Theory of Inductive

Definitions

Radboud University # %

4

2

%, §
mes®

Inductive Definitions: the basics

Recall these very basic inductive definitions:

Inductive list (A:Set) : Set :=
| nil = list A
| cons : A — list A— list A.

Inductive tree : Set :=

| node : forest — tree

with forest : Set :=

| emptyf : forest

| consf : tree — forest — forest.

There is a clear structure here: we start with Inductive, followed by the
name and type of the of inductive types, followed by the name and types
of constructors for the inductive type.

Radboud University

Inductive Definitions: Formalised

Formally, induction types are represented as Ind[p](T; :=T¢)
® p: number of parameters of the inductive type

® [, name and types of the inductive type

® [name and types of the constructors

Inductive list (A:Set) : Set :=
| nil = list A
| cons : A — list A— list A.

Corresponds to:

il VA: Set, list A
Ind [1] ([Iist:Set—>Set] = | " =5 D

cons : VA:Set, A—listA—listA

Radboud University

Types of inductive definitions

Ind

WF (E)[I Ind [p] ([T := I¢) € E (a:A) eIy
ElNFa:A

® Well-formed environment E with context I’
® Inductive definition I,
e softype AisinT;,

® Conclusion: a: A is well-typed in E

Radboud University

Types of constructors

Constr

(c:C)eTIe

o Well-formed environment E with context [

® [nductive definition with constructors ¢ in E
e Constructor ¢ of type Cisin ¢

e Conclusion: c: C is well-typed in E

Radboud University

Well-formed Inductive Definitions

® Only some inductive definitions should be accepted

e "Bad" definitions lead to an inconsistent system:
Inductive Bad := bad (-: Bad — Bad)
Non-terminating terms when using paradox:
Definition paradox (x : Bad) : Bad :=

match x with

| bad f = f x

end.

Radboud University

Well-formed Inductive Definitions

® Only some inductive definitions should be accepted
e "Bad" definitions lead to an inconsistent system:

Inductive Bad := bad (_: Bad — Bad)

Non-terminating terms when using paradox:

Definition paradox (x : Bad) : Bad :=
match x with

| bad f = f x

end.

® Coq error: Non strictly positive occurrence of "Bad" in "(Bad ->
Bad) -> Bad (Explained later)

Radboud University

Arity of a Given Sort

Arity of sort s: A Type that leads to sort s.
Two cases:

e T is already of sort s. For example: T = Prop, because Prop is
already a sort

® T is a function type, where the function has arity of sort s. For
example, A — Set is an arity of Set

A type T is an arity if there is an s € Sorts such that T is an arity of sort
s

® Sorts = {Prop, Set, Type}

Radboud University

Type of Constructor

We say that T is a type of constructor of inductive type | in the following
cases:

® Direct application: T is (/ ti,...,t;), i.e. T itself directly produces
an instance of |, possibly after applying arguments tq, ..., t,.

Inductive bool : Set :=
| true : bool
| false : bool.

e Type T is a constructor of bool if it directly produces an instance of
bool

— So T = true is a valid constructor of bool because it directly
produces an instance of bool

— And T = false is also a valid constructor of bool because it
directly produces an instance of bool

Radboud University

Type of Constructor

We say that T is a type of constructor of inductive type | in the following
cases:
e Universally quantified type: T is Vx : U, T’ where T’ is also a
constructor for |.
— We introduce a universal quantification over U, but eventually
end up with T'
— And T’ is a valid constructor for |
Inductive list (A : Type) : Type :=
| nil -V a:A, list A
| cons : V a:A, A — list A — list A.
® For nil (similar approach for cons)
- T =Va:AlsA
— T =list A, which is indeed a valid constructor

Radboud University

Positivity Condition

By enforcing that parameters should only occur in positive positions, we
ensure that:

® Recursive functions terminate

® The type does not allow paradoxical or circular definitions

This means that parameters should:

® Be in the result of a constructor or function

Inductive Tree (A : Type) : Type :=

| Leaf : A — Tree A

| Node : Tree A — Tree A — Tree A.

® Not present on the left side of an arrow in a function

Inductive BadTree (A : Type) : Type :=
| bad : (BadTree A — A) — BadTree A.

Radboud University

Positivity Condition

The type of constructor T satisfies the positivity constraints for a set
of constants Xi, ..., X in the following cases:

* T =(Xjti,...,tq) for some j and no Xi, ..., Xk occur free in any
term t;.

e T=Vx:U,V and Xy, ..., Xk only occur strictly positively in U
and the type V satisfies the positivity condition for Xy, ..., X
Inductive list_with_length (A : Type) : nat — Type :=

| nil - list_with_length A O
| cons : ¥ n: nat, A— list_with_length A n — list_with_length A (S n).

Radboud University

Positivity Condition Example

e T=(Xjt,..., tq) for some j and no Xi, ..., X occur free in any t;.

- T :=nil
— Xy := list_with_length
- t1 :=A tb:=0

e T=Vx:UV and Xy,..., X only occur strictly positively in U
and the type V satisfies the positivity condition for Xy, ..., X

— T :=cons
— Xp := list_with_length
- U :=nat

-V := A — list_with_length A n — list_with_length A (S n)

Inductive list_with_length (A : Type) : nat — Type :=
| nil = list_with_length A 0
| cons : ¥ n: nat, A — list_with_length A n — list_with_length A (S n).

Radboud University

Strict Positivity

The constants Xj, ..., Xk occur strictly positively in T in the following

cases:

® No Xj,..., X, occurin T

® T converts to (Xjt...tq) for some j and no Xi, ..., Xk occur in any t;
For example, if T is X;(A), and A does not involve Xi, then Xj is
strictly positive in T

e T converts to Vx: U, V, and Xi, ..., Xk occur strictly positively in
type V but none of them occur in U
So Xi, ..., Xk can occur in the co-domain of the quantified type (V),
but not in the domain of the quantified type (U)

Inductive Bad := bad (_: Bad — Bad)

Radboud University

Recursively (non-)Uniform Parameters

e Recursively uniform parameters that remain unchanged between
recursive calls (A)

® Recursively non-uniform parameters that change between recursive
calls (nat)

® p = the total number of parameters (2)
® m = the number of recursively uniform parameters (1)
® p— m = the number of recursively non-uniform parameters (1)

e We can partially assign the recursively uniform parameters q1, ..., g,
with 0 <=r <=m

Inductive list_with_length (A : Type) : nat — Type :=

| nil = list_with_length A 0

| cons : ¥ n: nat, A — list_with_length A n — list_with_length A (S n).

Radboud University

Strict Positivity for Inductive Types

® T converts to (I aj...a, t1...ts) where [is the name of an inductive
definition, a;...a, are parameters (non-recursive part) and t;...ts are
indices (recursive part)

o JisdefinedasInd [r] (/:A:=c1:Py,....cy: P,) where ¢; is a
constructor, and P; is the type of the constructor

Inductive vec (A : Type) : nat -> Type :=

| vnil : vec A O

| vcons : A-> vec A n-> vec A (S n).

® Here, A is a parameter, and nat is an index

® The instantiated types of the constructors should also satisfy the
nested positivity condition for X1, ..., Xj

Radboud University

Strict Positivity for Inductive Types Continued

For the inductive definition of /, the constants Xi,...X) are strictly
positive in T if the following rules are satisfied:

® No Xi,...,, X, in terms

Inductive list (A : Type) : Type :=

| nil = list A

| cons : A — list (list A) — list A.

® They do not appear in any of the non-recursively uniform
parameters

® Recursive arguments should satisfy nested positivity

Radboud University

Nested Positivity

If I is a non-mutual inductive type with r parameters, then the type of

constructor T for / satisfies nested positivity in the following cases:

® T=(lay.a ti..t;) and no Xi, ..., Xi occur in any t; or a; where
m<j<r

e T=Vx:U,V and Xy, ..., Xk occur only strictly positively in U and
the type V satisfies the nested positivity condition for Xi, ... X\

Radboud University

Positivity vs. Strict Positivity vs. Nested Positivity

® Positivity

— Scope: general recursive types

— Goal: prevent negative occurrences

— Common problems: recursive type in negative position
® Strict Positivity

— Scope: recursive types, focus on valid positions

— Goal: ensure recursive calls are strictly positive

— Common problems: recursive type in non-positive context
® Nested Positivity

— Scope: inductive families with parameters and indices

— Goal: enforce valid positions in parameterised types

— Common problems: recursive type in non-recursive

parameter/index

Radboud University

Correctness Rules

W-Ind

WF(E)[IP] (Bl Te] F Ci : 8g)iz1.m
WE(E; Ind [l (T7 == Ic))]

® F is a global environment
Ip, T, Tc are contexts such that:
- Tyis[h Vg, Ars e B 2 VT, Ad]
- Tcisfer :Vlp, Gioicn i VIp, G
® With the following constraints:
- k>0 and all of /; and ¢; are distinctive names for j = 1...k
and i =1...n
— | is the size of I, which is called the context of parameters
- For j =1...k we have that A; is an arity of sort s; and /; ¢ E
— For i =1...n we have that C; is a type of constructor of Ig;
which satisfies the itivi iti

Radboud University

Replacing sorts in arities

® Assume that A is an arity of some sort, and s is a sort
Then, we can write A/ for the arity obtained by replacing the sort
of A with s

® If Ais well-typed in a global environment and local context, then
As is also typable

A=Vx:nat,x =x — Type

® Here, A is a function that takes a proof that x = x, and produces a
Type (which is its sort).
Then, we can replace A with Prop as follows:

A/ prop = Vx : nat,x = x — Prop

Radboud University

Ind-family Typing Rule

Ind-Family

Ind [p] (I'1 := I'c) e F
(Bl - q: Pf)ic1.r
(E[] = Pi’ SSJ:Q’; Pf{pwf‘h}u=1___i—l)f=1..r
1<j<k
E“ = I;r qr---qr: VLprJrl : Pr+1; seei Ppt PP]? [AJ):‘SJ

® Conclusion: the j-th constructor /; is well-typed under the inductive
family type, taking all arguments gl...q, into account, producing a
result type A;, possibly modified by the sort s

® Where ['p=[p1: Pi;...;pp: Pp] is the context of parameters

® Provided that 4 conditions are met

Radboud University

Ind-family Type Rule Conditions

Ind-Family

Ind [p] (It = I'c) € E
(BlFq:P)i.r
(BNl - P <gougy Pr{Pu/Qu}u=r. i-1)i=1...r
1<j<k

ElFLiqi g V[Prsr t Pty o5 Pp i Bply (45) s

We have an inductive type that exists within the environment
Each argument g; matches the expected type P; of those
arguments

® The argument P] is a valid instance of the inductive family after
substituting g, into the appropriate spots, which follows from
5,9, t,(,n reductions

® This rule applies to all constructors of the inductive family

Radboud University

match ... with ... end

® Inductive object m = (cixy...Xp;)
® Goal: Prove/Define property P on m
® Method: Consider each constructor ¢; of m

match m as x in /_a return P with (cix1 ... x1p,)
= |...| (X ... Xp,) = f, end

Fixpoint example (m: [) :=
match m with
| C1 X11 .- X1p; = f1

| Cn Xn1 --- Xnp, = fn
end.

Radboud University

"case" Shorthand

Fixpoint example (m: [) :=
match m with
| C1 X11 --- Xipy = fl

| Cn Xn1 --- an” = fn
end.

match m as x in /_a return P with (cix1 ... x1p,)
= |...] (coxm ... Xp,) = f, end

case(m, (Aax.P), \xq1 o xip, A oo | AXon o Xap, + Tn)

Radboud University

More notation...

case(m, (Aax.P), \xi1 .. xip, - A | oo | Axor oo Xap, <)
Let:

* m:|

e A

e Jax.P:B

The notation [/ : A | B] or just [I | B] means we are allowed to use Aax.P
with m in the match statement.

Radboud University

Rules for [A|B]

Prod

(I z): AlBI
[I:Vz:A, AtVz: A, B

Set & Type

s1 € {Set, Type(j)} s3€S
[I:s1|I — s9]

e S: The set of sorts
® Sort of | is Set or Type = No restrictions

Radboud University

Rules for [A|B]

Prop

s € {SProp, Prop}
[I : Prop|I — s]

® Exception when Sort of / is Prop
® Propositions are not included in extracted programs
® = Extracted predicate would be defined over a non-existent object

Radboud University

Exception of the exception

Prop-extended

I is an empty or singleton definition seS
[I : Prop|I — s]

We have no restrictions when:
® [is empty: trivial
® Singleton: one constructor, only Prop arguments

® Intuition: You can use an equality (Prop) to rewrite an object in
Set (or Type)

Radboud University

Typing rule for match

® P: property over /
® ¢, ith constructor of /
® We write {c,, }” for the type of the branch that P gives for c,,

match

ElNte:(Iq...qrty...t5)

E[lFP:B

T a..q)|B]

(B fi: {(cp a1 ar)})iz
E[I' & case(e, P, f1] ... |fi) : (Pt1...tsc)

Radboud University

Example: typing plus

Fixpoint plus (n m:nat) {struct n} : nat :=
match n with

|O=m

| Sp=S (plus p m)

end.

Let P := An: nat. nat
E[FlF n: nat
E[F]F P: nat — Set
[nat | nat — Set]
E[N+ m:{0}F= nat

E[M+FS (plus p m): {S p}P= nat
E[F1F case(n,P,m | Ap : nat. S (plus p m)): P n = nat

Radboud Universit

t-reduction for match/case
® No surprises here
case((cp; q1---gra1...am), P, fi|...|f)>. (fiar...am)

e Just keep ith branch for ith constructor

plus (S (S 0)) (S0) 5, S (plus (S O) (S 0))
>, S (S (plus O (S 0)))
> S (S (S 0))

Radboud University §

Fixpoint

® 5 mutually recursive definitions:
fix fl(Fl) : Aq :=t1 with...with fn(.l_‘n) : A, = t, for fi

e for f;" projects the ith term
® Shorthand where contexts are abstracted out:

Fix fi{fi: Al :=t]... fn: A, =1}

® Formally: t/ = Al;.t;, similarly A} = VI;, A;

Radboud University

Typing rule for Fixpoint

Fix

(E[F] '_ Al 8 s,»),‘:L_,n (E[F, f1 3 Al; ey f" 8 An] }_ ti] Al)lzln
E[F] = FIXfl{fl . A1 :tlann :tn} : A,

® Give type judgement for every A;
e Give type judgement that f; : A;

® Type judgements transfer over to Fixpoint with branches f; : A;

Radboud University

Guarded Fixpoints

Fix fz{fl/kl 8 A1 = tl 500 fn/kn 5 An = t"}

® k;: Integer pointing to the argument of f; that gets structurally
smaller (recall struct)

Fixpoint plus (n m:nat) {struct n} : nat :=
match n with

|O=m

| Sp=S (plus p m)

end.

Fix plus{plus/1 : nat — nat — nat
:= An,m: nat. case (n, P,m | Ap : nat. S(plus p m))}
With P := An : nat. nat

Radboud University

Guarded Fixpoints (rules)

Fix fl{fl/kl 3 Al = tl coo fn/kn] An 6= tn}

® Each A starts with > k; products Vy; : Bi,...Vyk : Bk

i

® B is an inductive type

If f; occurs in t;:
® > k; arguments
® kith argument is structurally smaller than yj

Radboud University

Structurally smaller

Suppose we have

o y:ind[r](T;:=T¢)

o Tyi=[h:As...;lk: A

o Tcei=[a:GC;...;cn: G

Structurally smaller than y are:

® Variables corresponding to recursive arguments

- eg.: Inbranch S p = (S(plus p m)), p is smaller as it is a
recursive argument

® (t u) and Ax.t when t is structurally smaller
o case(m, P, fy...f,), if:

- m: |, for some p
— Each f; is structurally smaller

Radboud University

	Introduction

