

Realizability and Parametricity in Pure Type Systems

Based on the paper by
Jean-Philippe Bernardy and Marc Lasson

Eskil Dam & Sophie Krijgsman

December 17, 2025

Introduction

- We start from a programming language described as a **Pure Type System (PTS)**.
- **Main idea of the paper:** build a **logic** on top of that PTS in which we can reason about its programmes.
- The original PTS $P = \text{programming language}$ (types and terms).
- A new PTS P^2 is constructed as a *logic* whose formulas state properties about programmes in P .

Introduction

- We start from a programming language described as a **Pure Type System (PTS)**.
- **Main idea of the paper:** build a **logic** on top of that PTS in which we can reason about its programmes.
- The original PTS $P = \text{programming language}$ (types and terms).
- A new PTS P^2 is constructed as a *logic* whose formulas state properties about programmes in P .

Research Question

How can we systematically build such a logic so that *parametricity* and *realizability* are both internalized in it, and how are these two notions related in the general setting of PTSs?

Parametricity (informal)

Idea

- Polymorphic programs must behave *uniformly* for all type instances.
- Types are interpreted as *relations* on terms; a program is parametric if it *preserves* these relations.
- Example (Haskell-style type):

$$f :: \text{forall } a. [a] \rightarrow [a]$$

Parametricity says that f cannot depend on the concrete type a , only on the structure of the list.

Realizability (informal)

Idea

- Realizability connects *formulas* with *programs* that witness their truth.
- A realizer for $A \wedge B$ can be seen as a pair of programs (p_A, p_B) realizing A and B .
- A realizer for $A \rightarrow B$ is a program that turns any realizer of A into a realizer of B .

The First Level: Pure Type Systems

Pure Type System (PTS)

A PTS is given by a specification $(\mathcal{S}, \mathcal{A}, \mathcal{R})$:

- \mathcal{S} : a set of *sorts* (e.g. \star, \square).
- $\mathcal{A} \subseteq \mathcal{S} \times \mathcal{S}$: *axioms*.
 $(s_1, s_2) \in \mathcal{A}$ expresses that s_1 has sort s_2 .
- $\mathcal{R} \subseteq \mathcal{S} \times \mathcal{S} \times \mathcal{S}$: *rules* for product types.
 $(s_1, s_2, s_3) \in \mathcal{R}$ determines the sort of Π -types with domain of sort s_1 and codomain of sort s_2 .

Typing judgements have the form $\Gamma \vdash A : B$.

We write $\Gamma \vdash A : B : C$ as shorthand for both $\Gamma \vdash A : B$ and $\Gamma \vdash B : C$.

The First Level: Pure Type Systems

Pure Type System (PTS)

A PTS is given by a specification $(\mathcal{S}, \mathcal{A}, \mathcal{R})$:

- \mathcal{S} : a set of *sorts* (e.g. \star, \square).
- $\mathcal{A} \subseteq \mathcal{S} \times \mathcal{S}$: *axioms*.
 $(s_1, s_2) \in \mathcal{A}$ expresses that s_1 has sort s_2 .
- $\mathcal{R} \subseteq \mathcal{S} \times \mathcal{S} \times \mathcal{S}$: *rules* for product types.
 $(s_1, s_2, s_3) \in \mathcal{R}$ determines the sort of Π -types with domain of sort s_1 and codomain of sort s_2 .

Typing judgements have the form $\Gamma \vdash A : B$.

We write $\Gamma \vdash A : B : C$ as shorthand for both $\Gamma \vdash A : B$ and $\Gamma \vdash B : C$.

Example: λ_2 (System F) as a PTS

$$S_{\lambda_2} = \{\star, \square\}, \quad A_{\lambda_2} = \{(\star, \square)\}, \quad R_{\lambda_2} = \{(\star, \star, \star), (\square, \star, \star)\}.$$

Reminder: λ_2 (System F) from the Course

Polymorphic lambda calculus λ_2

- Types:

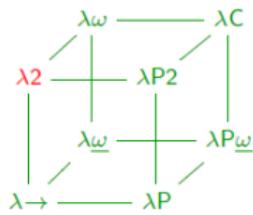
$$A, B ::= a \mid A \rightarrow B \mid \forall a. A$$

- Terms (Church-style):

$$M, N ::= x \mid MN \mid \lambda x : A. M \mid MA \mid \Lambda a. M$$

- Polymorphic identity:

$$id := \lambda a : *. \lambda x : a. x \quad : \quad \Pi a : *. a \rightarrow a.$$



λ_2 as a PTS: Reading the Rules in R

Specification for λ_2

$$S_{\lambda_2} = \{\star, \square\}, \quad A_{\lambda_2} = \{(\star, \square)\}, \quad R_{\lambda_2} = \{(\star, \star, \star), (\square, \star, \star)\}.$$

The rule (\star, \star, \star) : arrow types

$$\frac{\Gamma \vdash A : \star \quad \Gamma, x : A \vdash B : \star}{\Gamma \vdash \Pi x : A. B : \star} \quad (\star, \star, \star) \in R$$

- Domain A has sort \star (ordinary type), Codomain B has sort \star .
- Resulting Π -type also has sort \star .
- If B does not depend on x , then

$$\Pi x : A. B \equiv A \rightarrow B.$$

This rule *gives us arrow types*.

λ_2 as a PTS: Polymorphic Types

The rule (\square, \star, \star) : polymorphism

$$\frac{\Gamma \vdash A : \square \quad \Gamma, \alpha : A \vdash B : \star}{\Gamma \vdash \Pi \alpha : A. B : \star} \quad (\square, \star, \star) \in R$$

- Bound variable α has sort \square (a *type-level* variable).
- Body B has sort \star (an ordinary type).
- The resulting Π -type again has sort \star .
- We are binding a *type variable*, so

$$\Pi \alpha : \square. B \equiv \forall \alpha. B.$$

This rule *gives us polymorphic types*.

Sort-Annotated Terms

Sort Annotations

- Variables come with a *sort tag*: for each sort $s \in S$ we have a set V_s of variables of sort s .
- We write x^s to mean: $x \in V_s$ (so x is a variable of sort s).
- Typing in the context looks like: $x^s : A$ with $\Gamma \vdash A : s$.

Sort-Annotated Terms

Sort Annotations

- Variables come with a *sort tag*: for each sort $s \in S$ we have a set V_s of variables of sort s .
- We write x^s to mean: $x \in V_s$ (so x is a variable of sort s).
- Typing in the context looks like: $x^s : A$ with $\Gamma \vdash A : s$.

Product Rule for λ_2

$$\frac{\Gamma \vdash A : s_1 \quad \Gamma, x^{s_1} : A \vdash B : s_2}{\Gamma \vdash (\Pi x^{s_1} : A. B) : s_3} \quad \text{if } (s_1, s_2, s_3) \in R$$

Sort-Annotated Terms

Sort Annotations

- Variables come with a *sort tag*: for each sort $s \in S$ we have a set V_s of variables of sort s .
- We write x^s to mean: $x \in V_s$ (so x is a variable of sort s).
- Typing in the context looks like: $x^s : A$ with $\Gamma \vdash A : s$.

Product Rule for λ_2

$$\frac{\Gamma \vdash A : s_1 \quad \Gamma, x^{s_1} : A \vdash B : s_2}{\Gamma \vdash (\Pi x^{s_1} : A. B) : s_3} \quad \text{if } (s_1, s_2, s_3) \in R$$

Application Rule for λ_2

$$\frac{\Gamma \vdash F : \Pi x^s : A. B \quad \Gamma \vdash a : A}{\Gamma \vdash (F a)^s : B[x \mapsto a]}$$

λ_2 Terms: Examples

Conventions for λ_2

- Term variables x, y, z, \dots range over V_* .
- Type variables $\alpha, \beta, \gamma, \dots$ range over V_\Box .

λ_2 Terms: Examples

Conventions for λ_2

- Term variables x, y, z, \dots range over V_* .
- Type variables $\alpha, \beta, \gamma, \dots$ range over V_\Box .

Identity (term) and Unit (type)

$$\text{Unit} \equiv \Pi \alpha : *. \alpha \rightarrow \alpha$$

$$Id \equiv \lambda(\alpha : *) (x : \alpha). x \quad \text{with} \quad \vdash Id : \text{Unit}.$$

λ_2 Terms: Examples

Conventions for λ_2

- Term variables x, y, z, \dots range over V_* .
- Type variables $\alpha, \beta, \gamma, \dots$ range over V_\Box .

Identity (term) and Unit (type)

$$\text{Unit} \equiv \prod \alpha : \star. \alpha \rightarrow \alpha$$

$$Id \equiv \lambda(\alpha : \star)(x : \alpha). x \quad \text{with} \quad \vdash Id : \text{Unit}.$$

Church Numerals

$$Nat \equiv \prod \alpha : \star. (\alpha \rightarrow \alpha) \rightarrow (\alpha \rightarrow \alpha)$$

$$0 \equiv \lambda(\alpha : \star)(f : \alpha \rightarrow \alpha)(x : \alpha). x \quad \text{with} \quad \vdash 0 : Nat.$$

$$Succ \equiv \lambda(n : Nat)(\alpha : \star)(f : \alpha \rightarrow \alpha)(x : \alpha). f(n \alpha f x) : Nat \rightarrow Nat.$$

Constructing the logic

We want to build a logic *strong enough* to reason about our PTS.

Note

In λ_2 , we want to express formulas like $\forall\alpha : \star. A$, whereas we do not need this in $\lambda \rightarrow$. This means not every PTS needs the same logic.

- The more powerful the PTS, the more powerful the logic.
- Idea: use the PTS itself to construct the logic
- Thanks to Curry-Howard, a PTS is already a logic, we just need to add some extra things. This works for *any* PTS.

Question

How exactly do we build this logic?

Idea of the construction

- We denote the logic of a PTS P by P^2 .
- P^2 is a PTS, so we only need to specify sorts, axioms and rules
- We want to keep a copy of P inside P^2

Sorts

The PTS λ_2 consists of two sorts: \star and \square . In its logic λ_2^2 , we extend this with the sorts $[\star]$ and $[\square]$.

- $[\star]$ is the sort of all propositions
- $[\square]$ is the sort of propositions $[\star]$, as well as predicates $\tau \rightarrow [\star]$ and relations $\tau_1 \rightarrow \dots \rightarrow \tau_n \rightarrow [\star]$

Axioms

We have the axioms $\star : \square$ and $[\star] : [\square]$

The rules of λ_2^2

Recall: product rule for PTS

$$\frac{\Gamma \vdash A : s_1 \quad \Gamma, x : A \vdash B : s_2}{\Gamma \vdash \Pi x : A. B : s_3} \quad (s_1, s_2, s_3) \in R$$

λ_2 has rules (\star, \star, \star) and (\square, \star, \star) .

- We want a copy of λ_2 , so we need (\star, \star, \star) and (\square, \star, \star) .
- We also add $([\star], [\star], [\star])$ and $([\square], [\star], [\star])$.

Example formula: reflexivity

$$\Pi \alpha : \star. \Pi x : \alpha. x =_{\alpha} x$$

This means we also need to add the rules $(\square, [\star], [\star])$ for quantifying over types and $(\star, [\star], [\star])$ for quantifying over programs.

Finally, we need the rule $(\star, [\square], [\square])$ to construct predicates $\tau \rightarrow [\star]$ etc.

Overview of λ_2^2

PTS for λ_2^2

λ_2

$\mathcal{S} = \{\star, \square\}$

$\mathcal{A} = \{(\star, \square)\}$

$\mathcal{R} = \{(\star, \star, \star), (\square, \star, \star)\}$

λ_2^2

$\mathcal{S} = \{\star, \square, [\star], [\square]\}$

$\mathcal{A} = \{(\star, \square), ([\star], [\square])\}$

$\mathcal{R} = \{(\star, \star, \star), (\square, \star, \star),$
 $([\star], [\star], [\star]), ([\square], [\star], [\star]),$
 $(\star, [\star], [\star]), (\square, [\star], [\star]),$
 $(\star, [\square], [\square])\}$

These rules allow us to type the reflexivity formula $\Pi\alpha : \star. \Pi x : \alpha. x =_\alpha x$.

Rules of P^2 for a general PTS P

Let $(\mathcal{S}, \mathcal{A}, \mathcal{R})$ be the PTS P .

Definition

We define the PTS P^2 as $(\mathcal{S}^2, \mathcal{A}^2, \mathcal{R}^2)$ where

$$\mathcal{S}^2 = \mathcal{S} \cup \{\lceil s \rceil \mid s \in \mathcal{S}\}$$

$$\mathcal{A}^2 = \mathcal{A} \cup \{(\lceil s_1 \rceil, \lceil s_2 \rceil) \mid (s_1, s_2) \in \mathcal{A}\}$$

$$\begin{aligned}\mathcal{R}^2 = \mathcal{R} \cup & \{(\lceil s_1 \rceil, \lceil s_2 \rceil, \lceil s_3 \rceil) \mid (s_1, s_2, s_3) \in \mathcal{R}\} \\ & \cup \{(s_1, \lceil s_3 \rceil, \lceil s_3 \rceil) \mid (s_1, s_2, s_3) \in \mathcal{R}\} \\ & \cup \{(s_1, \lceil s_2 \rceil, \lceil s_2 \rceil) \mid (s_1, s_2) \in \mathcal{A}\}\end{aligned}$$

In general, for any sort s of P , we think of $\lceil s \rceil$ as the sort of *formulas expressing properties of inhabitants of s* .

Separation

Let P be an arbitrary PTS.

Theorem 1 (separation)

If a *program* or *type* is typable in P^2 , then it is also typable in P . More formally, for a sort $s \in S$ we have that if $\Gamma \vdash A : B : s$, then there is a subcontext $\Gamma' \subseteq \Gamma$ such that $\Gamma' \vdash_P A : B : s$

Separation

Let P be an arbitrary PTS.

Theorem 1 (separation)

If a *program* or *type* is typable in P^2 , then it is also typable in P . More formally, for a sort $s \in S$ we have that if $\Gamma \vdash A : B : s$, then there is a subcontext $\Gamma' \subseteq \Gamma$ such that $\Gamma' \vdash_P A : B : s$

Recall our rules:

$$\begin{aligned} R^2 = R \cup & \{([s_1], [s_2], [s_3]) \mid (s_1, s_2, s_3) \in R\} \\ \cup & \{(s_1, [s_3], [s_3]) \mid (s_1, s_2, s_3) \in R\} \\ \cup & \{(s_1, [s_2], [s_2]) \mid (s_1, s_2) \in A\} \end{aligned}$$

The proof is by induction on the structure of the program (or type).

Lifting

We have defined $[s]$ for any sort s , which we call the *lifting* of a sort. Similarly, we define the lift of any expression. Nothing really changes, except the naming convention of variables, and the change of s to $[s]$

Example

The type

$$\text{Nat} \equiv \prod \alpha : \star. (\alpha \rightarrow \alpha) \rightarrow (\alpha \rightarrow \alpha)$$

gets lifted to

$$[\text{Nat}] \equiv \prod X : [\star]. (X \rightarrow X) \rightarrow (X \rightarrow X)$$

Any inhabited type gets lifted to a logical tautology, since the inhabitants get lifted to proofs.

Syntactical rules for lifting

Rules for lifting of expressions (top) and contexts (bottom)

- Note that \hat{x} is the *renamed* variant of the variable x , for example renaming α to X .
- Structure remains the same

$$[x] = \hat{x}$$

$$[s] = [\hat{s}]$$

$$[\Pi x : A.B] = \Pi \hat{x} : [A]. [B]$$

$$[\lambda x : A.b] = \lambda \hat{x} : [A]. [b]$$

$$\frac{[AB] = [A][B]}{[<>] = <>}$$

$$[\Gamma, x : A] = [\Gamma], \hat{x} : [A]$$

Lemmas about lifting

Extending the lifting from sorts to expressions leads to nice lemmas

Lemma 1 (lifting preserves typing)

For all expressions A, B and sorts s in P we have

$$\Gamma \vdash_P A : B : s \implies \lceil \Gamma \rceil \vdash_{P^2} \lceil A \rceil : \lceil B \rceil : \lceil s \rceil$$

This is because the logic P^2 contains a lifted copy of all sorts, axioms and rules of the PTS P .

Lemmas about lifting

Extending the lifting from sorts to expressions leads to nice lemmas

Lemma 1 (lifting preserves typing)

For all expressions A, B and sorts s in P we have

$$\Gamma \vdash_P A : B : s \implies \lceil \Gamma \rceil \vdash_{P^2} \lceil A \rceil : \lceil B \rceil : \lceil s \rceil$$

This is because the logic P^2 contains a lifted copy of all sorts, axioms and rules of the PTS P .

Lemma 2 (lifting preserves β -reduction)

If $A \rightarrow_{\beta} B$, then $\lceil A \rceil \rightarrow_{\beta} \lceil B \rceil$

Formal proof by induction, informally true because lifting only renames variables and lifts sorts.

Projection

- Projection maps second-level terms in P^2 to first-level terms in P .
- It removes all second-level constructs (formulas, proofs) and all interactions between levels.
- First-level subterms are erased.
- Projection is defined only on second-level terms.

Renaming convention

Variables $x^{[s]}$ are renamed to \dot{x}^s . This renaming cancels the one introduced by lifting.

Projection: Examples

Examples in F^2

$$[\top] = \text{Unit} \quad [\text{Obvious}] = \text{Id}$$

$$[\Pi(\alpha : \star)(x : \alpha). x =_{\alpha} x] = \text{Unit} \quad [N t] = \text{Nat}$$

- $\top \equiv \Pi X : [\star]. X \rightarrow X$ is a logical tautology; erasing the logical layer yields the first-level type $\text{Unit} \equiv \Pi \alpha : \star. \alpha \rightarrow \alpha$.
- *Obvious* is a proof of \top ; under projection, proofs are erased, yielding the corresponding first-level program *Id*.
- Leibniz equality $x =_{\alpha} x$ is purely logical; its reflexivity carries no computational content after projection.
- $N t$ is a predicate over *Nat*; projection removes the predicate layer and retains its domain.

Examples in detail

Leibniz

$$\begin{aligned}\left[\Pi \alpha^* : \star. \Pi x^* : \alpha. (x =_{\alpha} x) \right] &= \left[\Pi x^* : \alpha. (x =_{\alpha} x) \right] B \rfloor) \\ &= \lfloor x =_{\alpha} x \rfloor \\ &= \mathsf{Unit}\end{aligned}$$

Examples in detail

Leibniz

$$\begin{aligned} \left[\Pi \alpha^* : \star. \Pi x^* : \alpha. (x =_{\alpha} x) \right] &= \left[\Pi x^* : \alpha. (x =_{\alpha} x) \right] B \rfloor \\ &= \lfloor x =_{\alpha} x \rfloor \\ &= \text{Unit} \end{aligned}$$

$N t$

$$\begin{aligned} \lfloor N t \rfloor &= \lfloor (N t)_{Nat} \rfloor \\ &= \lfloor N \rfloor \quad (\text{rule: } \lfloor (A B)_s \rfloor = \lfloor A \rfloor) \\ &= Nat. \end{aligned}$$

Lemma 3 and 4

Lemma 3: projection is the left inverse of lifting

For any first-level term A ,

$$\lfloor \lceil A \rceil \rfloor = A.$$

Lemma 3 and 4

Lemma 3: projection is the left inverse of lifting

For any first-level term A ,

$$[\lceil A \rceil] = A.$$

Lemma 4: projection preserves typing

If

$$\Gamma \vdash A : B : \lceil s \rceil,$$

then

$$[\Gamma] \vdash [A] : [B] : s.$$

Example: Lemma 4 in F^2

The formula \top and its proof

In F^2 , truth is defined as $\top \equiv \Pi X : [*]. X \rightarrow X$ and is proved by
Obvious $\equiv \lambda(X : [*])(h : X). h$
with typing judgement

$$\vdash \text{Obvious} : \top : [*].$$

Projection (Lemma 4)

Applying projection removes the second level:

$$[\top] = \text{Unit} \quad [\text{Obvious}] = \text{Id}$$

hence

$$\vdash \text{Id} : \text{Unit} : *.$$

Lemma 5

Lemma 5 (β -reduction)

If $A \rightarrow_{\beta} B$, then either

$$[A] \rightarrow_{\beta} [B] \quad \text{or} \quad [A] = [B].$$

Case 1

$$A \equiv (\lambda X : [*]. t) \top \quad \rightarrow_{\beta} \quad B \equiv t[\top/X].$$

$$\begin{aligned} [(\lambda X : [*]. t) \top] &= (\lambda \alpha : *. [t]) [\top] \\ &= (\lambda \alpha : *. [t]) \text{ Unit} \quad \text{and} \quad [t[\top/X]] = [t]. \\ &\rightarrow_{\beta} [t] \end{aligned}$$

$$[A] = [(\lambda \alpha : *. [t]) \top] \rightarrow_{\beta} [t] = [B].$$

Lemma 5: β -reduction erased by projection

Case 2

Take $A = (\lambda x^* : \alpha. x) y$ and $B = y$ since they are both first-level terms, projection acts like this:

$$\lfloor (\lambda x^* : \alpha. x) y \rfloor = y$$

$$\lfloor y \rfloor = y.$$

After projection, the β -reduction is erased:

$$\lfloor A \rfloor = \lfloor (\lambda x^* : \alpha. x) \rfloor y = y = \lfloor B \rfloor.$$

Rules for Projection

Projection rules

$$\lfloor x^{\lceil s \rceil} \rfloor = \dot{x}^s$$

$$\lfloor \lceil s \rceil \rfloor = s$$

$$\lfloor \Pi x^s : A. B \rfloor = \lfloor B \rfloor$$

$$\lfloor \Pi x^{\lceil s \rceil} : A. B \rfloor = \Pi \dot{x}^s : \lfloor A \rfloor. \lfloor B \rfloor$$

$$\lfloor \lambda x^s : A. B \rfloor = \lfloor B \rfloor$$

$$\lfloor \lambda x^{\lceil s \rceil} : A. B \rfloor = \lambda \dot{x}^s : \lfloor A \rfloor. \lfloor B \rfloor$$

$$\lfloor (AB)_s \rfloor = \lfloor A \rfloor$$

$$\lfloor (AB)_{\lceil s \rceil} \rfloor = \lfloor A \rfloor \lfloor B \rfloor$$

$$\lfloor \langle \rangle \rfloor = \langle \rangle$$

$$\lfloor \Gamma, x^s : A \rfloor = \lfloor \Gamma \rfloor$$

$$\lfloor \Gamma, x^{\lceil s \rceil} : A \rfloor = \lfloor \Gamma \rfloor, \dot{x}^s : \lfloor A \rfloor$$

Strong Normalization

Theorem 2 (normalization)

If P is strongly normalizing, so is P^2

Proof

If a term A is typable in P^2 and not normalizable, then either:

- one of the first-level subterms of A is not normalizable, or
- the first-level term $\lfloor A \rfloor$ is not normalizable.

Strong Normalization

Theorem 2 (normalization)

If P is strongly normalizing, so is P^2

Proof

If a term A is typable in P^2 and not normalizable, then either:

- one of the first-level subterms of A is not normalizable, or
- the first-level term $\lfloor A \rfloor$ is not normalizable.

Contradiction

- By Lemma 4, the projection $\lfloor A \rfloor$ is a well-typed term of P .
- By Lemma 5, projection does not introduce new β -reduction.
- Hence, any non-termination in P^2 yields a non-terminating term of P .
- This contradicts strong normalization of P .

Recap

- We considered Pure Type Systems, and constructed a logic for every PTS
- In this logic, there are formulas which can refer to the programs and types from the PTS
- We proved that the levels are separated, and considered lifting and projection to convert between the levels
- Finally, we looked at the proof that if the PTS P is strongly normalizing, then P^2 is as well.