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Introduction

» Dependently typed
» Functional programming

» Martin-Lof's logical
framework:
(x:A)—B

Coq

Definition not (b:bool)
match b with

| true => false

| false => true

end.

Emacs-based

Interactive: type checker

| 2
| 2
» Gradual refinement of code
» Inductive data types

>

Pattern matching

Agda

not : Bool — Bool
not true = false
not false = true



Example
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length-concat : {A : Set} (xs ys : List A) =

length (xs ++ ys) = length xs + length ys
length-concat [] ys = {! !}
length-concat (x :: xs) ys = {! !}
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1 + length (xs ++ ys) = 1 + (length xs + length ys)
We can prove this if we can prove:

length (xs ++ ys) =  length xs + length ys

cong : {AB : Set} {xy: A}~
(f: A-B)rx=y-2fx=1~fy

Takeftobe: An-+1+n

length-concat : {A : Set} (xs ys : List A) =
length (xs ++ ys) = length xs + length ys

cong (An =+ 1+ n) (length-concat xs ys)



Induction-recursion

Recall: Definition of an inductive type together with a recursive
function.
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Induction-induction

Recall: Definition of an inductive type together with an inductive
family.
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mutual
data Platform : Set where
ground : Platform
extension : (p : Platform) -+ Building p -+ Platform

data Building : Platform -+ Set where
onTop : (p : Platform) -+ Building p
hangingUnder : {p : Platform} = (b : Building p) =
Building (extension p b)
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ground :

Platform

ground
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firstBuilding : Building ground
firstBuilding = onTop ground

firstBuilding

ground




firstPlatform : Platform
firstPlatform = extension ground firstBuilding

firstPlatform

firstBuilding

ground
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secondBuilding : Building firstPlatform
secondBuilding = onTop firstPlatform

secondBuilding

firstPlatform

firstBuilding

ground




hangingBuilding : Building (extension firstPlatform secondBuilding)
hangingBuilding = hangingUnder secondBuilding

secondBuilding ———— secondPlatform

firstPlatform | hangingBuilding

firstBuilding

ground




Thanks for listening, any questions?
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