Type Theory and Rocq 2025-2026

24-10-2025
12:45-14:45

Write your name and student number on each paper that you hand in.

This exam consists of 9 exercises. Each exercise is worth 10 points. The first
10 points are free. The final mark is the number of points divided by 10.

Write all natural deduction proofs and type derivations using the notation from

Femke’s course notes.
Good luck!

1. (a) Give an inhabitant of the simple type a — (@ — b) — b, as a term of
Church-style simple type theory.

(You should not give a type derivation for this term, later in the exam
there will be another exercise that asks for a type derivation in simple
type theory.)

(b) Give the proof in minimal propositional logic that corresponds to this
term.

(¢) Does your proof contain a detour? Explain your answer.

(d) Give a Rocq version of this proof, using tactics. You may only use the
tactics intro, intros, apply, exact and assumption. The proof script
should be in the place of the dots in:

Lemma exercise_one (a b : Prop) : a -> (a -> b) -> b.
Proof.

Qed.

You do not need to copy the lines of the lemma already given here, just

giving the lines containing the tactics is enough.

2. Apply the principal typing algorithm PT to establish whether the following
lambda term is typable in simple type theory a la Curry:

Ary.x(Az.xyz2)

Give all intermediate steps of the algorithm. Also, if this term is typable
then explicitly give a principal type.

3. Give the full reduction graph of the untyped lambda term
21K

We use the customary abbreviations:

| := \z.x
K:= \zy.x
2:=Mfz.f(fx)



Note that we do not reduce like in combinatory logic here. This means that,
although the term 2 expects two arguments as a combinator, we reduce for
example:

21 =5 Azl (lz)

If there are multiple beta steps between the same terms, draw this as multiple
arrows. We recommend underlining each beta redex, to keep track of what
is going on.

4. Consider the following proposition of predicate logic:

Va. ((Vy. p(y)) — (32.p(2)))

Now answer the following three sub-questions:

(a) Give a natural deduction proof of this proposition. For all relevant
inference rules, show that the variable condition is satisfied.

(b) Give the AP type that corresponds to this proposition. For this, the
context will have to contain AP variables for the existential quantifier
and for the corresponding introduction rule. Therefore, this type will
need to be well-typed in the context:

D : x
ex : (D — %) — x
exintro : [[P:D — . [[z:D.Px — exP

p D —x
You are allowed to use mathematical notation for this type, or to use
Rocq syntax.
(Note that we just ask for the type as an expression, and not for a AP
type derivation.)

(c) Give the AP proof term that corresponds to the proof that you gave in

sub-question (a), using the same context.

(Note that we just ask for the proof term as an expression, and not for
a AP type derivation.)

5. Consider the following four preterms:

Aa k. a
DY
[[a:* a
[[a:x* =

Or in Rocq syntax:

fun a : Prop => a
fun a : Prop => Prop
forall a : Prop, a
forall a : Prop, Prop



Now answer the following four sub-questions:

) Which of these preterms is well-typed in the calculus of constructions,
) For the ones that are well-typed: give their type.
(c) Of the ones that are well-typed: which are types?
) Of the ones that are well-typed types: which are inhabited in an empty
context? For the inhabited types, give an inhabitant.
6. (a) Give a type derivation in simple type theory of the judgment:
F(Az:a.z):a—a
(b) Give a type derivation in the pure type system A— of the judgment:
a:xF(Ar:a.x):a—a
For the rules of A— see page 5.

7. Consider the following Rocq definition of a type for Booleans:

Inductive bool : Set :=
| true : bool
| false : bool.

We want to define a function if_then_else that chooses which argument
to return based on a Boolean. It has type:

if_then_else
: forall A : Set, bool -> A > A > A

Now answer the following three sub-questions:

(a) Define the function if_then else using Definition and match.

(b) Give the type of the dependent recursion principle bool_rec of the type
bool.

(¢) Define the function if then_else using an application of bool_rec to

appropriate arguments.

8. We can also use an impredicative encoding in A2 of the Booleans, which is
defined as:
booly :=[[a:*.a - a—a

Now answer the following two sub-questions:



(a) Give appropriate definitions of constants:

true, : bools;
falses : bools
if_then_elses : [Ja : *.booly = a — a — a

(b) Give the two reductions that show that if_then_else; behaves like an
eliminator. For both, you should only give the start and end terms,
and not all the intermediate beta steps.

9. Consider the proof of strong normalization of simply typed lambda calculus,
in which the types are mapped to sets of untyped lambda terms.

Now answer the following three sub-questions:

(a) Give the definition of the set Ja — a], where a is a base type.
(b) Show that this set has the property [a — a] # @.
(c) Show that this set has the property Ja — a] # SN.

(In these two last sub-questions, you may use the lemma and the proposition
about the semantics from the lecture.)



axiom

variable

weakening

application

abstraction

product

conversion

Typing rules of A—

Fx:

I'-A:s
e:AFaoz: A

' A:B I'FC:s
Iz:CHA:B

't M:JJz:A B 'EN:A

' H MN : Blx := N]|

Fe:AFM:B ' J[z:A.B:s

' Xx:AM:[[z: A B

' A:x Iz:AF B:x

C'EJ]xz:A.B:x

- A:B ' B':s
' A:B

when B =5 B’



