Theory of Inductive Definitions

By Sebastian Pack & Max de Boer-Blazdell

Inductive Definitions: the basics

Recall these very basic inductive definitions:

```
Inductive list (A:Set) : Set :=

\mid nil : list A

\mid cons : A \rightarrow list A \rightarrow list A.

Inductive tree : Set :=

\mid node : forest \rightarrow tree

with forest : Set :=

\mid emptyf : forest

\mid consf : tree \rightarrow forest \rightarrow forest.
```

There is a clear structure here: we start with Inductive, followed by the name and type of the of inductive types, followed by the name and types of constructors for the inductive type.

Inductive Definitions: Formalised

Formally, induction types are represented as $Ind[p](\Gamma_I := \Gamma_c)$

- p: number of **parameters** of the inductive type
- Γ₁: name and types of the **inductive type**
- Γ_c : name and types of the **constructors**

```
Inductive list (A:Set) : Set := | nil : list A | cons : A \rightarrow list A \rightarrow list A.
```

Corresponds to:

$$\mathsf{Ind}\; [1] \left([\mathsf{list}:\mathsf{Set} \to \mathsf{Set}] \; := \; \begin{bmatrix} \mathsf{nil} & : & \forall A : \mathsf{Set}, \; \mathsf{list}\; A \\ \mathsf{cons} & : & \forall A : \mathsf{Set}, \; A \to \mathsf{list}\; A \to \mathsf{list}\; A \end{bmatrix} \right)$$

Types of inductive definitions

Ind

$$\frac{\mathcal{WF}(E)[\Gamma] \qquad \mathsf{Ind} \ [p] \ (\varGamma_I \ := \ \varGamma_C) \in E \qquad (a:A) \in \varGamma_I}{E[\Gamma] \vdash a:A}$$

- Well-formed environment E with context Γ
- Inductive definition Γ_I
- *a* of type A is in Γ_1
- Conclusion: a : A is well-typed in E

Types of constructors

Constr

$$\frac{\mathcal{WF}(E)[\Gamma]}{E[\Gamma] \vdash c:C} \quad \begin{array}{c} \mathsf{Ind} \ [p] \ (\Gamma_I \ := \ \Gamma_C) \in E \\ \hline \\ E[\Gamma] \vdash c:C \end{array}$$

- Well-formed environment E with context Γ
- Inductive definition with constructors Γ_C in E
- Constructor *c* of type *C* is in Γ_C
- Conclusion: c : C is well-typed in E

Well-formed Inductive Definitions

- Only some inductive definitions should be accepted
- "Bad" definitions lead to an **inconsistent** system:

```
Inductive Bad := bad (_: Bad \rightarrow Bad)
```

Non-terminating terms when using paradox:

```
Definition paradox (x : Bad) : Bad :=
match x with
| bad f \Rightarrow f x
end.
```


Well-formed Inductive Definitions

- Only **some** inductive definitions should be accepted
- "Bad" definitions lead to an **inconsistent** system:

```
Inductive Bad := bad (_: Bad \rightarrow Bad)
```

Non-terminating terms when using paradox:

```
Definition paradox (x : Bad) : Bad := match x with

\mid bad \ f \Rightarrow f \ x

end.
```

 Coq error: Non strictly positive occurrence of "Bad" in "(Bad -> Bad) -> Bad (Explained later)

Arity of a Given Sort

Arity of sort *s*: A **Type** that **leads to sort** *s*. Two cases:

- **T** is already of sort s. For example: T = Prop, because Prop is already a sort
- T is a function type, where the **function** has **arity of sort** *s*. For example, $A \rightarrow Set$ is an arity of *Set*

A type T is an arity if there is an $s \in Sorts$ such that T is an arity of sort s

• $Sorts = \{Prop, Set, Type\}$

Type of Constructor

We say that T is a type of constructor of inductive type I in the following cases:

• **Direct application:** T is $(I \ t_1, ..., t_q)$, i.e. T itself directly **produces an instance of I**, possibly after applying arguments $t_1, ..., t_q$.

```
Inductive bool : Set :=
| true : bool
| false : bool.
```

- Type T is a constructor of bool if it directly produces an instance of bool
 - So T = true is a valid constructor of bool because it directly produces an instance of bool
 - And T = false is also a valid constructor of bool because it directly produces an instance of bool

Type of Constructor

We say that T is a type of constructor of inductive type I in the following cases:

- Universally quantified type: T is $\forall x : U, T'$ where T' is also a constructor for I.
 - We introduce a universal quantification over U, but eventually end up with T'
 - And T' is a valid constructor for I

```
Inductive list (A : Type) : Type :=
| nil : \forall a:A, list A
| cons : \forall a:A, A \rightarrow list A \rightarrow list A.
```

- For nil (similar approach for cons)
 - $\quad \mathsf{T} = \forall a : A, \text{ list } \mathsf{A}$
 - T' = list A, which is indeed a valid constructor

Positivity Condition

By enforcing that parameters should only occur in positive positions, we ensure that:

- Recursive functions terminate
- The type does not allow paradoxical or circular definitions This means that parameters should:
- Be in the result of a constructor or function Inductive Tree (A : Type) : Type := | Leaf : $A \rightarrow$ Tree A | Node : Tree $A \rightarrow$ Tree A \rightarrow Tree A.

• Not present on the left side of an arrow in a function Inductive BadTree (A : Type) : Type :=| $bad : (BadTree A \rightarrow A) \rightarrow BadTree A.$

Positivity Condition

The type of constructor T satisfies the positivity constraints for a set of constants $X_1, ..., X_k$ in the following cases:

- $T = (X_j t_1, ..., t_q)$ for some j and **no** $X_1, ..., X_k$ occur free in any term t_i .
- $T = \forall x : U, V \text{ and } X_1, ..., X_k \text{ only occur strictly positively in } U$ and the type V satisfies the positivity condition for $X_1, ..., X_k$

Inductive list_with_length (A : Type) : $nat \rightarrow Type :=$ | $nil : list_with_length A = 0$ | $cons : \forall n : nat, A \rightarrow list_with_length A = n \rightarrow list_with_length A (S n).$

Positivity Condition Example

- $T = (X_j t_1, ..., t_q)$ for some j and **no** $X_1, ..., X_k$ **occur free** in any t_i . - T := nil
 - $X_1 := list_with_length$

$$- t_1 := A, t_2 := 0$$

- $T = \forall x : U, V \text{ and } X_1, ..., X_k \text{ only occur strictly positively in } U$ and the type V satisfies the positivity condition for $X_1, ..., X_k$
 - T := cons
 - $X_1 := list_with_length$
 - U := nat

 $- \quad V := A \rightarrow list_with_length \ A \ n \rightarrow list_with_length \ A \ (S \ n)$

 $\texttt{Inductive } \textit{list_with_length} (A:\texttt{Type}): \textit{nat} \rightarrow \texttt{Type} :=$

nil : *list_with_length* A 0

cons : \forall n : nat, A \rightarrow list_with_length A n \rightarrow list_with_length A (S n).

Strict Positivity

The constants $X_1, ..., X_k$ occur strictly positively in T in the following cases:

- No $X_1, ..., X_k$ occur in T
- T converts to $(X_j t_1 ... t_q)$ for some *j* and **no** $X_1, ..., X_k$ **occur** in any t_i For example, if T is $X_i(A)$, and A does **not involve** X_1 , then X_1 is strictly positive in T
- T converts to ∀x : U, V, and X₁, ..., X_k occur strictly positively in type V but none of them occur in U
 So X₁, ..., X_k can occur in the co-domain of the quantified type (V), but not in the domain of the quantified type (U)

Inductive Bad := bad (_: $Bad \rightarrow Bad$)

Recursively (non-)Uniform Parameters

- **Recursively uniform** parameters that remain unchanged between recursive calls (A)
- **Recursively non-uniform** parameters that change between recursive calls (nat)
- p = the total number of **parameters** (2)
- m = the number of recursively uniform parameters (1)
- p m = the number of **recursively non-uniform** parameters (1)
- We can partially assign the recursively uniform parameters $q1, ..., q_r$ with $0 \le r \le m$

Inductive list_with_length (A : Type) : $nat \rightarrow Type :=$ | $nil : list_with_length A = 0$ | $cons : \forall n : nat, A \rightarrow list_with_length A = n \rightarrow list_with_length A (S n).$

Strict Positivity for Inductive Types

- T converts to (*I a*₁...*a_r t*₁...*t_s*) where *I* is the name of an inductive definition, *a*₁...*a_r* are **parameters** (non-recursive part) and *t*₁...*t_s* are **indices** (recursive part)
- *I* is defined as Ind [r] (*I* : *A* := *c*₁ : *P*₁, ..., *c_n* : *P_n*) where *c_i* is a **constructor**, and *P_i* is the **type of the constructor**

```
Inductive vec (A : Type) : nat -> Type :=
| vnil : vec A 0
| vcons : A -> vec A n -> vec A (S n).
```

- Here, A is a parameter, and nat is an index
- The instantiated types of the constructors should also satisfy the nested positivity condition for $X_1, ..., X_k$

Strict Positivity for Inductive Types Continued

For the inductive definition of I, the constants $X_1, ..., X_k$ are strictly positive in T if the following rules are satisfied:

• No $X_1, ..., X_k$ in **terms**

```
Inductive list (A : Type) : Type := | nil : list A | cons : A \rightarrow list (list A) \rightarrow list A.
```

- They do not appear in any of the **non-recursively uniform parameters**
- Recursive arguments should satisfy nested positivity

Nested Positivity

If I is a **non-mutual inductive type** with r parameters, then the type of constructor T for I satisfies **nested positivity** in the following cases:

- $T = (I \ a_1...a_r \ t_1...t_s)$ and no $X_1, ..., X_k$ occur in any t_i or a_j where $m \le j \le r$
- $T = \forall x : U, V \text{ and } X_1, ..., X_k \text{ occur only strictly positively in U and the type V satisfies the$ **nested positivity condition** $for <math>X_1, ..., X_k$

Positivity vs. Strict Positivity vs. Nested Positivity

- Positivity
 - Scope: general recursive types
 - Goal: prevent negative occurrences
 - Common problems: recursive type in negative position
- Strict Positivity
 - Scope: recursive types, focus on valid positions
 - Goal: ensure recursive calls are strictly positive
 - Common problems: recursive type in non-positive context
- Nested Positivity
 - Scope: inductive families with parameters and indices
 - Goal: enforce valid positions in parameterised types
 - Common problems: recursive type in non-recursive parameter/index

Correctness Rules

W-Ind

$$\frac{\mathcal{WF}(E)[\Gamma_P] \quad (E[\Gamma_I;\Gamma_P] \vdash C_i : s_{q_i})_{i=1\dots n}}{\mathcal{WF}(E; \text{ Ind } [l] (\Gamma_I := \Gamma_C))[]}$$

- *E* is a global environment
- $\Gamma_p, \Gamma_I, \Gamma_C$ are contexts such that:
 - Γ_I is $[I_1 : \forall \Gamma_p, A_1; ...; I_k : \forall \Gamma_p, A_k]$
 - Γ_C is $[c_1 : \forall \Gamma_p, C_1; ...; c_n : \forall \Gamma_p, C_n]$
- With the following constraints:
 - k > 0 and all of l_j and c_i are **distinctive names** for j = 1...kand i = 1...n
 - *I* is the size of Γ_p which is called the **context of parameters**
 - For j = 1...k we have that A_j is an arity of sort s_j and $I_j \notin E$
 - For i = 1...n we have that C_i is a type of constructor of I_{qi} which **satisfies the positivity condition** for $I_1, ..., I_k$ and $c_i \notin E$

Replacing sorts in arities

- Assume that A is an arity of some sort, and s is a sort
- Then, we can write $A_{/s}$ for the arity obtained by **replacing the sort** of **A with s**
- If A is well-typed in a global environment and local context, then $A_{/s}$ is also typable

$$A = \forall x : nat, x = x \rightarrow Type$$

• Here, A is a function that takes a proof that x = x, and produces a Type (which is its sort).

Then, we can replace A with Prop as follows:

$$A_{/Prop} = \forall x : nat, x = x \rightarrow Prop$$

Ind-family Typing Rule

Ind-Family

$$\begin{cases} \mathsf{Ind} \ [p] \left(\varGamma_l \ := \ \varGamma_C \right) \in E \\ (E[] \vdash q_l : P_l')_{l=1...r} \\ (E[] \vdash P_l' \le \beta \delta \iota \zeta \eta \ P_l \{ p_u/q_u \}_{u=1...l-1})_{l=1...r} \\ 1 \le j \le k \\ E[] \vdash I_j \ q_1 \ldots q_r : \forall [p_{r+1} : P_{r+1}; \ \ldots; \ p_p : P_p], (A_j)_{/s_j} \end{cases}$$

- Conclusion: the j-th constructor *I_j* is well-typed under the inductive family type, taking all arguments *q*1...*q_r* into account, producing a result type A_j, possibly modified by the sort *s*
- Where $\Gamma_P = [p_1 : P_1; ...; p_p : P_p]$ is the context of parameters
- Provided that 4 conditions are met

Ind-family Type Rule Conditions

Ind-Family

$$\begin{array}{l} & \mbox{Ind } [p] \, (\Gamma_l \, := \, \Gamma_C) \in E \\ & (E[] \vdash q_l : P'_l)_{l=1...r} \\ & (E[] \vdash P'_l \leq_{\beta \delta \iota \zeta \eta} P_l \{ p_u/q_u \}_{u=1...l-1})_{l=1...r} \\ & 1 \leq j \leq k \\ \hline & E[] \vdash I_j \, q_1 \ldots q_r : \forall [p_{r+1} : P_{r+1}; \ \ldots; \ p_p : P_p], (A_j)_{/s_j} \end{array}$$

- We have an inductive type that **exists** within the environment
- Each argument q₁ matches the **expected type** P'₁ of those arguments
- The argument P'_l is a valid instance of the inductive family after substituting q_u into the appropriate spots, which follows from β, δ, ι, ζ, η reductions
- This rule applies to all constructors of the inductive family

match ... with ... end

- Inductive object $m = (c_i x_1 ... x_{p_i})$
- Goal: Prove/Define property P on m
- Method: Consider each constructor c_i of m

match *m* as *x* in *I_a* return *P* with $(c_1 x_{11} \dots x_{1p_1})$ $\Rightarrow f_1 | \dots | (c_n x_{n1} \dots x_{np_n}) \Rightarrow f_n$ end

```
Fixpoint example (m : l) :=
match m with
| c_1 x_{11} \dots x_{1p_1} \Rightarrow f_1
\dots
| c_n x_{n1} \dots x_{np_n} \Rightarrow f_n
end.
```


"case" Shorthand

```
Fixpoint example (m : l) :=
match m with
| c_1 x_{11} \dots x_{1p_1} \Rightarrow f_1
\dots
| c_n x_{n1} \dots x_{np_n} \Rightarrow f_n
end.
```

match *m* as *x* in *I*_*a* return *P* with $(c_1 x_{11} \dots x_{1p_1})$ $\Rightarrow f_1 | \dots | (c_n x_{n1} \dots x_{np_n}) \Rightarrow f_n$ end

 $case(m, (\lambda ax.P), \lambda x_{11} \dots x_{1p_1} \cdot f_1 \mid \dots \mid \lambda x_{n1} \dots x_{np_n} \cdot f_n)$

More notation...

 $\mathsf{case}(m, (\lambda a x. P), \lambda x_{11} \dots x_{1p_1} \cdot f_1 \mid \dots \mid \lambda x_{n1} \dots x_{np_n} \cdot f_n)$

Let:

- m:l
- *I* : *A*
- λ*ax*.*P* : *B*

The notation [I : A | B] or just [I | B] means we are allowed to use $\lambda ax.P$ with *m* in the *match* statement.

Rules for [A|B]

Prod

$$rac{[(I \; x):A\prime|B\prime]}{[I:orall x:A,\;A\prime|orall x:A,\;B\prime]}$$

Set & Type

$$rac{s_1 \in \{\mathsf{Set}, \mathsf{Type}(j)\} \qquad s_2 \in \mathcal{S}}{[I:s_1 | I
ightarrow s_2]}$$

- S: The set of sorts
- Sort of *I* is **Set** or **Type** \Rightarrow No restrictions

Rules for [A|B]

Prop

 $\frac{s \in \{\mathsf{SProp},\mathsf{Prop}\}}{[I:\mathsf{Prop}|I \to s]}$

- Exception when Sort of *I* is **Prop**
- Propositions are not included in extracted programs
- \Rightarrow Extracted predicate would be defined over a **non-existent** object

Exception of the exception

Prop-extended

 $rac{I ext{ is an empty or singleton definition}}{[I: ext{Prop}|I
ightarrow s]}$

We have no restrictions when:

- *I* is empty: trivial
- Singleton: one constructor, only Prop arguments
- Intuition: You can use an equality (**Prop**) to rewrite an object in **Set** (or **Type**)

Typing rule for match

- P: property over I
- c_{p_i} : *i*th constructor of *I*
- We write $\{c_{p_i}\}^P$ for the **type** of the **branch** that P gives for c_{p_i}

match

$$\begin{split} E[\Gamma] &\vdash c: (I q_1 \dots q_r t_1 \dots t_s) \\ E[\Gamma] &\vdash P: B \\ [(I q_1 \dots q_r)|B] \\ (E[\Gamma] &\vdash f_i: \{(c_{p_i} q_1 \dots q_r)\}^P)_{i=1\dots l} \\ \hline E[\Gamma] &\vdash \mathsf{case}(c, P, f_1| \dots |f_l): (P t_1 \dots t_s c) \end{split}$$

Example: typing plus

Fixpoint plus (n m:nat) {struct n} : nat := match *n* with $0 \Rightarrow m$ $| S p \Rightarrow S (plus p m)$ end. Let $P := \lambda n$: nat. nat. $E[\Gamma] \vdash n : nat$ $E[\Gamma] \vdash P : nat \rightarrow Set$ [nat | nat \rightarrow Set] $E[\Gamma] \vdash m : \{O\}^P \equiv nat$ $E[\Gamma] \vdash S (plus \ p \ m) : \{S \ p\}^P \equiv nat$ $\overline{E[\Gamma]} \vdash case(n, P, m \mid \lambda p : nat. S (plus p m)) : P n \equiv nat$

ι -reduction for match/case

• No surprises here

$$\mathsf{case}((c_{p_i} q_1 \dots q_r a_1 \dots a_m), P, f_1 | \dots | f_l) \triangleright_{\iota} (f_i a_1 \dots a_m)$$

• Just keep *i*th branch for *i*th constructor

plus (S (S O)) (S O)
$$\triangleright_{\iota}$$
 S (plus (S O) (S O))
 \triangleright_{ι} S (S (plus O (S O)))
 \triangleright_{ι} S (S (S O))

Fixpoint

• *n* mutually recursive definitions:

fix $f_1(\Gamma_1): A_1:=t_1$ with \ldots with $f_n(\Gamma_n): A_n:=t_n$ for f_i

- "for f_i " projects the *i*th term
- Shorthand where contexts are abstracted out:

Fix
$$f_i \{ f_1 : A'_1 := t'_1 \dots f_n : A'_n := t'_n \}$$

• Formally:
$$t'_i = \lambda \Gamma_i t_i$$
, similarly $A'_i = \forall \Gamma_i, A_i$

Typing rule for Fixpoint

Fix

$$\frac{(E[\Gamma] \vdash A_i:s_i)_{i=1\dots n}}{E[\Gamma] \vdash \mathsf{Fix}\; f_i\{f_1:A_1:\dots;\; f_n:A_n] \vdash t_i:A_i)_{i=1\dots n}}$$

- Give type judgement for every A_i
- Give type judgement that $f_i : A_i$
- Type judgements **transfer** over to Fixpoint with branches $f_i : A_i$

Guarded Fixpoints

Fix
$$f_i \{ f_1/k_1 : A_1 := t_1 \dots f_n/k_n : A_n := t_n \}$$

• k_i : Integer pointing to the argument of f_i that gets **structurally smaller** (recall *struct*)

```
Fixpoint plus (n m:nat) {struct n} : nat :=
match n with
```

```
| O \Rightarrow m
| S p \Rightarrow S (plus p m)
end.
```

Fix
$$plus\{plus/1 : nat \rightarrow nat \rightarrow nat$$

 $:= \lambda n, m : nat. case(n, P, m | \lambda p : nat. S(plus p m))\}$
With $P := \lambda n : nat. nat$

Guarded Fixpoints (rules)

Fix
$$f_i \{ f_1 / k_1 : A_1 := t_1 \dots f_n / k_n : A_n := t_n \}$$

- Each A_i starts with $\geq k_i$ products $\forall y_1 : B_1, \ldots \forall y_{k_i} : B_{k_i}$
- B_{k_i} is an inductive type
- If f_j occurs in t_i :
- $\geq k_j$ arguments
- k_j th argument is structurally smaller than y_{k_i}

Structurally smaller

Suppose we have

- $y : Ind[r](\Gamma_i := \Gamma_C)$
- $\Gamma_I := [I_1 : A_1; \ldots; I_k : A_k]$
- $\Gamma_C := [c_1 : C_1; \ldots; c_n : C_n]$

Structurally smaller than y are:

- Variables corresponding to recursive arguments
 - e.g.: In branch $S \ p \Rightarrow (S(plus \ p \ m)), \ p$ is smaller as it is a recursive argument
- $(t \ u)$ and $\lambda x.t$ when t is structurally smaller
- $case(m, P, f_1 ... f_n)$, if:
 - $m: I_p$ for some p
 - Each f_i is structurally smaller

