
A general formulation of simultaneous inductive-recursive definitions

in type theory

Peter Dybjer, 1998

Dick Arends and Stephan Stanisic

Radboud University

1



Contents

• What is simultaneous induction-recursion?

• General schema

• Tarski Universe Construction

2



What is simultaneous

induction-recursion?

3



Induction-Recursion

Basic Idea: Define a function and its domain at the same time.

f : D → R

• The function definition is recursive by induction onD,

• and the datatypeD depends on f .

4



Motivating Example

Let’s say we are defining a little expression language.

Inductive Exp : Set → Set ::=

| add : Exp nat → Exp nat → Exp nat

| ifthenelse : Exp bool → Exp nat → Exp nat → Exp nat

| lt : Exp nat → Exp nat → Exp bool.

5



printf

Now we would like to add printf as a function that is callable from our little expression language.

printf is a popular function from C for formatting strings:

printf("Welcome, %s!\n", "Ulf Norell");

printf("%s, %s!\n", "Hello", "Catarina Coquand");

printf("%s (%s, %d)\n", "Data types à la carte", "Swierstra", 2008);

Welcome, Ulf Norell!

Hello, Catarina Coquand!

Data types à la carte (Swierstra, 2008)

6



Updating our language

So we add printf in our expression type, but what do we put into the hole?

Inductive Exp : Set → Set ::=

| add : Exp nat → Exp nat → Exp nat

| ifthenelse : Exp bool → Exp nat → Exp nat → Exp nat

| lt : Exp nat → Exp nat → Exp bool

| printf : string → ? → Exp unit.

7

- We can't fill the hole without something inductive recursive.



Generating the type of printf

Inductive Exp : Set → Set ::=

| add : Exp nat → Exp nat → Exp nat

| ifthenelse : Exp bool → Exp nat → Exp nat → Exp nat

| lt : Exp nat → Exp nat → Exp bool

| printf : forall n : string, printftype n → Exp unit

with

Fixpoint printftype (s : string) : Set ::=

?

8



Generating the type of printf

Inductive Exp : Set → Set ::=

| add : Exp nat → Exp nat → Exp nat

| ifthenelse : Exp bool → Exp nat → Exp nat → Exp nat

| lt : Exp nat → Exp nat → Exp bool

| printf : forall n : string, printftype n → Exp unit

with

Fixpoint printftype (s : string) : Set ::=

match s with

| "%d" ++ xs =>= prod (Exp nat) (printftype xs)

?

end.

9



Generating the type of printf

Inductive Exp : Set → Set ::=

| add : Exp nat → Exp nat → Exp nat

| ifthenelse : Exp bool → Exp nat → Exp nat → Exp nat

| lt : Exp nat → Exp nat → Exp bool

| printf : forall n : string, printftype n → Exp unit

with

Fixpoint printftype (s : string) : Set ::=

match s with

| "%d" ++ xs =>= prod (Exp nat) (printftype xs)

| String _ xs =>= printftype xs

| EmptyString =>= Exp unit

end.

10



Induction-Recursion

Inductive DList (A : Set) : Set ::=

| nil : DList A

| cons : forall (b : A) (u : DList), fresh u b → DList A

with

Fixpoint fresh (as : DList A) (a : A) : Set ::=

match as with

| nil =>= true

| cons b u H =>= a !!= b //\ fresh u a

end.

11

- Note that we'll have A implicit and != as well in the remainder of the slides.



General Schema for

Induction-Recursion

12



General Schema

• Formation Rules

• Introduction Rules

• Equality Rules

• Elimination Rules

13



General Schema : Formation Rules

Formation Rules:

P : (A :: σ)(a :: α[A]) set
f : (A :: σ)︸ ︷︷ ︸

parameters

(a :: α[A])︸ ︷︷ ︸
indices

(c : P (A, a))ψ[A, a]

DList : (A : set)( 6= : (A)(A) set) set
Fresh : (A : set)( 6= : (A)(A) set)(c : DList)(a : A) set

14

- Note: Following the paper, these definitions consider one inductive type and one recursive function. Can be generalised to more

- Here we require that \psi [A,a] is a type under the assumptions A :: \sigma and a :: \alpha [A]



General Schema : Formation Rules

Formation Rules:

P : (A :: σ)(a :: α[A]) set
f : (A :: σ)︸ ︷︷ ︸

parameters

(a :: α[A])︸ ︷︷ ︸
indices

(c : P (A, a))ψ[A, a]

DList : (A : set)( 6= : (A)(A) set) set
Fresh : (A : set)( 6= : (A)(A) set)(c : DList)(a : A) set

14

- Note: Following the paper, these definitions consider one inductive type and one recursive function. Can be generalised to more

- Here we require that \psi [A,a] is a type under the assumptions A :: \sigma and a :: \alpha [A]



General Schema : Formation Rules

Formation Rules:

P : (A :: σ)(a :: α[A]) set
f : (A :: σ)(a :: α[A])(c : P (A, a))ψ[A, a]

DList︸ ︷︷ ︸
P

: (A : set)( 6= : (A)(A) set)︸ ︷︷ ︸
A

set

Fresh︸ ︷︷ ︸
f

: (A : set)( 6= : (A)(A) set)︸ ︷︷ ︸
A

(c : DListA)︸ ︷︷ ︸
c

(a : A) set︸ ︷︷ ︸
ψ[A,a]

Note: α[A] is the empty sequence.

15

- SIGMA

- Here \psi is the type of predicates over elements in the set A under consideration



General Schema : Formation Rules

The previous slide showed explicit parameters, in the rest of the presentation we consider

parameters to be implicit.

Resulting in:

P : (a :: α) set
f : (a :: α)(c : P (a))ψ[a]

16



General Schema : Introduction Rules

Introduction Rules:

intro : · · · (b : β) · · · (u : (x :: ξ)P (p[x])) · · · P (q)

17



General Schema : Introduction Rules

Introduction Rules:

intro : · · · (b : β)︸ ︷︷ ︸
non-recursive

· · · (u : (x :: ξ)P (p[x]))︸ ︷︷ ︸
recursive

· · · P (q)

18

- dots here indicate that there may be $0$ or more.

- NOTE: "they may appear in any order".



General Schema : Introduction Rules

Typing criteria for ξ, p and q are analogous.

intro : · · · (b : β[. . . , b′, . . . , u′, . . .]) · · · (u : (x :: ξ)P (p[x])) · · ·P (q)

Here b′ : β′ and u′ : (x′ :: ξ′)P (p′[x′]) are non-recursive and recursive earlier premises

respectively.

Dependence on earlier recursive premise should only happen through application of f , that is

β[. . . , b′, . . . , u′, . . .]

must be of the form

β [. . . , b′, . . . , (x′)f(p′[x′], u′(x′)), . . .]

19



General Schema : Introduction Rules

intro : · · · (b : β) · · · (u : (x :: ξ)P (p[x])) · · · P (q)

where

β [. . . , b′, . . . , (x′)f(p′[x′], u′(x′)), . . .]

is a small type in the context

(. . . , b′ : β′, . . . , v′ : (x′ :: ξ′)ψ[p′[x′]], . . .)

20



General Schema : Introduction Rules

Introduction Rules:

intro : · · · (b : β) · · · (u : (x :: ξ)P (p[x])) · · · (b′ : β′) · · ·P (q)

Example:

nil : DList
cons : (b : A)(u : DList)(H : Fresh(u, b)) DList

3 premises of which only the second one is recursive.

• b : A, non-recursive, β = A.

• u : DList, recursive, ξ empty and P = DList.
• H : Fresh(u, b), non-recursive, depends on u (a DList instance, but only through Fresh),
β′[b, u] = β

′
[b,Fresh(u)] = Fresh(u, b).

21

- Weird E is xi

- At the end, why this is a valid construction: At a certain stage we may have constructed u: Dlist. Since Fresh is defined by Dlist-recursion, we already know what it means for an element b: A to be fresh with respect to u, that is, we know what a proof b': Fresh(u, b) is. Hence it makes sense to construct an element cons(b, u, b'). Moreover, we can define Fresh(cons(b, u, b')) in terms of the already constructed proposition Fresh



General Schema : Introduction Rules

intro : · · · (b : β) · · · (u : (x :: ξ)P (p[x])) · · · P (q)

Note: Removing the dependence of β, ξ, p and q on earlier recursive terms yield the introduction

rules we saw in an earlier presentation:

intro : (A :: σ)
(b :: β[A])
(u :: γ[A, b])
PA(p[A, b])

22

- because then f cannot appear in the introduction rules for P.



General Schema : Equality Rules

Equality Rules:

f(q, intro(. . . , b, . . . , u, . . .)) = e(. . . , b, . . . , (x)f(p[x], u(x)), . . .) : ψ[q]

Reminder:

intro : · · · (b : β)︸ ︷︷ ︸
non-recursive

· · · (u : (x :: ξ)P (p[x]))︸ ︷︷ ︸
recursive

· · · P (q)

23



General Schema: Equality Rules

f(q, intro(. . . , b, . . . , u, . . .)) = e(. . . , b, . . . , (x)f(p[x], u(x)), . . .)

in the context

(. . . , b : β, . . . , u : (x :: ξ)P (p[x]), . . .)

where

e(. . . , b, . . . , v, . . .) : ψ[q]

in the context

(. . . , b : β, . . . , v : (x :: ξ)ψ[p[x]], . . .)

24



General Schema : Equality Rules

f(q, intro(. . . , b, . . . , u, . . .)) = e(. . . , b, . . . , (x)f(p[x], u(x)), . . .)

Example:

Fresh(nil) = (a)>
Fresh(cons(b, u,H)) = (a)(b 6= a ∧ Fresh(u, a))

25

- f = Fresh b = non rec. (a:A) u = recursive (DList) H = proof \par x : a 



General Schema : Elimination Rules

Let P, f be a simultaneously defined inductive type P with recursive function f .

Then we can define a new function g

g : (a :: α)(c : P (a))φ[a, c]

using P -recursion.

26

- Exactly the same as the function f, but now \phi may depend on c instead of \psi which did not have this



General Schema : Elimination Rules

Elimination:

g(q, intro(. . . , b, . . . , u, . . .)) = e′(. . . , b, . . . , u, (x)g(p[x], u(x)), . . .)

in the context

(. . . , b : β, . . . , u : (x :: ξ)P (p[x]), . . .)

where

e′(. . . , b, . . . , u, v, . . .) : φ[q, intro(. . . , b, . . . , u, . . .)]

in the context

(. . . , b : β, . . . , u : (x :: ξ)P (p[x]), v : (x :: ξ)φ[p[x], u(x)], . . .)

27



General Schema : Elimination Rules

g(q, intro(. . . , b, . . . , u, . . .)) = e′(. . . , b, . . . , u, (x)g(p[x], u(x)), . . .)

Example:

length : (c : DList)N
length(nil) = 0

length(cons(b, u,H)) = S(length(u))

28



Tarski Universe Construction

29



Universes

• Russel style Universe:

If U denotes a universe, then a term t : U is a type.

• Tarski style Universe:

Every universe consists of a set of codes U and a decoding function T (sometimes also

denoted as el).

Universe is a pair (U, T ).

30

- (syntactic) distinction between terms (elements of $U$) and types $t$ is lost.



Tarski Universe

Example: Universe (U, T ) containing types for natural numbers and boolean values:

〈nat〉 : U
〈bool〉 : U

T (〈nat〉) = N

T (〈bool〉) = B

3 : N
True : B

31

- T maps elements of U to the associated type.

- Universe contains the _codes_ for types rather than the types itself. A type $A$ is not an element of $U$ rather, $\exists u : U$ such that $T(u) = A$.



Definition of (U0, T0)

Goal: Use our induction-recursion framework to construct the first Tarski universe (U0, T0).

We need

• Formation rules

• Introduction rules

• Equality rules

32



(U0, T0) Formation rules

U0 : set,
T0 : (c : U0) set

33



(U0, T0) Introduction rules

We need a constructor (introduction rule) for every type former in the theory.

Restricting ourselves to Π and equality-types:

〈nat〉 : U0

〈bool〉 : U0

π0 : (u : U0)(u′ : (x : T0(u))U0)U0

eq0 : (U : U0)(b, b′ : T0(u))U0

34



(U0, T0) Equality rules

T (〈nat〉) = N

T (〈bool〉) = B

T0(π0(u, u′)) = Π(T0(u), (x)T0(u′(x)))
T0(eq0(u, b, b′)) = Eq(T0(u), b, b′)

Remember:

〈nat〉 : U0

〈bool〉 : U0

π0 : (u : U0)(u′ : (x : T0(u))U0)U0

eq0 : (U : U0)(b, b′ : T0(u))U0
35



(U0, T0) Equality rules

T (〈nat〉) = N

T (〈bool〉) = B

T0(π0(u, u′)) = Π(T0(u), (x)T0(u′(x)))
T0(eq0(u, b, b′)) = Eq(T0(u), b, b′)

Πx : T0(u).T0(u′(x))

Remember:

〈nat〉 : U0

〈bool〉 : U0

π0 : (u : U0)(u′ : (x : T0(u))U0)U0

eq0 : (U : U0)(b, b′ : T0(u))U0
36



Further Universes

Second universe (U1, T1).

Analogous to (U0, T0), but we now also add U0 formation.

• Formation Rules:

U1 : set,
T1 : (U1) set

• Introduction and Equality Rules:

π1 : (u : U1)(u′ : (x : T1(u))U1)U1

T1(π1(u, u′)) = Π(T1(u), (x)T1(u′(x)))

37



Further Universes

u01 : U1

T1(u01) = U0

t01 : U0(U1)
T1(t01(b)) = T0(b)

Repeat for (U2, T2), (U3, T3), . . .

38

- This t_01 is a constructor for U_1



Internalizing Universe Construction

We can internalize the construction of universes using a simultaneous inductive-recursive scheme.

P = NextU : (U : set)(T : (U) set) set,
f = NextT : (U : set)(T : (U) set)(NextU(U, T )) set

Un+1 = NextU(Un, Tn)
Tn+1 = NextT(Un, Tn)

39

- NextU maps (old U, old T) to next U

- NextT maps (old U, old T) to a function from codes to next T

- It's a bit like Successor over the universes.



Internalizing Universe Construction

We can internalize the construction of universes using a simultaneous inductive-recursive scheme.

P = NextU : (U : set)(T : (U) set) set,
f = NextT : (U : set)(T : (U) set)(NextU(U, T )) set

Un+1 = NextU(Un, Tn)
Tn+1 = NextT(Un, Tn)

39

- NextU maps (old U, old T) to next U

- NextT maps (old U, old T) to a function from codes to next T

- It's a bit like Successor over the universes.



Internalizing Universe Construction

We can internalize the construction of universes using a simultaneous inductive-recursive scheme.

NextU : set,
NextT : (NextU) set

Keep in mind, U : set and T : (U) set exist implicitly.

40

- Dropping the parameters eases the notation quite a bit.



Internalizing Universe Construction

π : (u : U)(u′ : (x : T (u))U)U
T (π(u, u′)) = Π(T (u), (x)T (u′(x)))

eq : (U : U)(b, b′ : T (u))U
T (eq(u, b, b′)) = Eq(T (u), b, b′)

∗ : NextU
NextT(∗) = U

t : (b : U) NextU
NextT(t(b)) = T (b)

41

- We add the constructions analogously to what we did with U_0, we add a special star wich is of type nextu (mind the parameters) and we define NextT * to be U (parameter) (think of the pred funtion on natural numbers). NextT and t function are similar in function to the t01 function we saw earlier



Super Universes

Super universe U∞ is the closure of the next universe operator and all other type formers.

Formation Rules:

U∞ : set
T∞ : (U∞) set

Note: Construction looks very much like the first universe construction.

42



Super Universe

u0 : U∞,

T∞(u0) = U0,

NextU : (u : U∞)(u′ : (T∞(u))U∞)U∞,

T∞(NextU(u, u′)) = NextU(T∞(u), (x)T∞(u′(x)))

43

- NextU is the same, and u' is the T but then dependent (because the decoding function depends on the current universe).



Conclusion

Simultaneous induction-recursion is a powerful concept allowing to create more expressive

constructions.

We showed:

• The basic idea behind simultaneous induction-recursion.

• A schema to construct simultaneous inductive-recursive definitions.

• How to construct universes (and universe hierarchies) using induction-recursion.

44



Questions?

44


	What is simultaneous induction-recursion?
	General Schema for Induction-Recursion
	Tarski Universe Construction

