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Mutual Inductive Types: Main Ildea

» Define two inductive types A and B simultaneously

» The constructors of A may refer to the type B, and the
constructors of B may refer to the type A

Example: even and odd numbers



Mutual Inductive Types: Example
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Mutual Inductive Types: Example
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Inductive-Recursive Types: Main Idea

» Define an inductive type A together with a recursive function
f: A— B for some type B

» The constructors of A may refer to the function f

Example: list of which each element is different



Inductive-Recursive Types: Example

In(l,(/t(“k{l/e_ (A T-j{)@\ : —C‘ﬁ)e =
" nil 3 t A( N
Cons - ora” :
5 Cis; Dist A)Y,

A



Inductive-Recursive Types: Example
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Inductive-Recursive Types: Example
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Inductive-Inductive Types: Main Ildea

» Define an inductive type A together with an inductive family
Bon A

» The constructors of A may refer to B, and the constructors of
B may refer to A

Example: sorted lists



Inductive-Inductive Types: Example
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Inductive-Inductive Types: Example

Inr)t,ULQJc}ue Slist : —C%Pe':
[nil S [ist
l Cons : S'orq,” (n :hat)
CY\S; 5//'563:
[ All n ns
= [ist

with .
[e All ,'hatéghjt%tjpz::
['inil - forall (n-nat),
le All A nil
llcons : forall (n:nat)
(M:l’\at)
(mg: Slist)
(p: n=m)
(q: leAll m ms),
le All n (cons Im ms q)



Inductive-Inductive Types: Example
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Higher Inductive Types: Main ldea

» Define an inductive type A by specifying constructors for its
inhabitants and for equalities of this type

» The constructors of the equalities may refer to the
constructors for the inhabitants

Example: finite sets



Higher Inductive Types: Example
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Higher Inductive Types: Example
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Higher Inductive Types: Example
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Initial Algebra Semantics: Main Idea

> Two ways to view types: type theoretic and category
theoretic

> Type theoretic: based on induction

» Category theoretic: recursion and uniqueness
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Initial Algebra Semantics: Main Idea

> Advantage of the type theoretic view: it directly gives us
proof principles

> Advantage of the category theoretic view: it is simpler to give
semantics for this presentation

> Initial Algebra Semantics: these two presentations of
inductive types are equivalent
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