
Type checking in the lambda cube

In the lectures, we presented a function typeΓ(M) that ‘computes’ the type in
the calculus of constructions of a term M in a context Γ:

typeΓ(∗) = �

typeΓ(x) = Γ(x)

typeΓ(λx : A.M) = Πx : A. typeΓ,x:A(M)

typeΓ(Πx : A.B) = typeΓ,x:A(B)

typeΓ(A→ B) = typeΓ(B)

typeΓ(FM) = B[x := M ] if typeΓ(F ) =β Πx : typeΓ(M). B

However, this function does not establish whether its argument is well-typed.
These equations are only meaningful when both the context Γ and the term M
are well-typed already.

Also, this function is partial. The notation Γ(x) stands for the type A of the
last occurrence of the form x : A in the context Γ, and if the variable x does
not occur in Γ, the expression Γ(x) is undefined.

We present here a variant of this function that also type-checks its arguments.
We define two functions, that both are total : a function ok(Γ) which returns a
Boolean, and the function typeΓ(M) which returns either a term, or the constant
Failure. In these functions, now Γ can be an arbitrary precontext and M an
arbitrary preterm:

typeΓ(∗) = � if ok(Γ)

typeΓ(x) = Γ(x) if ok(Γ) and x : A ∈ Γ

typeΓ(λx : A.M) = Πx : A. typeΓ,x:A(M) if typeΓ,x:A(M) = B and

typeΓ(Πx : A.B) ∈ {∗,�}

typeΓ(Πx : A.B) = typeΓ,x:A(B) if typeΓA = s1 and

typeΓ,x:A(B) = s2 and

(s1, s2, s2) ∈ R

typeΓ(A→ B) = typeΓ(B) if typeΓA = s1 and

typeΓ(B) = s2 and

(s1, s2, s2) ∈ R

1



typeΓ(FM) = B[x := M ] if typeΓ(F )→→β Πx : A.B and

typeΓM =β A

typeΓ(M) = Failure when none of these cases applies

ok(·) = true

ok(Γ, x : A) = typeΓ(A) ∈ {∗,�}

This definition refers to a set R of rules, which depends on the type theory.
Here is a table of the rules R for the type theories from Femke’s course notes:

type theory set of rules

λ→ R = {(∗, ∗, ∗)}
λP R = {(∗, ∗, ∗), (∗,�,�)}
λ2 R = {(∗, ∗, ∗), (�, ∗, ∗)}

Finally, here are some properties of these functions, that we give without proof:

Proposition (Soundness).

typeΓ(M) = A =⇒ Γ `M : A

Proposition (Completeness).

Γ `M : A =⇒ typeΓ(M) =β A

Proposition.

typeΓ(M) = Failure =⇒ M is not typable in Γ

Proposition. The function typeΓ(M) terminates, even when Γ and M are not
well-typed.

This last proposition considers the mutually recursive definitions of typeΓ(M)
and ok(Γ) as an algorithm. There is a subtlety here: the terms A and B in the
application case typeΓ(FM) are not uniquely determined. However, one can
define a terminating reduction algorithm that computes specific A and B (if
they exist) and fails otherwise, which can be used to make this specific.

2


