Radboud Universiteit § %

A general formulation of simultaneous inductive-recursive definitions
in type theory

Peter Dybjer, 1998

Dick Arends and Stephan Stanisic

Radboud University

Contents

« What is simultaneous induction-recursion?
+ General schema

« Tarski Universe Construction

What is simultaneous

induction-recursion?

Induction-Recursion

Basic Idea: Define a function and its domain at the same time.
f:D—R

+ The function definition is recursive by induction on D,

+ and the datatype D depends on f.

Motivating Example

Let's say we are defining a little expression language.

Inductive Exp : Set > Set :=

| add : Exp nat > Exp nat > Exp nat

| ifthenelse : Exp bool > Exp nat > Exp nat > Exp nat
| 1t : Exp nat > Exp nat > Exp bool.

Now we would like to add printf as a function that is callable from our little expression language.

printf is a popular function from C for formatting strings:

printf("welcome, %s!\n", "ULf Norell");
printf("%s, %s!\n", "Hello", "Catarina Coquand");

printf("%s (%s, %d)\n", "Data types a la carte", "Swierstra", 2008);

Welcome, ULf Norell!
Hello, Catarina Coquand!

Data types a la carte (Swierstra, 2008)

Updating our language

So we add printf in our expression type, but what do we put into the hole?

Inductive Exp : Set » Set :=

| add : Exp nat > Exp nat » Exp nat

| ifthenelse : Exp bool » Exp nat » Exp nat > Exp nat
| 1t : Exp nat - Exp nat > Exp bool
|

printf : string > ? > Exp unit.

- We can't fill the hole without something inductive recursive.

Generating the type of printf

Inductive Exp : Set »> Set :=

| add : Exp nat - Exp nat > Exp nat

| ifthenelse : Exp bool » Exp nat » Exp nat > Exp nat

| 1t : Exp nat > Exp nat > Exp bool

| printf : forall n : string, printftype n - Exp unit
with

Fixpoint printftype (s : string) : Set :=

?

Generating the type of printf

Inductive Exp : Set > Set :=

| add : Exp nat > Exp nat > Exp nat

| ifthenelse : Exp bool > Exp nat > Exp nat > Exp nat

| 1t : Exp nat > Exp nat > Exp bool

| printf : forall n : string, printftype n > Exp unit
with

Fixpoint printftype (s : string) : Set :=
match s with
| "%d" ++ xs = prod (Exp nat) (printftype xs)
?

end.

Generating the type of printf

Inductive Exp : Set » Set :=

| add : Exp nat - Exp nat » Exp nat

| ifthenelse : Exp bool » Exp nat » Exp nat > Exp nat

| 1t : Exp nat - Exp nat > Exp bool

| printf : forall n : string, printftype n = Exp unit
with

Fixpoint printftype (s : string) : Set :=
match s with
| "%d" ++ xs = prod (Exp nat) (printftype xs)
| String _ xs = printftype xs
| EmptyString = Exp unit

end.

Induction-Recursion

Inductive DList (A : Set) : Set :=
| nil : DList A
| cons : forall (b : A) (u : DList), fresh u b > DList A
with
Fixpoint fresh (as : DList A) (a : A) : Set :=
match as with
| nil = true
| cons buH = a b A freshu a

end.

- Note that we'll have A implicit and != as well in the remainder of the slides.

General Schema for

Induction-Recursion

General Schema

« Formation Rules
* Introduction Rules
+ Equality Rules

+ Elimination Rules

General Schema : Formation Rules

Formation Rules:

parameters indices

- Note: Following the paper, these definitions consider one inductive type and one recursive function. Can be generalised to more

- Here we require that \psi [A,a] is a type under the assumptions A :: \sigma and a :: \alpha [A]

General Schema : Formation Rules

Formation Rules:

P:(A:o)(a:: afA])set
f:(A:z0)(a:alA]l)(c: P(A,a))Y]A,a)
—_—

parameters indices

DList : (A :set)(# : (A)(A) set) set
Fresh : (A :set)(# : (A)(A)set)(c: DList)(a : A)set

- Note: Following the paper, these definitions consider one inductive type and one recursive function. Can be generalised to more

- Here we require that \psi [A,a] is a type under the assumptions A :: \sigma and a :: \alpha [A]

General Schema : Formation Rules

Formation Rules:

DList, : (A :set)(# : (A)(A)set) set

i A
E‘ie’s_lg: (A:set)(#: (A)(A)set) (c: DList A) (a : A)set
f A

c

P[A,a]
Note: ar[A] is the empty sequence.

- SIGMA

- Here \psi is the type of predicates over elements in the set A under consideration

General Schema : Formation Rules

The previous slide showed explicit parameters, in the rest of the presentation we consider

parameters to be implicit.

Resulting in:

General Schema : Introduction Rules

Introduction Rules:

intro: -+ (b:B) -+ (u:(z:=:&P(plx])) --- Plq)

General Schema : Introduction Rules

Introduction Rules:

ntro: - (b:8) - (u:(@:&Pla)) - Plg)
-recursive recursive

- dots here indicate that there may be 0 or more.

- NOTE: "they may appear in any order".

General Schema : Introduction Rules

Typing criteria for &, p and ¢ are analogous.

intro: -+ (b:BL.., b, 1.]) o (us(x o E)P(plx])) - P(q)

Hereb' : B and v : (2’ :: &) P(p'[2']) are non-recursive and recursive earlier premises

respectively.

Dependence on earlier recursive premise should only happen through application of f, that is

Bl..., b,]

must be of the form

@), (@),]

General Schema : Introduction Rules

mro: o (b:B) o (ui (@ PEL]) - Pla)

where
Bl Y, @) @), (), ..]

is a small type in the context

(..,0 8.0 (@ = yp]),...)

20

General Schema : Introduction Rules

Introduction Rules:
intro -+ (b: B) -+ (u: (@)P(pla]) -+ (' :) -+ Plg)
Example:
nil : DList
cons : (b: A)(u: DList)(H : Fresh(u, b)) DList

3 premises of which only the second one is recursive.

« b: A, non-recursive, § = A.

« u : DList, recursive, £ empty and P = DList.

« H : Fresh(u,b), non-recursive, depends on u (a DList instance, but only through Fresh),
B'b,u] = ¥ [b, Fresh(u)] = Fresh(u, b).

21

- Weird E is xi

- At the end, why this is a valid construction: At a certain stage we may have constructed u: Dlist. Since Fresh is defined by Dlist-recursion, we already know what it means for an element b: A to be fresh with respect to u, that is, we know what a proof b': Fresh(u, b) is. Hence it makes sense to construct an element cons(b, u, b'). Moreover, we can define Fresh(cons(b, u, b')) in terms of the already constructed proposition Fresh

General Schema : Introduction Rules

intro: - (b:f8) -+ (u:(z:&P@l)) - Plg)

Note: Removing the dependence of 3, £, p and q on earlier recursive terms yield the introduction

rules we saw in an earlier presentation:

intro: (A: o)
(b:: BA])
(u::v[A,b])

22

- because then f cannot appear in the introduction rules for P.

General Schema : Equality Rules

Equality Rules:

f(q,intro(...,b, ... u,...)) =e(...,b,..., () f(p[x],u(x)),...): ¥[q]

Reminder:

intro: -+ (b:B) -+ (u:(z:&P(plx])) --- Plq)
——

non-recursive recursive

23

General Schema: Equality Rules

f(q intro(...,b, ... u,...)) =e(...,b,...,(x)f(plx],u(x)),...)

in the context
where

in the context

24

General Schema : Equality Rules

Example:

Fresh(nil) = (a)T
Fresh(cons(b, u, H)) = (a)(b # a A Fresh(u, a))

25

- f = Fresh b = non rec. (a:A) u = recursive (DList) H = proof \par x : a

General Schema : Elimination Rules

Let P, f be a simultaneously defined inductive type P with recursive function f.

Then we can define a new function g

g:(a:a)(c: Pla))dla,c]

using P-recursion.

26

- Exactly the same as the function f, but now \phi may depend on c instead of \psi which did not have this

General Schema : Elimination Rules

Elimination:
g(q,intro(... b, ... ;u,...))=¢€(...,b,...,u,(2)g(p[z],u(x)),...)

in the context
(..,b: B, . u: (z §)P(ple]),...)
where

e(..,b,. . u,,...) Plg,intro(.... b, ... u,...)]

in the context

27

General Schema : Elimination Rules

g(q,intro(..., b, ... u,..)) =€(...,b,...,u, (2)g(p[r],u(z)),...)

Example:
length : (¢ : DList)N
length(nil) =0
length(cons(b, u, H)) = S(length(u))

28

Tarski Universe Construction

29

Universes

* Russel style Universe:
If U denotes a universe, thenatermt : U is a type.

* Tarski style Universe:
Every universe consists of a set of codes U and a decoding function 7" (sometimes also
denoted as el).

Universe is a pair (U, T").

30

- (syntactic) distinction between terms (elements of U) and types t is lost.

Tarski Universe

Example: Universe (U, T") containing types for natural numbers and boolean values:

(nat) : U
(bool) : U
T({nat)) = N
T ((bool)) =B
3:N

31

- T maps elements of U to the associated type.

- Universe contains the _codes_ for types rather than the types itself. A type A is not an element of U rather, $\exists u : U$ such that $T(u) = A$.

Goal: Use our induction-recursion framework to construct the first Tarski universe (Up, Tp).

We need

+ Formation rules
* Introduction rules

+ Equality rules

32

(Up, To) Formation rules

Uy : set,
To : (c: Up) set

33

(Up, Tp) Introduction rules

We need a constructor (introduction rule) for every type former in the theory.
Restricting ourselves to IT and equality-types:
(nat) : Uy
(bool) : Uy
7o : (u: Up) (' : (x : To(u))Up)Uo
eqo : (U : Up)(b,V : To(u))Uy

34

(Up, Tp) Equality rules

T ((nat)) = N
T({bool)) =B
To(mo(u, u')) = I(Tp(u), (z)To(u'(x)))
To(eqo(u, b,')) = Eq(To(u), b, V')

Remember:

(nat) :
(bool) :

o -

€qop

Uo

Uo

(u:Up)(u : (x: To(u))Up)Uy
(U : Up)(b, b : To(w))Uy

35

(Up, Tp) Equality rules

T ((nat)) = N
T({bool)) =B
To(mo(u, u')) = I(Tp(u), (z)To(u'(x)))
To(eqo(u, b,')) = Eq(To(u), b, V')

Remember:

(nat) :
(bool) :

o -

€qop

U
(u:Up)(u : (x: To(u))Up)Uy
: (U : U(])(b, b/ : T()(U))Ug

36

Further Universes

Second universe (Uy, T}).

Analogous to (U, Tp), but we now also add Uy formation.

+ Formation Rules:
U : set,

T : (Uy) set
* Introduction and Equality Rules:
o (u:Up)(u : (2 Th(w)Up) Uy
Ty(m1(u,v')) = (T3 (u), (2)T1(v'(2)))

37

Further Universes

uo1 = Uq
T1(uo1) = Uy

to1 : Uo(Un)

T1(to1(b)) = To(b)
Repeat for (Us, T%), (Us, T3), . ..

38

- This t_01 is a constructor for U_1

Internalizing Universe Construction

We can internalize the construction of universes using a simultaneous inductive-recursive scheme.

P =NextU : (U : set)(T : (U) set) set,
f=NextT : (U :set)(T : (U)set)(NextU(U,T)) set

39

- NextU maps (old U, old T) to next U

- NextT maps (old U, old T) to a function from codes to next T

- It's a bit like Successor over the universes.

Internalizing Universe Construction

We can internalize the construction of universes using a simultaneous inductive-recursive scheme.

P =NextU : (U : set)(T : (U) set) set,
f=NextT : (U :set)(T : (U)set)(NextU(U,T)) set

Up+1 = NextU(U,, T},)
Tht1 = NextT(U,, Ty)

39

- NextU maps (old U, old T) to next U

- NextT maps (old U, old T) to a function from codes to next T

- It's a bit like Successor over the universes.

Internalizing Universe Construction

We can internalize the construction of universes using a simultaneous inductive-recursive scheme.

NextU : set,
NextT : (NextU) set

Keepinmind, U : set and T" : (U) set exist implicitly.

40

- Dropping the parameters eases the notation quite a bit.

Internalizing Universe Construction

41

- We add the constructions analogously to what we did with U_0, we add a special star wich is of type nextu (mind the parameters) and we define NextT * to be U (parameter) (think of the pred funtion on natural numbers). NextT and t function are similar in function to the t01 function we saw earlier

Super Universes

Super universe Uy is the closure of the next universe operator and all other type formers.

Formation Rules:
Uy : set

Too : (Uso) set

Note: Construction looks very much like the first universe construction.

42

Super Universe

up : Uso,
Too(up) = U,
NextU : (: Uso) (' : (Too (1)) Use)Uso,
Too (NextU(u, ') = NextU(Too (1), () Too (¢ ()

43

- NextU is the same, and u' is the T but then dependent (because the decoding function depends on the current universe).

Conclusion

Simultaneous induction-recursion is a powerful concept allowing to create more expressive

constructions.

We showed:

* The basic idea behind simultaneous induction-recursion.
+ A schema to construct simultaneous inductive-recursive definitions.

+ How to construct universes (and universe hierarchies) using induction-recursion.

44

Questions?

	What is simultaneous induction-recursion?
	General Schema for Induction-Recursion
	Tarski Universe Construction

