Type

checking in the lambda cube

In the lectures, we presented a function typep (M) that ‘computes’ the type in
the calculus of constructions of a term M in a context I':

typer
typer
typep(A\x @ A.

(%) =
(z) =

€T

(]
I'(x)
[z : A typer ,.4(M)
typeF,w:A(B)
typer(53)
Blx := M| if typep(F) =g Ilz : typer(M). B

However, this function does not establish whether its argument is well-typed.
These equations are only meaningful when both the context I' and the term M
are well-typed already.

Also, this function is partial. The notation I'(z) stands for the type A of the
last occurrence of the form x : A in the context I', and if the variable xz does
not occur in I', the expression I'(z) is undefined.

We present here a variant of this function that also type-checks its arguments.
We define two functions, that both are total: a function ok(I') which returns a
Boolean, and the function typer (M) which returns either a term, or the constant
Failure. In these functions, now I' can be an arbitrary precontext and M an

arbitrary preterm:
typer(*) =
typer(z) =
typep(Az : A. M) =

typep(Ilz : A. B) =

typep(A — B) =

O if ok(T")
I'(z) ifok(I') and z: AeT
Iz = A typer ,.4(M) if typer ,.4(M) = B and

typep(Ilz : A. B) € {x,0}

typer .4 (B) if typepr A = s1 and
typer ,.4(B) = s2 and

(s1,82,82) €ER

typer(B) if typep A = s1 and
typer(B) = s2 and

(81,82,82) ER

typer(FM) = Bz := M]| if typep(F) —»p Iz : A. B and
typerM =5 A

typer (M) = Failure when none of these cases applies

ok() = true
ok(T, x : A) = typep(A) € {x, 0}

This definition refers to a set R of rules, which depends on the type theory.
Here is a table of the rules R for the type theories from Femke’s course notes:

type theory set of rules

A— R = {(*,*,%)}
AP R = {(*,*,%), (x,0,0)}
A2 R = {(x,%,%), (O, %, %)}

Finally, here are some properties of these functions, that we give without proof:

Proposition (Soundness).
typer(M)=A = T FM:A
Proposition (Completeness).
'FM:A = typep(M)=pA
Proposition.
typer (M) = Failure = M is not typable in T

Proposition. The function typep(M) terminates, even when T' and M are not
well-typed.

This last proposition considers the mutually recursive definitions of typep (M)
and ok(T") as an algorithm. There is a subtlety here: the terms A and B in the
application case typep(F'M) are not uniquely determined. However, one can
define a terminating reduction algorithm that computes specific A and B (if
they exist) and fails otherwise, which can be used to make this specific.

