Overview of the Remainder of the Reading Group

Mutual Inductive Types

Inductive-Recursive Types

Inductive-Inductive Types

Higher Inductive Types

Initial Algebra Semantics

Mutual Inductive Types: Main Ildea

» Define two inductive types A and B simultaneously

» The constructors of A may refer to the type B, and the
constructors of B may refer to the type A

Example: even and odd numbers

Mutual Inductive Types: Example

TWd,MCt(VQ . Nat — Z—%@ =
[2 ouen : i n O
l 500[0(;0}"6(.” (h: V\Qt)
(P 15 OD{A n\

_ (S

with
: Hat — _ijef:
| Seven - Jorell (n:nat)
(p i Even n)

(Sn),

Mutual Inductive Types: Example

Imductfve (C E\jet/) . Nat — z_(ﬁ)g =
[Zeven : i< Even O
[Sodd : Forall (n:nat)
(P: is Odd r\\{

1< fuen (Sn)

<Odd hat — Type:=
| Seven © Sorall (n:nat)
(p:isEoen n),
< Odd (Sn),

with

Inductive-Recursive Types: Main Idea

» Define an inductive type A together with a recursive function
f: A— B for some type B

» The constructors of A may refer to the function f

Example: list of which each element is different

Inductive-Recursive Types: Example

In(l,(/t(“k{l/e_ (A T-j{)@\ : —C‘ﬁ)e =
" nil 3 t A(N
Cons - ora” :
5 Cis; Dist A)Y,

A

Inductive-Recursive Types: Example

IVLE)LULC‘HV{’_ C A: Tﬂ{)e\ : tLjPe =

;Yﬂ o Dlhist f\(A
ons : Socall ((a
Cas: Diist A),
resh as «a
with)
JEI’QQ’): AﬁA étjp@
Sresh nil «a = true

$rech (cons x X&P) a = X#a A Fresh s a

Inductive-Recursive Types: Example

Ind,(/LQ‘Hl/e D{%sf (A —Ejpe\ : T:Li{)e =
{n?l - Dlist A(N
Cons ¢ Sorall :

) Cis : D/f_sﬁ A},

frzsh as a

, ({*M/sﬁ A
erc}\

)(regh: Dt A=A *tﬁpa

Srecsh nil « = thue
$rech (cons x xs[s) a = X¥a A Fresh %sa

Inductive-Inductive Types: Main Ildea

» Define an inductive type A together with an inductive family
Bon A

» The constructors of A may refer to B, and the constructors of
B may refer to A

Example: sorted lists

Inductive-Inductive Types: Example

}Lqibt&ive : —C%Pe =

nil :

fCOVLS : fyora” (h:hat)
CV\S} S/’HStBI

Inductive-Inductive Types: Example

Inr)t,ULQJc}ue Slist : —C%Pe':
[nil S [ist
l Cons : S'orq,” (n :hat)
CY\S; 5//'563:
[All n ns
= [ist

with .
[e All ,'hatéghjt%tjpz::
['inil - forall (n-nat),
le All A nil
llcons : forall (n:nat)
(M:l’\at)
(mg: Slist)
(p: n=m)
(q: leAll m ms),
le All n (cons Im ms q)

Inductive-Inductive Types: Example

Tnductive 5[t NC%PQ:
[nilee = S [ict ()
: Socall (ninet
- (ns: Shist),
[All n ns

=S [ist

le All - nat>Slist = Type:

Finil | \Forall (n-nat),
e All nnil
llcons|: forall (n:nat)
Cm:ﬂat)
(me: Shist)
(p:n=m)

(q: leAll m ms),

le Aln Cecons m ms g)

Higher Inductive Types: Main ldea

» Define an inductive type A by specifying constructors for its
inhabitants and for equalities of this type

» The constructors of the equalities may refer to the
constructors for the inhabitants

Example: finite sets

Higher Inductive Types: Example

Lnductive (A Type) tnFe =
Iem[ﬂcj : F}hSZIC A
[add §:oroJ, (a:A)
(as: FinSet A),
FinSet A

Howeve r,
add 1 (add 2 nil)

N
add 2 (add | hil)

Higher Inductive Types: Example

Lhductive Finsec (A: Typel) _Cﬁre =
lemP£3 : Flhgef A
| add §orql| (a:A)
(GS'. P‘“SQ{’ A)l
FMS@J(A
} add.add : }orqll Ca: A)
(as: FinSet A),
add a (“adlol a as)

add o a5
lcwap : Forall Ca:A)
(b-R)
(as: FinSet &),
add «a (lihu b oas)

add b (add a as)

Higher Inductive Types: Example
Linductive Fn5ee (A Type) : Cype ==
[empty Finlet A
[add §orq{| (a:A)

(as: FinSet A),
add o Cadd a as)

add o d¢

[swap Soral] Cah)
(h-N)

(as: FinSet &),

add a (Ladd b as)

[l
[@add a as)

Overview

Lnductive type

' » together with
Inc{mc{:ron-RQCMl”SIO“ recérg}ue Fan ction 5./ -8B

§OF‘ Some ttﬁpz B

Tnductive type

- ' together with
Tnduction- Induction et ve }azwnlj

- Tﬂpz

Specify a type b
Highﬁr Inductive Ejpa its co?}/\s{mcfars CQE?’IOL
eqmli&j Comstryctors

Initial Algebra Semantics: Main Idea

> Two ways to view types: type theoretic and category
theoretic

> Type theoretic: based on induction

» Category theoretic: recursion and uniqueness

How to spec}jzﬂ a {:Ljpe?

‘C%PQ theorict

[.
- how to construct
the {ajpe

2. Introd uction rules
“how to construct
nhabifants?

3. Elimimation rules

> how to construct
dependent Functions
out o} that ¢gpe?

Y. Computation rales
>how to calculate
using the elimnation
rule)

C&ﬁegorﬂ theorists

I.
- how to constract
the {%Q

2. Introduction rules
“how to construct
inhabitants?

3. Recursion rules

> how to construct
nondependent §unctions
out o} that ¢gpe?

Y Computation rules

—>how to calcuate

US'IVH{ f}\(recursion
Fule)

5. {\/fnwfuzmzss rules
— how o prove that
Sunctions out of that

ﬁljj?a are equal?

Initial Algebra Semantics: Main Idea

> Advantage of the type theoretic view: it directly gives us
proof principles

> Advantage of the category theoretic view: it is simpler to give
semantics for this presentation

> Initial Algebra Semantics: these two presentations of
inductive types are equivalent

	Mutual Inductive Types
	Inductive-Recursive Types
	Inductive-Inductive Types
	Higher Inductive Types
	Initial Algebra Semantics

