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Introduction

▶ Dependently typed

▶ Functional programming

▶ Martin-Löf’s logical
framework:
(x : A) → B

▶ Emacs-based

▶ Interactive: type checker

▶ Gradual refinement of code

▶ Inductive data types

▶ Pattern matching
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Introduction

▶ Dependently typed

▶ Functional programming

▶ Martin-Löf’s logical
framework:
(x : A) → B

Coq

Definition not (b:bool) :=

match b with

| true => false

| false => true

end.

▶ Emacs-based

▶ Interactive: type checker

▶ Gradual refinement of code

▶ Inductive data types

▶ Pattern matching

Agda

not : Bool → Bool

not true = false

not false = true
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Example

▶ Natural numbers

▶ Booleans

▶ Lists

▶ Vectors
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length-concat : {A : Set} (xs ys : List A) →
length (xs ++ ys) ≡ length xs + length ys

length-concat [] ys = {! !}
length-concat (x :: xs) ys = {! !}
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Base case:

length-concat [] ys = {! !}

We need to prove:

length ([] ++ ys) ≡ length [] + length ys

length ys 0 + length ys

length ys
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Inductive case:

length-concat (x :: xs) ys = {! !}

We need to prove:

length ((x :: xs) ++ ys) ≡ length (x :: xs) + length ys

length (x :: (xs ++ ys))

1 + length (xs ++ ys)

1 + length xs + length ys

1 + (length xs + length ys)

By definion of ++, we have:

(x :: xs) ++ ys = x :: (xs ++ ys)

By definition of length, we have:

length (x :: xs) = 1 + length xs
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1 + length (xs ++ ys) ≡ 1 + (length xs + length ys)

We can prove this if we can prove:

length (xs ++ ys) ≡ length xs + length ys

cong : {A B : Set} {x y : A} →
(f : A → B) → x ≡ y → f x ≡ f y

Take f to be: λ n → 1 + n

length-concat : {A : Set} (xs ys : List A) →
length (xs ++ ys) ≡ length xs + length ys

cong (λ n → 1 + n) (length-concat xs ys)
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Induction-recursion

Recall: Definition of an inductive type together with a recursive
function.
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Code : Set

decode : Code → Set

eq : (C : Code) → (x y : decode C) → Code

eq (Π A B) x y = {! !}

Π A B :=
∏

c:AB(c)

Π : (A : Code) → (decode A → Code) → Code

decode (Π A B) = (c : decode A) → decode (B c)

x, y = (c : decode A) → decode (B c)

(x c), (y c) = decode (B c)
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Code : Set

decode : Code → Set

eq : (C : Code) → (x y : decode C) → Code

eq (Π A B) x y = Π A (λ c → eq (B c) (x c) (y c))

Π A B :=
∏

c:AB(c)

Π : (A : Code) → (decode A → Code) → Code

decode (Π A B) = (c : decode A) → decode (B c)

x, y = (c : decode A) → decode (B c)

(x c), (y c) = decode (B c)
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Induction-induction

Recall: Definition of an inductive type together with an inductive
family.
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mutual

data Platform : Set where

ground : Platform

extension : (p : Platform) → Building p → Platform

data Building : Platform → Set where

onTop : (p : Platform) → Building p

hangingUnder : {p : Platform} → (b : Building p) →
Building (extension p b)
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ground : Platform

ground
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firstBuilding : Building ground

firstBuilding = onTop ground

ground

firstBuilding
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firstPlatform : Platform

firstPlatform = extension ground firstBuilding

ground

firstBuilding

firstPlatform
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secondBuilding : Building firstPlatform

secondBuilding = onTop firstPlatform

ground

firstBuilding

firstPlatform

secondBuilding
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hangingBuilding : Building (extension firstPlatform secondBuilding)

hangingBuilding = hangingUnder secondBuilding

ground

firstBuilding

firstPlatform

secondBuilding secondPlatform

hangingBuilding
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Thanks for listening, any questions?
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