
Type Theory in Type Theory
using Quotient Inductive Types

Jakub Dreżewski, Tomasz Mískowicz

19.12.2024



Motivation

No preterms and typability relations ⇒ directly well-typed objects
defined inductively

No type preservation theorems needed ⇒ preservation by construction

Typed metaprogramming

We start with a representation of simply typed λ-calculus

Then we introduce Quotient Inductive Types (QITs)

In the second part, QITs are used to represent dependent types in
Type Theory



Motivation

No preterms and typability relations ⇒ directly well-typed objects
defined inductively

No type preservation theorems needed ⇒ preservation by construction

Typed metaprogramming

We start with a representation of simply typed λ-calculus

Then we introduce Quotient Inductive Types (QITs)

In the second part, QITs are used to represent dependent types in
Type Theory



Motivation

No preterms and typability relations ⇒ directly well-typed objects
defined inductively

No type preservation theorems needed ⇒ preservation by construction

Typed metaprogramming

We start with a representation of simply typed λ-calculus

Then we introduce Quotient Inductive Types (QITs)

In the second part, QITs are used to represent dependent types in
Type Theory



Motivation

No preterms and typability relations ⇒ directly well-typed objects
defined inductively

No type preservation theorems needed ⇒ preservation by construction

Typed metaprogramming

We start with a representation of simply typed λ-calculus

Then we introduce Quotient Inductive Types (QITs)

In the second part, QITs are used to represent dependent types in
Type Theory



Motivation

No preterms and typability relations ⇒ directly well-typed objects
defined inductively

No type preservation theorems needed ⇒ preservation by construction

Typed metaprogramming

We start with a representation of simply typed λ-calculus

Then we introduce Quotient Inductive Types (QITs)

In the second part, QITs are used to represent dependent types in
Type Theory



Motivation

No preterms and typability relations ⇒ directly well-typed objects
defined inductively

No type preservation theorems needed ⇒ preservation by construction

Typed metaprogramming

We start with a representation of simply typed λ-calculus

Then we introduce Quotient Inductive Types (QITs)

In the second part, QITs are used to represent dependent types in
Type Theory



Simply typed λ-calculus

data Ty : Set where
ι : Ty
⇒ : Ty → Ty → Ty

data Con : Set where
• : Con
, : Con → Ty → Con

data Var : Con → Ty → Set where
zero : Var (Γ , σ) σ
suc : Var Γ σ → Var (Γ , τ) σ

data Tm : Con → Ty → Set where
var : Var Γ σ → Tm Γ σ
@ : Tm Γ (σ ⇒ τ) → Tm Γ σ → Tm Γ τ
Λ : Tm (Γ , σ) τ → Tm Γ (σ ⇒ τ)



de Bruijn indices

λx .x −→ λ 0

λx .λy .λz .x z (y z) −→ λλλ 2 0 (1 0)

λz .(λy .y (λx .x))(λx .z x) −→ λ (λ 0 (λ 0))(λ 1 0)



de Bruijn indices

λx .x −→ λ 0

λx .λy .λz .x z (y z) −→ λλλ 2 0 (1 0)

λz .(λy .y (λx .x))(λx .z x) −→ λ (λ 0 (λ 0))(λ 1 0)



de Bruijn indices

λx .x −→ λ 0

λx .λy .λz .x z (y z) −→ λλλ 2 0 (1 0)

λz .(λy .y (λx .x))(λx .z x) −→ λ (λ 0 (λ 0))(λ 1 0)



Simply typed λ-calculus

I : Tm • (ι ⇒ ι)
I = Λ (var zero)

K : Tm • (ι ⇒ (ι ⇒ ι))
K = Λ (Λ (var zero))

Iagain : Tm • (ι ⇒ ι)
Iagain = Λ (Λ (var (suc zero)) @ var zero)



Simply typed λ-calculus

I : Tm • (ι ⇒ ι)
I = Λ (var zero)

K : Tm • (ι ⇒ (ι ⇒ ι))
K = Λ (Λ (var zero))

Iagain : Tm • (ι ⇒ ι)
Iagain = Λ (Λ (var (suc zero)) @ var zero)



Simply typed λ-calculus

I : Tm • (ι ⇒ ι)
I = Λ (var zero)

K : Tm • (ι ⇒ (ι ⇒ ι))
K = Λ (Λ (var zero))

Iagain : Tm • (ι ⇒ ι)
Iagain = Λ (Λ (var (suc zero)) @ var zero)



Inductive-inductive types

Motive explaining what is to be achieved by elimination
Methods explaining how the motive is to be pursued for each constructor

in turn



Inductive-inductive types

Motive explaining what is to be achieved by elimination
Methods explaining how the motive is to be pursued for each constructor

in turn



Inductive-inductive types

Motive explaining what is to be achieved by elimination
Methods explaining how the motive is to be pursued for each constructor

in turn



Quotient types



Quotient types



Quotient types



Quotient types



Quotient inductive types

Quotient inductive types are HITs with only strict equality (no higher
paths)



Quotient inductive types

Quotient inductive types are HITs with only strict equality (no higher
paths)


