C : Code) \rightarrow (x y : decode C) \rightarrow Code eq ($\prod A B$) x y = {! !} $\Pi A B := \prod_{c \cdot A} B(c)$ $\Box : (A : Code) \rightarrow (decode A \rightarrow Code) \rightarrow Code$ decode (\square A B) = (c : decode A) \rightarrow decode (B c) x, y = (c : decode A) \rightarrow decode (B c) (x c), (y c) = decode (B c)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つくぐ

Code : Set decode : Code \rightarrow Set eq : (C : Code) \rightarrow (x y : decode C) \rightarrow Code eq ($\prod A B$) x y = $\prod A \{ ! ! \}$ $\Pi A B := \prod_{c \cdot A} B(c)$ $\Box : (A : Code) \rightarrow (decode A \rightarrow Code) \rightarrow Code$ decode (\square A B) = (c : decode A) \rightarrow decode (B c) x, y = (c : decode A) \rightarrow decode (B c) (x c), (y c) = decode (B c)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つくぐ

Code : Set decode : Code \rightarrow Set eq : (C : Code) \rightarrow (x y : decode C) \rightarrow Code eq (\prod A B) x y = \prod A (λ c \rightarrow {! !}) $\Pi A B := \prod_{c \cdot A} B(c)$ $\Box : (A : Code) \rightarrow (decode A \rightarrow Code) \rightarrow Code$ decode (\square A B) = (c : decode A) \rightarrow decode (B c) x, y = (c : decode A) \rightarrow decode (B c) (x c), (y c) = decode (B c)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つくぐ

Code : Set decode : Code \rightarrow Set eq : (C : Code) \rightarrow (x y : decode C) \rightarrow Code eq ($\prod A B$) x y = $\prod A (\lambda c \rightarrow eq (B c) (x c) (y c))$

$$\Pi A B := \prod_{c:A} B(c)$$

$$\Pi : (A : Code) \rightarrow (decode A \rightarrow Code) \rightarrow Code$$

decode ($\prod A B$) = (c : decode A) \rightarrow decode (B c) x, y = (c : decode A) \rightarrow decode (B c) (x c), (y c) = decode (B c)

Induction-induction

Recall: Definition of an **inductive** type together with an **inductive** family.

(ロト (個) (E) (E) (E) (E) のへの

```
mutual
  data Platform : Set where
   ground : Platform
   extension : (p : Platform) → Building p → Platform
```

```
data Building : Platform → Set where
onTop : (p : Platform) → Building p
hangingUnder : {p : Platform} → (b : Building p) →
Building (extension p b)
```

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

ground : Platform

ground

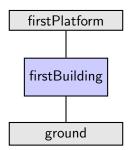
(ロト (個) (E) (E) (E) (E) のへの

firstBuilding : Building ground firstBuilding = onTop ground



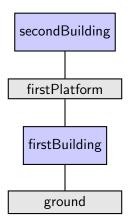
▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

firstPlatform : Platform firstPlatform = extension ground firstBuilding

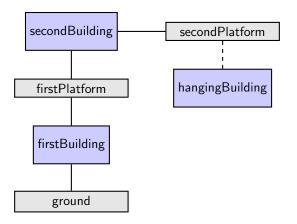


▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

secondBuilding : Building firstPlatform secondBuilding = onTop firstPlatform



hangingBuilding : Building (extension firstPlatform secondBuilding)
hangingBuilding = hangingUnder secondBuilding



Thanks for listening, any questions?