Partial Combinatory Algebras

Codrin Iftode & Johannes Kool

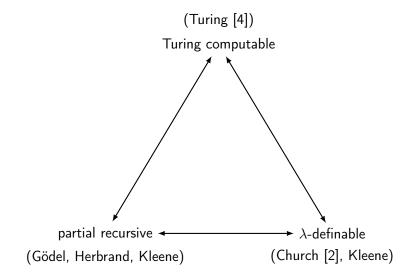
November 2025

Structure

We follow the 'Notes on realizability' by Andrej Bauer [1].

- 1. Motivation
- 2. Partial Combinatory Algebras (PCAs)
- 3. PCA as model of computation
- 4. Examples of PCAs

What is a computable function? - Church-Turing Thesis



Partial Recursive Functions, Informally

A partial recursive function 1 of the form $\mathbb{N}^k \to \mathbb{N}$ is built from the basic functions:

- ► Constant, e.g. c(x, y, z) = 3
- Projection, e.g. p(x, y) = x
- ▶ Successor, e.g. S(x) = x + 1

Partial Recursive Functions, Informally

A partial recursive function ¹ of the form $\mathbb{N}^k \to \mathbb{N}$ is built from the basic functions:

- ► Constant, e.g. c(x, y, z) = 3
- Projection, e.g. p(x, y) = x
- ▶ Successor, e.g. S(x) = x + 1

combined using the operators:

- ► Composition, e.g. $f \circ g$
- Primitive recursion, e.g. f(0,x) = g(x)f(n+1,x) = h(n, f(n,x), x)
- Minimization, e.g. $\mu(f)(z,x)$ is the minimum z such that f(z,x)=0.

PCA's

▶ A set \mathbb{A} with a partial binary operation $\cdot : \mathbb{A} \times \mathbb{A} \longrightarrow \mathbb{A}$

PCA's

- A set A with a partial binary operation · : A × A → A
- $ightharpoonup K \cdot x \cdot y = x$
- - $(S \cdot x \cdot y \text{ should be defined})$

Notation

If a and b are possibly undefined expressions, we write $a \simeq b$ when either both a and b are undefined or both are defined and a = b.

▶ S and K make the system combinatory complete.

S and K make the system combinatory complete. Intuition: generalise $(\lambda x.M)N =_{\beta} M[N/x]$

- S and K make the system combinatory complete. Intuition: generalise $(\lambda x.M)N =_{\beta} M[N/x]$
- ▶ Expressions over \mathbb{A} : $e := x \mid a \in \mathbb{A} \mid e_1 \cdot e_2$

- S and K make the system combinatory complete. Intuition: generalise $(\lambda x.M)N =_{\beta} M[N/x]$
- ▶ Expressions over A: e ::= $x \mid a \in A \mid e_1 \cdot e_2$
- ▶ For every variable x and expression e over \mathbb{A} , there is an expression e' over \mathbb{A} whose variables are those of e excluding x such that $e' \downarrow$ and $e' \cdot a \simeq e[a/x]$ for all $a \in \mathbb{A}$.

- S and K make the system combinatory complete. Intuition: generalise $(\lambda x.M)N =_{\beta} M[N/x]$
- ▶ Expressions over A: e ::= $x \mid a \in A \mid e_1 \cdot e_2$
- ▶ For every variable x and expression e over \mathbb{A} , there is an expression e' over \mathbb{A} whose variables are those of e excluding x such that $e' \downarrow$ and $e' \cdot a \simeq e[a/x]$ for all $a \in \mathbb{A}$.

Proof.

We can construct such an expression e' and write it as $\langle x \rangle e$:

- 1. $\langle x \rangle x := SKK$
- 2. $\langle x \rangle$ y := Ky if y is a variable distinct from x
- 3. $\langle x \rangle$ a := Ka if $a \in \mathbb{A}$
- 4. $\langle x \rangle$ e_1 $e_2 := S(\langle x \rangle e_1)(\langle x \rangle e_2)$

► We can define all the functions we know and love from lambda calculus:

$$\begin{aligned} \text{pair} &:= \langle x \ y \ z \rangle \ z \ x \ y & \text{if} &:= \langle x \rangle \ x \\ \text{fst} &:= \langle p \rangle \ p \ (\langle x \ y \rangle \ y) & \text{true} \ := \langle x \ y \rangle \ x \\ \text{snd} &:= \langle p \rangle \ p \ (\langle x \ y \rangle \ y) & \text{false} \ := \langle x \ y \rangle \ y \end{aligned}$$

if true $a b \simeq a$

► We can define all the functions we know and love from lambda calculus:

$$\begin{aligned} \text{pair} &:= \langle x \ y \ z \rangle \ z \ x \ y & \text{if} &:= \langle x \rangle \ x \\ \text{fst} &:= \langle p \rangle \ p \ (\langle x \ y \rangle \ y) & \text{true} \ := \langle x \ y \rangle \ x \\ \text{snd} &:= \langle p \rangle \ p \ (\langle x \ y \rangle \ y) & \text{false} \ := \langle x \ y \rangle \ y \end{aligned}$$

if true $a b \simeq a$

Without the bracket notation from the previous slide it would look like this:

Figure: Bauer, A (2025)

Natural Numbers - Curry Numerals

$$\overline{0} := I = SKK \quad \overline{n+1} := pair false \overline{n}$$

Natural Numbers - Curry Numerals

$$\overline{0} := I = SKK \quad \overline{n+1} := \mathsf{pair}\,\mathsf{false}\,\overline{n}$$

$$\overline{0} = I$$
 $\overline{1} = (false, I)$
 $\overline{2} = (false, (false, I))$
...

Natural Numbers - Curry Numerals

$$\overline{0} := I = SKK \quad \overline{n+1} := \mathsf{pair}\,\mathsf{false}\,\overline{n}$$

$$\overline{0} = I$$
 $\overline{1} = (false, I)$
 $\overline{2} = (false, (false, I))$

```
succ := \langle x \rangle pair false x
iszero := fst
pred := \langle x \rangle if (iszero x) \overline{0} else(snd x)
```

Primitive Recursion

We can encode the Turing combinator [5]:

$$Y = (\langle x \ y \rangle \ y \ (x \ x \ y)) \ (\langle x \ y \rangle \ y \ (x \ x \ y))$$
with $\begin{subarray}{l} Yf \simeq f \ (Yf). \end{subarray}$
If $F = \langle f \ x \rangle$ if (iszero x) 0 ($x + f(\text{pred } x)$), then
$$\begin{subarray}{l} YF \ 3 \simeq F \ (YF) \ 3 \\ \simeq \text{if (iszero 3) 0 (} 3 + YF \ 2) \\ \simeq 3 + YF \ 2 \\ \simeq 3 + 2 + YF \ 1 \\ \sim 3 + 2 + 1 + 0 \end{subarray}$$

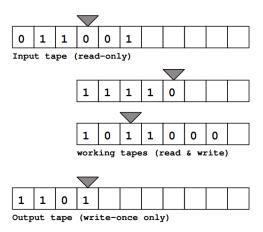
PCA models computation

In any PCA, we can encode natural numbers, pairs, conditionals, recursion, and minimization, and so we can encode any **partial** recursive function.

Conclusion

Any PCA is a model of computation!

Type 1 Turing Machines²



- ► Have **finite** input and output (tapes are infinite).
- ightharpoonup Compute functions of the form $\mathbb{N} \to \mathbb{N}$.

²Sections 2.1.1 and 2.5.1 of [1]

Gödel Numbering

We can encode every Turing machine (TM) as a unique natural number.

For $x,y\in\mathbb{N}$, write $\varphi_x(y)$ for the output of executing the TM encoded by x on input encoded by y.

TM Theorems

Theorem (utm)

There exists a partial computable function $u : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ such that $u(x,y) \simeq \varphi_x(y)$ for all $x,y \in \mathbb{N}$.

Intuition: *u* is the universal Turing machine.

TM Theorems

Theorem (utm)

There exists a partial computable function $u : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ such that $u(x,y) \simeq \varphi_x(y)$ for all $x,y \in \mathbb{N}$.

Intuition: u is the universal Turing machine.

Theorem (simplified smn)

For every computable function $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$, there is a total computable function $g: \mathbb{N} \to \mathbb{N}$ such that $f(x,y) \simeq \varphi_{g(x)}(y)$ for all $x,y,z \in \mathbb{N}$.

Intuition: we can "curry" Turing machines.

Example: Kleene's First Algebra - Type 1 TMs (1)

- $ightharpoonup A := \mathbb{N}$
- $ightharpoonup n \cdot m := \varphi_n(m)$
- ▶ The function p(x, y) = x is computable.

$$K \cdot x \cdot y \simeq \varphi_{\varphi_{K}(x)}(y)$$

$$\simeq \varphi_{q(x)}(y)$$

$$\simeq p(x, y)$$

$$= x$$

Example: Kleene's First Algebra - Type 1 TMs (1)

- $ightharpoonup \mathbb{A} := \mathbb{N}$
- $ightharpoonup n \cdot m := \varphi_n(m)$
- ▶ The function p(x, y) = x is computable.

$$K \cdot x \cdot y \simeq \varphi_{\varphi_{K}(x)}(y)$$

$$\simeq \varphi_{q(x)}(y)$$

$$\simeq p(x, y)$$

$$= x$$

Define K as any natural number such that $\varphi_K = q$, where we get the computable $q: \mathbb{N} \to \mathbb{N}$ by "currying" p via the smn theorem.

Example: Kleene's First Algebra - Type 1 TMs (2)

► The function $g(x, y, z) = (x \cdot z) \cdot (y \cdot z)$ is computable (apply utm repeatedly).

$$S \cdot x \cdot y \cdot z \simeq \varphi_{S \cdot x \cdot y}(z)$$

$$\simeq \varphi_{\varphi_{S \cdot x}(y)}(z)$$

$$\simeq \varphi_{\varphi_{\varphi_{S}(x)}(y)}(z)$$

$$\simeq \varphi_{\varphi_{q(x)}(y)}(z)$$

$$\simeq \varphi_{r(x,y)}(z)$$

$$\simeq g(x,y,z)$$

$$= (x \cdot z) \cdot (y \cdot z)$$

Example: Kleene's First Algebra - Type 1 TMs (2)

► The function $g(x, y, z) = (x \cdot z) \cdot (y \cdot z)$ is computable (apply utm repeatedly).

$$S \cdot x \cdot y \cdot z \simeq \varphi_{S \cdot x \cdot y}(z)$$

$$\simeq \varphi_{\varphi_{S \cdot x}(y)}(z)$$

$$\simeq \varphi_{\varphi_{\varphi_{S}(x)}(y)}(z)$$

$$\simeq \varphi_{\varphi_{q(x)}(y)}(z)$$

$$\simeq \varphi_{r(x,y)}(z)$$

$$\simeq g(x,y,z)$$

$$= (x \cdot z) \cdot (y \cdot z)$$

Define S as any natural number such that $\varphi_S = q$, where we "curry" g to get a computable $r : \mathbb{N}^2 \to \mathbb{N}$, and "curry" r to get the computable $q : \mathbb{N} \to \mathbb{N}$.

Example: Untyped lambda calculus ³

$$t ::= x \mid t_1 \ t_2 \mid \lambda x.t$$

- $ightharpoonup \mathbb{A}$ is the set of **closed** lambda terms, quotiented by β -equivalence.
- $[x] \cdot [y] := [x \ y]$, i.e. the equivalence class of x applied to y.
- \triangleright $K := [\lambda xy.x].$

Example: Kleene's Second Algebra - Type 2 TMs ⁴

Define a function space $\mathbb{B} := \mathbb{N}^{\mathbb{N}}$. It forms a **Baire space**.

42 13 17 42 ... 0 1 2 3 ...

⁴Sections 2.1.2 and 2.5.1 of [1]

Example: Kleene's Second Algebra - Type 2 TMs ⁴

Define a function space $\mathbb{B}:=\mathbb{N}^{\mathbb{N}}.$ It forms a Baire space.

	Type 1 TM	Type 2 TM
input/output	finite	infinite
computable function	$\mathbb{N} \rightharpoonup \mathbb{N}$	$\mathbb{B} ightharpoonup \mathbb{B}$
encoding	N	\mathbb{B}

Example: Kleene's Second Algebra - Type 2 TMs ⁴

Define a function space $\mathbb{B} := \mathbb{N}^{\mathbb{N}}$. It forms a **Baire space**.

	Type 1 TM	Type 2 TM
input/output	finite	infinite
computable function	$\mathbb{N} \rightharpoonup \mathbb{N}$	$\mathbb{B} ightharpoonup \mathbb{B}$
encoding	N	\mathbb{B}

If $x, y \in \mathbb{B}$, write $\eta_x(y)$ for the output of running the type 2 machine encoded by x on input encoded by y.

Then, (\mathbb{B}, η) forms a PCA, using the smn and utm theorems for type 2 TMs.

⁴Sections 2.1.2 and 2.5.1 of [1]

Example: Combinatory Logic

$$t ::= K \mid S \mid t \cdot t$$

Let \approx be the least congruence relation $(a \cdot b \approx a' \cdot b')$ when $a \approx a'$ and $b \approx b'$ on the set CL, for all $a, b, c \in CL$,

$$S \ a \ b \ c \approx (a \ c)(b \ c)$$

The quotient CL/\approx is the carrier of a total combinatory algebra \mathbb{CL} called combinatory logic.

Other examples

▶ Oracle Turing machines: Turing machines with a infinite binary sequence $\omega: \mathbb{N} \to \{0,1\}$ called an oracle, provided on a separate (infinite) input tape.

Other examples

- ▶ Oracle Turing machines: Turing machines with a infinite binary sequence $\omega : \mathbb{N} \to \{0,1\}$ called an oracle, provided on a separate (infinite) input tape.
- ▶ Infinite-time Turing machines [3]: Turing machines that can run infinitely long.

Other examples

- ▶ Oracle Turing machines: Turing machines with a infinite binary sequence $\omega : \mathbb{N} \to \{0,1\}$ called an oracle, provided on a separate (infinite) input tape.
- ▶ Infinite-time Turing machines [3]: Turing machines that can run infinitely long.
- ► Reflexive domains: topological models for the untyped lambda calculus.

Conclusion

Bibliography

- Bauer, A. (2025). Notes on realizability. Unpublished manuscript. https://www.andrej.com/zapiski/MGS-2022/noteson-realizability.pdf. Accessed: Nov 12, 2025.
- [2] Church, A. (1932). A set of postulates for the foundation of logic. *Annals of Mathematics*, 33(2):346–366.
- [3] Hamkins, J. D. and Lewis, A. (2000). Infinite time turing machines. *Journal of Symbolic Logic*, 65(2):567–604.
- [4] Turing, A. M. (1937a). On Computable Numbers, with an Application to the Entscheidungsproblem. *Proceedings of the London Mathematical Society*, s2-42(1):230–265. _eprint: https://londmathsoc.onlinelibrary.wiley.com/doi/pdf/10.1112/plms/s2-42.1.230.
- [5] Turing, A. M. (1937b). The β -function in λ -k-conversion. *Journal of Symbolic Logic*, 2(4):164–164.