Induction-recursion and induction-induction
in Agda

Madelief Slaats, Sophia Lin

December 6, 2024

Introduction

» Dependently typed > Emacs-based

» Functional programming P Interactive: type checker

> Martin-L5f's logical » Gradual refinement of code
framework: P Inductive data types
(x:A)—= B » Pattern matching

Introduction

» Dependently typed
» Functional programming

» Martin-Lof's logical
framework:
(x:A)—B

Coq

Definition not (b:bool)
match b with

| true => false

| false => true

end.

Emacs-based

Interactive: type checker

| 2
| 2
» Gradual refinement of code
» Inductive data types

>

Pattern matching

Agda

not : Bool — Bool
not true = false
not false = true

Example

» Natural numbers
» Booleans

» Lists

» Vectors

length-concat : {A : Set} (xs ys : List A) =

length (xs ++ ys) = length xs + length ys
length-concat [] ys = {! !}
length-concat (x :: xs) ys = {! !}

Base case:

length-concat [] ys

Base case:

length-concat [] ys = {!

We need to prove:

length ([] ++ ys) =

length [] + length ys

Base case:

length-concat [] ys = {! !}

We need to prove:

length ([1 ++ ys)

length [] + length ys
length ys

Base case:

length-concat [] ys = {! !}

We need to prove:

length ([1 ++ ys)

length [] + length ys
length ys 0 + length ys

Base case:

length-concat [] ys = {! !}

We need to prove:

length ([1 ++ ys)

length [] + length ys
length ys 0 + length ys

length ys

Inductive case:

length-concat (x :: xs) ys = {! !}

Inductive case:

length-concat (x :: xs) ys = {! !}

We need to prove:

length ((x :: =xs) ++ ys) = length (x :: xs) + length ys

Inductive case:
length-concat (x :: xs) ys = {! !}
We need to prove:

length ((x :: =xs) ++ ys) = length (x :: xs) + length ys

By definion of ++, we have:

(x :: xs) ++ ys =x :: (xs ++ ys)

By definition of length, we have:
length (x :: xs) =1 + length xs

Inductive case:

length-concat (x :: xs) ys = {! !}

We need to prove:

length ((x :: =xs) ++ ys) = length (x :: xs) + length ys
length (x :: (xs ++ ys))

By definion of ++, we have:

(x :: xs) ++ ys =x :: (xs ++ ys)

By definition of length, we have:
length (x :: xs) =1 + length xs

Inductive case:

length-concat (x :: xs) ys = {! !}

We need to prove:

length ((x :: =xs) ++ ys) = length (x :: xs) + length ys
length (x :: (xs ++ ys))

1 + length (xs ++ ys)

By definion of ++, we have:

(x :: xs) ++ ys =x :: (xs ++ ys)

By definition of length, we have:
length (x :: xs) =1 + length xs

Inductive case:

length-concat (x :: xs) ys = {! !}

We need to prove:

length ((x :: =xs) ++ ys) = length (x :: xs) + length ys
length (x :: (xs ++ ys)) 1 + length xs + length ys

1 + length (xs ++ ys)

By definion of ++, we have:

(x :: xs) ++ ys =x :: (xs ++ ys)

By definition of length, we have:
length (x :: xs) =1 + length xs

Inductive case:
length-concat (x :: xs) ys = {! !}

We need to prove:

length ((x :: =xs) ++ ys) = length (x :: xs) + length ys
length (x :: (xs ++ ys)) 1 + length xs + length ys
1 + length (xs ++ ys) 1 + (length xs + length ys)

By definion of ++, we have:

(x :: xs) ++ ys =x :: (xs ++ ys)

By definition of length, we have:
length (x :: xs) =1 + length xs

1 + length (xs ++ ys) = 1 + (length xs + length ys)

1 + length (xs ++ ys) = 1 + (length xs + length ys)

We can prove this if we can prove:

length (xs ++ ys) = length xs + length ys

1 + length (xs ++ ys) = 1 + (length xs + length ys)
We can prove this if we can prove:

length (xs ++ ys) = length xs + length ys

cong : {AB : Set} {xy: A}~
(f: A=2B)rx=y-~+fx=1fy

1 + length (xs ++ ys) = 1 + (length xs + length ys)
We can prove this if we can prove:

length (xs ++ ys) = length xs + length ys

cong : {AB : Set} {xy: A}~
(f: A=2B)rx=y-~+fx=1fy

Takeftobe: An-+1+n

1 + length (xs ++ ys) = 1 + (length xs + length ys)
We can prove this if we can prove:

length (xs ++ ys) = length xs + length ys

cong : {AB : Set} {xy: A}~
(f: A-B)rx=y-2fx=1~fy

Takeftobe: An-+1+n

length-concat : {A : Set} (xs ys : List A) =
length (xs ++ ys) = length xs + length ys

1 + length (xs ++ ys) = 1 + (length xs + length ys)
We can prove this if we can prove:

length (xs ++ ys) = length xs + length ys

cong : {AB : Set} {xy: A}~
(f: A-B)rx=y-2fx=1~fy

Takeftobe: An-+1+n

length-concat : {A : Set} (xs ys : List A) =
length (xs ++ ys) = length xs + length ys

cong (An =+ 1+ n) (length-concat xs ys)

Induction-recursion

Recall: Definition of an inductive type together with a recursive
function.

Code : Set
decode : Code = Set

eq : (C : Code) =» (x y : decode C) =+ Code
eq (MAB) xy={!' '}

Code : Set
decode : Code = Set

eq : (C : Code) =» (xy :

eq (MAB) xy={!' '}

MaBs :=[[.B

decode C) =+ Code

[T : (A : Code) + (decode A = Code) - Code

Code : Set
decode : Code = Set

eq : (C : Code) =» (x y : decode C) =+ Code
eq (MAB) xy={!' '}

MmAB :=1]]..,B()
[T : (A : Code) + (decode A = Code) - Code

decode (I1 A B) = (c : decode A) =+ decode (B c)

Code : Set
decode : Code = Set

eq : (C : Code) =» (x y : decode C) =+ Code
eq (MAB) xy={!' '}

MmAB :=1]]..,B()
[T : (A : Code) + (decode A = Code) - Code

decode (I1 A B) = (c : decode A) =+ decode (B c)
x, y = (c : decode A) = decode (B c)

Code : Set
decode : Code = Set

eq : (C : Code) =» (x y : decode C) =+ Code
eq (MAB) xy={!' '}

MmAB :=1]]..,B()
[T : (A : Code) + (decode A = Code) - Code

decode (1 A B) = (c : decode A) = decode (B c)
x, y = (c : decode A) = decode (B c)
(x ¢), (y ¢) = decode (B c)

Code : Set
decode : Code = Set

eq : (C : Code) =» (x y : decode C) =+ Code
eq MAB) xy=0MA{r '}

MmAB :=1]]..,B()
[T : (A : Code) + (decode A = Code) - Code

decode (1 A B) = (c : decode A) = decode (B c)
x, y = (c : decode A) = decode (B c)
(x ¢), (y ¢) = decode (B c)

Code : Set
decode : Code = Set

eq : (C : Code) =» (x y : decode C) =+ Code
eq MTAB) xy=MTAQNc~>{! D

MmAB :=1]]..,B()
[T : (A : Code) + (decode A = Code) - Code

decode (1 A B) = (c : decode A) = decode (B c)
x, y = (c : decode A) = decode (B c)
(x ¢), (y ¢) = decode (B c)

Code : Set
decode : Code = Set

eq : (C : Code) =» (x y : decode C) =+ Code
eq (1T AB) xy=IAc-eqg (Bc) (xc) (yc))

MmAB :=1]]..,B()
[T : (A : Code) + (decode A = Code) - Code

decode (1 A B) = (c : decode A) = decode (B c)
x, y = (c : decode A) = decode (B c)
(x ¢), (y ¢) = decode (B c)

Induction-induction

Recall: Definition of an inductive type together with an inductive
family.

10

mutual
data Platform : Set where
ground : Platform
extension : (p : Platform) -+ Building p -+ Platform

data Building : Platform -+ Set where
onTop : (p : Platform) -+ Building p
hangingUnder : {p : Platform} = (b : Building p) =
Building (extension p b)

11

12

ground :

Platform

ground

13

firstBuilding : Building ground
firstBuilding = onTop ground

firstBuilding

ground

firstPlatform : Platform
firstPlatform = extension ground firstBuilding

firstPlatform

firstBuilding

ground

15

secondBuilding : Building firstPlatform
secondBuilding = onTop firstPlatform

secondBuilding

firstPlatform

firstBuilding

ground

hangingBuilding : Building (extension firstPlatform secondBuilding)
hangingBuilding = hangingUnder secondBuilding

secondBuilding ———— secondPlatform

firstPlatform | hangingBuilding

firstBuilding

ground

Thanks for listening, any questions?

	Section
	Section
	Section
	Section

