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Motivation

No preterms and typability relations ⇒ directly well-typed objects
defined inductively

No type preservation theorems needed ⇒ preservation by construction

Typed metaprogramming

We start with a representation of simply typed λ-calculus

Then we introduce Quotient Inductive Types (QITs)

In the second part, QITs are used to represent dependent types in
Type Theory
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Simply typed λ-calculus

data Ty : Set where
ι : Ty
⇒ : Ty → Ty → Ty

data Con : Set where
• : Con
, : Con → Ty → Con

data Var : Con → Ty → Set where
zero : Var (Γ , σ) σ
suc : Var Γ σ → Var (Γ , τ) σ

data Tm : Con → Ty → Set where
var : Var Γ σ → Tm Γ σ
@ : Tm Γ (σ ⇒ τ) → Tm Γ σ → Tm Γ τ
Λ : Tm (Γ , σ) τ → Tm Γ (σ ⇒ τ)



de Bruijn indices

λx .x −→ λ 0

λx .λy .λz .x z (y z) −→ λλλ 2 0 (1 0)

λz .(λy .y (λx .x))(λx .z x) −→ λ (λ 0 (λ 0))(λ 1 0)
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Simply typed λ-calculus

I : Tm • (ι ⇒ ι)
I = Λ (var zero)

K : Tm • (ι ⇒ (ι ⇒ ι))
K = Λ (Λ (var zero))

Iagain : Tm • (ι ⇒ ι)
Iagain = Λ (Λ (var (suc zero)) @ var zero)
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Inductive-inductive types

Motive explaining what is to be achieved by elimination
Methods explaining how the motive is to be pursued for each constructor

in turn
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Quotient inductive types

Quotient inductive types are HITs with only strict equality (no higher
paths)
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