
Theory of Inductive
Definitions
By Sebastian Pack & Max de Boer-Blazdell

Inductive Definitions: the basics

Recall these very basic inductive definitions:

Inductive list (A:Set) : Set :=
| nil : list A
| cons : A → list A → list A.

Inductive tree : Set :=
| node : forest → tree
with forest : Set :=
| emptyf : forest
| consf : tree → forest → forest.

There is a clear structure here: we start with Inductive, followed by the
name and type of the of inductive types, followed by the name and types
of constructors for the inductive type.

Inductive Definitions: Formalised

Formally, induction types are represented as Ind [p](ΓI := Γc)

• p: number of parameters of the inductive type
• ΓI : name and types of the inductive type
• Γc : name and types of the constructors

Inductive list (A:Set) : Set :=
| nil : list A
| cons : A → list A → list A.

Corresponds to:

Types of inductive definitions

• Well-formed environment E with context Γ
• Inductive definition ΓI
• a of type A is in ΓI
• Conclusion: a : A is well-typed in E

Types of constructors

• Well-formed environment E with context Γ
• Inductive definition with constructors ΓC in E

• Constructor c of type C is in ΓC
• Conclusion: c : C is well-typed in E

Well-formed Inductive Definitions

• Only some inductive definitions should be accepted
• "Bad" definitions lead to an inconsistent system:

Inductive Bad := bad (: Bad → Bad)

Non-terminating terms when using paradox:

Definition paradox (x : Bad) : Bad :=
match x with
| bad f ⇒ f x
end.

Well-formed Inductive Definitions

• Only some inductive definitions should be accepted
• "Bad" definitions lead to an inconsistent system:

Inductive Bad := bad (: Bad → Bad)

Non-terminating terms when using paradox:

Definition paradox (x : Bad) : Bad :=
match x with
| bad f ⇒ f x
end.

• Coq error: Non strictly positive occurrence of "Bad" in "(Bad ->
Bad) -> Bad (Explained later)

Arity of a Given Sort

Arity of sort s: A Type that leads to sort s.
Two cases:

• T is already of sort s. For example: T = Prop, because Prop is
already a sort

• T is a function type, where the function has arity of sort s. For
example, A → Set is an arity of Set

A type T is an arity if there is an s ∈ Sorts such that T is an arity of sort
s

• Sorts = {Prop,Set,Type}

Type of Constructor

We say that T is a type of constructor of inductive type I in the following
cases:
• Direct application: T is (I t1, ..., tq), i.e. T itself directly produces

an instance of I, possibly after applying arguments t1, ..., tq.
Inductive bool : Set :=
| true : bool
| false : bool.
• Type T is a constructor of bool if it directly produces an instance of

bool
– So T = true is a valid constructor of bool because it directly

produces an instance of bool
– And T = false is also a valid constructor of bool because it

directly produces an instance of bool

Type of Constructor

We say that T is a type of constructor of inductive type I in the following
cases:
• Universally quantified type: T is ∀x : U,T ′ where T’ is also a

constructor for I.
– We introduce a universal quantification over U, but eventually

end up with T’
– And T’ is a valid constructor for I

Inductive list (A : Type) : Type :=
| nil : ∀ a:A, list A
| cons : ∀ a:A, A → list A → list A.
• For nil (similar approach for cons)

– T = ∀a : A, list A
– T’ = list A, which is indeed a valid constructor

Positivity Condition

By enforcing that parameters should only occur in positive positions, we
ensure that:
• Recursive functions terminate
• The type does not allow paradoxical or circular definitions
This means that parameters should:
• Be in the result of a constructor or function
Inductive Tree (A : Type) : Type :=
| Leaf : A → Tree A
| Node : Tree A → Tree A → Tree A.

• Not present on the left side of an arrow in a function
Inductive BadTree (A : Type) : Type :=
| bad : (BadTree A → A) → BadTree A.

Positivity Condition

The type of constructor T satisfies the positivity constraints for a set
of constants X1, ...,Xk in the following cases:
• T = (Xj t1, ..., tq) for some j and no X1, ...,Xk occur free in any

term ti .
• T = ∀x : U,V and X1, ...,Xk only occur strictly positively in U

and the type V satisfies the positivity condition for X1, ...,Xk

Inductive list with length (A : Type) : nat → Type :=
| nil : list with length A 0
| cons : ∀ n : nat, A → list with length A n → list with length A (S n).

Positivity Condition Example

• T = (Xj t1, ..., tq) for some j and no X1, ...,Xk occur free in any ti .
– T := nil
– X1 := list with length
– t1 := A, t2 := 0

• T = ∀x : U,V and X1, ...,Xk only occur strictly positively in U
and the type V satisfies the positivity condition for X1, ...,Xk

– T := cons
– X1 := list with length
– U := nat
– V := A → list with length A n → list with length A (S n)

Inductive list with length (A : Type) : nat → Type :=
| nil : list with length A 0
| cons : ∀ n : nat, A → list with length A n → list with length A (S n).

Strict Positivity

The constants X1, ...,Xk occur strictly positively in T in the following
cases:
• No X1, ...,Xk occur in T
• T converts to (Xj t1...tq) for some j and no X1, ...,Xk occur in any ti

For example, if T is Xi (A), and A does not involve X1, then X1 is
strictly positive in T

• T converts to ∀x : U,V , and X1, ...,Xk occur strictly positively in
type V but none of them occur in U
So X1, ...,Xk can occur in the co-domain of the quantified type (V),
but not in the domain of the quantified type (U)

Inductive Bad := bad (: Bad → Bad)

Recursively (non-)Uniform Parameters

• Recursively uniform parameters that remain unchanged between
recursive calls (A)

• Recursively non-uniform parameters that change between recursive
calls (nat)

• p = the total number of parameters (2)
• m = the number of recursively uniform parameters (1)
• p −m = the number of recursively non-uniform parameters (1)
• We can partially assign the recursively uniform parameters q1, ..., qr

with 0 <= r <= m

Inductive list with length (A : Type) : nat → Type :=
| nil : list with length A 0
| cons : ∀ n : nat, A → list with length A n → list with length A (S n).

Strict Positivity for Inductive Types

• T converts to (I a1...ar t1...ts) where I is the name of an inductive
definition, a1...ar are parameters (non-recursive part) and t1...ts are
indices (recursive part)

• I is defined as Ind [r] (I : A := c1 : P1, ..., cn : Pn) where ci is a
constructor, and Pi is the type of the constructor

Inductive vec (A : Type) : nat -> Type :=
| vnil : vec A 0
| vcons : A -> vec A n -> vec A (S n).
• Here, A is a parameter, and nat is an index
• The instantiated types of the constructors should also satisfy the

nested positivity condition for X1, ...,Xk

Strict Positivity for Inductive Types Continued

For the inductive definition of I , the constants X1, ...Xk are strictly
positive in T if the following rules are satisfied:
• No X1, ...,Xk in terms
Inductive list (A : Type) : Type :=
| nil : list A
| cons : A → list (list A) → list A.

• They do not appear in any of the non-recursively uniform
parameters

• Recursive arguments should satisfy nested positivity

Nested Positivity

If I is a non-mutual inductive type with r parameters, then the type of
constructor T for I satisfies nested positivity in the following cases:
• T = (I a1...ar t1...ts) and no X1, ...,Xk occur in any ti or aj where

m ≤ j ≤ r

• T = ∀x : U,V and X1, ...,Xk occur only strictly positively in U and
the type V satisfies the nested positivity condition for X1, ...Xk

Positivity vs. Strict Positivity vs. Nested Positivity

• Positivity
– Scope: general recursive types
– Goal: prevent negative occurrences
– Common problems: recursive type in negative position

• Strict Positivity
– Scope: recursive types, focus on valid positions
– Goal: ensure recursive calls are strictly positive
– Common problems: recursive type in non-positive context

• Nested Positivity
– Scope: inductive families with parameters and indices
– Goal: enforce valid positions in parameterised types
– Common problems: recursive type in non-recursive

parameter/index

Correctness Rules

• E is a global environment
• Γp, ΓI , ΓC are contexts such that:

– ΓI is [I1 : ∀Γp,A1; ...; Ik : ∀Γp,Ak]
– ΓC is [c1 : ∀Γp,C1; ...; cn : ∀Γp,Cn]

• With the following constraints:
– k > 0 and all of Ij and ci are distinctive names for j = 1...k

and i = 1...n
– l is the size of Γp which is called the context of parameters
– For j = 1...k we have that Aj is an arity of sort sj and Ij ̸∈ E
– For i = 1...n we have that Ci is a type of constructor of Iqi

which satisfies the positivity condition for I1, ..., Ik and ci ̸∈ E

Replacing sorts in arities

• Assume that A is an arity of some sort, and s is a sort
• Then, we can write A/s for the arity obtained by replacing the sort

of A with s
• If A is well-typed in a global environment and local context, then

A/s is also typable

A = ∀x : nat, x = x → Type

• Here, A is a function that takes a proof that x = x, and produces a
Type (which is its sort).

Then, we can replace A with Prop as follows:

A/Prop = ∀x : nat, x = x → Prop

Ind-family Typing Rule

• Conclusion: the j-th constructor Ij is well-typed under the inductive
family type, taking all arguments q1...qr into account, producing a
result type Aj , possibly modified by the sort s

• Where ΓP = [p1 : P1; ...; pp : Pp] is the context of parameters
• Provided that 4 conditions are met

Ind-family Type Rule Conditions

• We have an inductive type that exists within the environment
• Each argument ql matches the expected type P ′

l of those
arguments

• The argument P ′
l is a valid instance of the inductive family after

substituting qu into the appropriate spots, which follows from
β, δ, ι, ζ, η reductions

• This rule applies to all constructors of the inductive family

match ... with ... end

• Inductive object m = (cix1...xpi)

• Goal: Prove/Define property P on m

• Method: Consider each constructor ci of m

match m as x in I a return P with (c1x11 . . . x1p1)
⇒ f1 | . . . | (cnxn1 . . . xnpn) ⇒ fn end

Fixpoint example (m : I) :=
match m with
| c1 x11 ... x1p1 ⇒ f1
...
| cn xn1 ... xnpn ⇒ fn
end.

"case" Shorthand

Fixpoint example (m : I) :=
match m with
| c1 x11 ... x1p1 ⇒ f1
...
| cn xn1 ... xnpn ⇒ fn
end.

match m as x in I a return P with (c1x11 . . . x1p1)
⇒ f1 | . . . | (cnxn1 . . . xnpn) ⇒ fn end

case(m, (λax .P), λx11 . . . x1p1 · f1 | . . . | λxn1 . . . xnpn · fn)

More notation...

case(m, (λax .P), λx11 . . . x1p1 · f1 | . . . | λxn1 . . . xnpn · fn)

Let:
• m : I

• I : A

• λax .P : B

The notation [I : A | B] or just [I | B] means we are allowed to use λax .P
with m in the match statement.

Rules for [A|B]

• S: The set of sorts
• Sort of I is Set or Type ⇒ No restrictions

Rules for [A|B]

• Exception when Sort of I is Prop
• Propositions are not included in extracted programs
• ⇒ Extracted predicate would be defined over a non-existent object

Exception of the exception

We have no restrictions when:
• I is empty: trivial
• Singleton: one constructor, only Prop arguments
• Intuition: You can use an equality (Prop) to rewrite an object in

Set (or Type)

Typing rule for match

• P: property over I
• cpi : ith constructor of I
• We write {cpi}P for the type of the branch that P gives for cpi

Example: typing plus

Fixpoint plus (n m:nat) {struct n} : nat :=
match n with
| O ⇒ m
| S p ⇒ S (plus p m)
end.

Let P := λn : nat. nat

E [Γ] ⊢ n : nat

E [Γ] ⊢ P : nat → Set

[nat | nat → Set]

E [Γ] ⊢ m : {O}P≡ nat

E [Γ] ⊢ S (plus p m) : {S p}P≡ nat
E [Γ] ⊢ case (n,P,m | λp : nat. S (plus p m)) : P n ≡ nat

ι-reduction for match/case

• No surprises here

• Just keep ith branch for ith constructor

Fixpoint

• n mutually recursive definitions:

• "for fi" projects the ith term
• Shorthand where contexts are abstracted out:

• Formally: t ′i = λΓi .ti , similarly A′
i = ∀Γi ,Ai

Typing rule for Fixpoint

• Give type judgement for every Ai

• Give type judgement that fi : Ai

• Type judgements transfer over to Fixpoint with branches fi : Ai

Guarded Fixpoints

• ki : Integer pointing to the argument of fi that gets structurally
smaller (recall struct)

Fixpoint plus (n m:nat) {struct n} : nat :=
match n with
| O ⇒ m
| S p ⇒ S (plus p m)
end.

Fix plus{plus/1 : nat → nat → nat

:= λn,m : nat. case (n,P,m | λp : nat. S(plus p m))}
With P := λn : nat. nat

Guarded Fixpoints (rules)

• Each Ai starts with ≥ ki products ∀y1 : B1, . . .∀yki : Bki

• Bki is an inductive type

If fj occurs in ti :
• ≥ kj arguments
• kj th argument is structurally smaller than yki

Structurally smaller

Suppose we have
• y : Ind [r](Γi := ΓC)

• ΓI := [I1 : A1; . . . ; Ik : Ak]

• ΓC := [c1 : C1; . . . ; cn : Cn]

Structurally smaller than y are:
• Variables corresponding to recursive arguments

– e.g.: In branch S p ⇒ (S(plus p m)), p is smaller as it is a
recursive argument

• (t u) and λx .t when t is structurally smaller
• case(m,P, f1 . . . fn), if:

– m : Ip for some p
– Each fi is structurally smaller

	Introduction

