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Introduction

We start from a programming language described as a Pure Type
System (PTS).

Main idea of the paper: build a logic on top of that PTS in which
we can reason about its programmes.

The original PTS P = programming language (types and terms).

A new PTS P2 is constructed as a logic whose formulas state
properties about programmes in P.

Research Question

How can we systematically build such a logic so that parametricity and
realizability are both internalized in it, and how are these two notions
related in the general setting of PTSs?
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Parametricity (informal)

Idea

Polymorphic programs must behave uniformly for all type instances.

Types are interpreted as relations on terms; a program is parametric if
it preserves these relations.

Example (Haskell-style type):

f :: forall a. [a] -> [a]

Parametricity says that f cannot depend on the concrete type a, only
on the structure of the list.
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Realizability (informal)

Idea

Realizability connects formulas with programs that witness their truth.

A realizer for A ∧ B can be seen as a pair of programs (pA, pB)
realizing A and B.

A realizer for A → B is a program that turns any realizer of A into a
realizer of B.

Eskil Dam & Sophie Krijgsman Realizability and Parametricity in PTS December 17, 2025 4 / 29



The First Level: Pure Type Systems

Pure Type System (PTS)

A PTS is given by a specification (S,A,R):

S: a set of sorts (e.g. ⋆,□).

A ⊆ S × S : axioms.
(s1, s2) ∈ A expresses that s1 has sort s2.

R ⊆ S × S × S: rules for product types.
(s1, s2, s3) ∈ R determines the sort of Π-types with domain of sort s1
and codomain of sort s2.

Typing judgements have the form Γ ⊢ A : B.
We write Γ ⊢ A : B : C as shorthand for both Γ ⊢ A : B and Γ ⊢ B : C .

Example: λ2 (System F) as a PTS

Sλ2 = {⋆,□}, Aλ2 = {(⋆,□)}, Rλ2 = {(⋆, ⋆, ⋆), (□, ⋆, ⋆)}.
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Reminder: λ2 (System F) from the Course

Polymorphic lambda calculus λ2

Types:
A,B ::= a | A → B | ∀a.A

Terms (Church-style):

M,N ::= x | MN | λx : A.M | MA | Λa.M

Polymorphic identity:

id := λa : ∗. λx : a. x : Πa : ∗. a → a.
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λ2 as a PTS: Reading the Rules in R

Specification for λ2

Sλ2 = {⋆,□}, Aλ2 = {(⋆,□)}, Rλ2 = {(⋆, ⋆, ⋆), (□, ⋆, ⋆)}.

The rule (⋆, ⋆, ⋆): arrow types

Γ ⊢ A : ⋆ Γ, x : A ⊢ B : ⋆

Γ ⊢ Πx : A.B : ⋆
(⋆, ⋆, ⋆) ∈ R

Domain A has sort ⋆ (ordinary type), Codomain B has sort ⋆.

Resulting Π-type also has sort ⋆.

If B does not depend on x , then

Πx : A.B ≡ A → B.

This rule gives us arrow types.
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λ2 as a PTS: Polymorphic Types

The rule (□, ⋆, ⋆): polymorphism

Γ ⊢ A : □ Γ, α : A ⊢ B : ⋆

Γ ⊢ Πα : A.B : ⋆
(□, ⋆, ⋆) ∈ R

Bound variable α has sort □ (a type-level variable).

Body B has sort ⋆ (an ordinary type).

The resulting Π-type again has sort ⋆.

We are binding a type variable, so

Πα : □.B ≡ ∀α.B.

This rule gives us polymorphic types.
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Sort-Annotated Terms

Sort Annotations

Variables come with a sort tag: for each sort s ∈ S we have a set Vs

of variables of sort s.

We write x s to mean: x ∈ Vs (so x is a variable of sort s).

Typing in the context looks like: x s : A with Γ ⊢ A : s.

Product Rule for λ2

Γ ⊢ A : s1 Γ, x s1 : A ⊢ B : s2
Γ ⊢ (Πx s1 : A.B) : s3

if (s1, s2, s3) ∈ R

Application Rule for λ2

Γ ⊢ F : Πx s : A. B Γ ⊢ a : A

Γ ⊢ (F a)s : B[x 7→ a]
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λ2 Terms: Examples

Conventions for λ2

Term variables x , y , z , . . . range over V⋆.

Type variables α, β, γ, . . . range over V□.

Identity (term) and Unit (type)

Unit ≡ Πα : ⋆. α → α

Id ≡ λ(α : ⋆)(x : α). x with ⊢ Id : Unit.

Church Numerals

Nat ≡ Πα : ⋆. (α → α) → (α → α)

0 ≡ λ(α : ⋆)(f : α → α)(x : α). x with ⊢ 0 : Nat.

Succ ≡ λ(n : Nat)(α : ⋆)(f : α → α)(x : α). f (nα f x) : Nat → Nat.
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Constructing the logic

We want to build a logic strong enough to reason about our PTS.

Note

In λ2, we want to express formulas like ∀α : ⋆.A, whereas we do not need
this in λ →. This means not every PTS needs the same logic.

The more powerful the PTS, the more powerful the logic.

Idea: use the PTS itself to construct the logic

Thanks to Curry-Howard, a PTS is already a logic, we just need to
add some extra things. This works for any PTS.

Question

How exactly do we build this logic?
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Idea of the construction

We denote the logic of a PTS P by P2.

P2 is a PTS, so we only need to specify sorts, axioms and rules

We want to keep a copy of P inside P2

Sorts

The PTS λ2 consists of two sorts: ⋆ and □. In its logic λ2
2, we extend this

with the sorts ⌈⋆⌉ and ⌈□⌉.
⌈⋆⌉ is the sort of all propositions

⌈□⌉ is the sort of propositions ⌈⋆⌉, as well as predicates τ → ⌈⋆⌉ and
relations τ1 → · · · → τn → ⌈⋆⌉

Axioms

We have the axioms ⋆ : □ and ⌈⋆⌉ : ⌈□⌉
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The rules of λ2
2

Recall: product rule for PTS

Γ ⊢ A : s1 Γ, x : A ⊢ B : s2
Γ ⊢ Πx : A.B : s3

(s1, s2, s3) ∈ R

λ2 has rules (⋆, ⋆, ⋆) and (□, ⋆, ⋆).

We want a copy of λ2, so we need (⋆, ⋆, ⋆) and (□, ⋆, ⋆).

We also add (⌈⋆⌉, ⌈⋆⌉, ⌈⋆⌉) and (⌈□⌉, ⌈⋆⌉, ⌈⋆⌉).

Example formula: reflexivity

Πα : ⋆.Πx : α.x =α x

This means we also need to add the rules (□, ⌈⋆⌉, ⌈⋆⌉) for quantifying over
types and (⋆, ⌈⋆⌉, ⌈⋆⌉) for quantifying over programs.
Finally, we need the rule (⋆, ⌈□⌉, ⌈□⌉) to construct predicates τ → ⌈⋆⌉ etc.
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Overview of λ2
2

PTS for λ2
2

λ2 λ2
2

S = {⋆, □} S = {⋆, □, ⌈⋆⌉, ⌈□⌉}
A = {(⋆,□)} A = {(⋆,□), (⌈⋆⌉, ⌈□⌉)}
R = {(⋆, ⋆, ⋆), (□, ⋆, ⋆)} R = {(⋆, ⋆, ⋆), (□, ⋆, ⋆),

(⌈⋆⌉, ⌈⋆⌉, ⌈⋆⌉), (⌈□⌉, ⌈⋆⌉, ⌈⋆⌉),
(⋆, ⌈⋆⌉, ⌈⋆⌉), (□, ⌈⋆⌉, ⌈⋆⌉),
(⋆, ⌈□⌉, ⌈□⌉)}

These rules allow us to type the reflexivity formula Πα : ⋆.Πx : α.x =α x .
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Rules of P2 for a general PTS P

Let (S,A,R) be the PTS P.

Definition

We define the PTS P2 as (S2,A2,R2) where

S2 = S∪{⌈s⌉ | s ∈ S}
A2 = A∪{(⌈s1⌉, ⌈s2⌉) | (s1, s2) ∈ A}
R2 = R∪{(⌈s1⌉, ⌈s2⌉, ⌈s3⌉) | (s1, s2, s3) ∈ R}

∪{(s1, ⌈s3⌉, ⌈s3⌉) | (s1, s2, s3) ∈ R}
∪{(s1, ⌈s2⌉, ⌈s2⌉) | (s1, s2) ∈ A}

In general, for any sort s of P, we think of ⌈s⌉ as the sort of formulas
expressing properties of inhabitants of s.
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Seperation

Let P be an arbitrary PTS.

Theorem 1 (seperation)

If a program or type is typable in P2, then it is also typable in P. More
formally, for a sort s ∈ S we have that if Γ ⊢ A : B : s, then there is a
subcontext Γ′ ⊆ Γ such that Γ′ ⊢P A : B : s

Recall our rules:

R2 = R∪{(⌈s1⌉, ⌈s2⌉, ⌈s3⌉) | (s1, s2, s3) ∈ R}
∪{(s1, ⌈s3⌉, ⌈s3⌉) | (s1, s2, s3) ∈ R}
∪{(s1, ⌈s2⌉, ⌈s2⌉) | (s1, s2) ∈ A}

The proof is by induction on the structure of the program (or type).
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Lifting

We have defined ⌈s⌉ for any sort s, which we call the lifting of a sort.
Similarly, we define the lift of any expression. Nothing really changes,
except the naming convention of variables, and the change of s to ⌈s⌉

Example

The type
Nat ≡ Πα : ⋆.(α → α) → (α → α)

gets lifted to

⌈Nat⌉ ≡ ΠX : ⌈⋆⌉.(X → X ) → (X → X )

Any inhabited type gets lifted to a logical tautology, since the inhabitants
get lifted to proofs.
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Syntactical rules for lifting

Rules for lifting of expressions (top) and
contexts (bottom)

Note that x̊ is the renamed variant
of the variable x , for example
renaming α to X .

Structure remains the same

⌈x⌉ = x̊

⌈s⌉ = ⌈s⌉
⌈Πx : A.B⌉ = Πx̊ : ⌈A⌉.⌈B⌉
⌈λx : A.b⌉ = λx̊ : ⌈A⌉.⌈b⌉

⌈AB⌉ = ⌈A⌉⌈B⌉
⌈<>⌉ = <>

⌈Γ, x : A⌉ = ⌈Γ⌉, x̊ : ⌈A⌉
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Lemmas about lifting

Extending the lifting from sorts to expressions leads to nice lemmas

Lemma 1 (lifting preserves typing)

For all expressions A,B and sorts s in P we have

Γ ⊢P A : B : s =⇒ ⌈Γ⌉ ⊢P2 ⌈A⌉ : ⌈B⌉ : ⌈s⌉

This is because the logic P2 contains a lifted copy of all sorts, axioms and
rules of the PTS P.

Lemma 2 (lifting preserves β-reduction)

If A −→β B, then ⌈A⌉ −→β ⌈B⌉

Formal proof by induction, informally true because lifting only renames
variables and lifts sorts.
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Projection

Projection maps second-level terms in P2 to first-level terms in P.

It removes all second-level constructs (formulas, proofs) and all
interactions between levels.

First-level subterms are erased.

Projection is defined only on second-level terms.

Renaming convention

Variables x⌈s⌉ are renamed to ẋ s . This renaming cancels the one
introduced by lifting.
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Projection: Examples

Examples in F 2

⌊⊤⌋ = Unit ⌊Obvious⌋ = Id

⌊Π(α : ⋆)(x : α). x =α x⌋ = Unit ⌊N t⌋ = Nat

⊤ ≡ ΠX : ⌈⋆⌉.X → X is a logical tautology; erasing the logical layer
yields the first-level type Unit ≡ Πα : ⋆. α → α.

Obvious is a proof of ⊤; under projection, proofs are erased, yielding
the corresponding first-level program Id .

Leibniz equality x =α x is purely logical; its reflexivity carries no
computational content after projection.

N t is a predicate over Nat; projection removes the predicate layer
and retains its domain.
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Examples in detail

Leibniz ⌊
Πα⋆ : ⋆. Πx⋆ : α. (x =α x)

⌋
=

⌊
Πx⋆ : α. (x =α x)

⌋
B⌋)

= ⌊x =α x⌋
= Unit

N t

⌊N t⌋ = ⌊(N t)Nat⌋
= ⌊N⌋ (rule: ⌊(AB)s⌋ = ⌊A⌋)
= Nat.
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Lemma 3 and 4

Lemma 3: projection is the left inverse of lifting

For any first-level term A,
⌊⌈A⌉⌋ = A.

Lemma 4: projection preserves typing

If
Γ ⊢ A : B : ⌈s⌉,

then
⌊Γ⌋ ⊢ ⌊A⌋ : ⌊B⌋ : s.
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Example: Lemma 4 in F 2

The formula ⊤ and its proof

In F 2, truth is defined as ⊤ ≡ ΠX : ⌈∗⌉.X → X and is proved by
Obvious ≡ λ(X : ⌈∗⌉)(h : X ). h
with typing judgement

⊢ Obvious : ⊤ : ⌈∗⌉.

Projection (Lemma 4)

Applying projection removes the second level:

⌊⊤⌋ = Unit ⌊Obvious⌋ = Id

hence
⊢ Id : Unit : ∗.
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Lemma 5

Lemma 5 (β-reduction)

If A →β B, then either

⌊A⌋ →β ⌊B⌋ or ⌊A⌋ = ⌊B⌋.

Case 1

A ≡ (λX : ⌈∗⌉. t) ⊤ →β B ≡ t[⊤/X ].

⌊(λX : ⌈∗⌉. t) ⊤⌋ = (λα : ∗. ⌊t⌋) ⌊⊤⌋
= (λα : ∗. ⌊t⌋) Unit

→β ⌊t⌋
and ⌊t[⊤/X ]⌋ = ⌊t⌋.

⌊A⌋ = ⌊(λα : ∗. ⌊t⌋) ⊤⌋ →β ⌊t⌋ = ⌊B⌋.
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Lemma 5: β-reduction erased by projection

Case 2

Take A = (λx∗ : α. x) y and B = y since they are both first-level terms,
projection acts like this:

⌊(λx∗ : α. x) y⌋ = y

⌊y⌋ = y .

After projection, the β-reduction is erased:

⌊A⌋ = ⌊(λx∗ : α. x)⌋ y = y = ⌊B⌋.
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Rules for Projection

Projection rules

⌊x⌈s⌉⌋ = ẋ s

⌊⌈s⌉⌋ = s

⌊Πx s : A.B⌋ = ⌊B⌋
⌊Πx⌈s⌉ : A.B⌋ = Πẋ s : ⌊A⌋. ⌊B⌋
⌊λx s : A.B⌋ = ⌊B⌋

⌊λx⌈s⌉ : A.B⌋ = λẋ s : ⌊A⌋. ⌊B⌋
⌊(AB)s⌋ = ⌊A⌋

⌊(AB)⌈s⌉⌋ = ⌊A⌋ ⌊B⌋

⌊<>⌋ = <>

⌊Γ, x s : A⌋ = ⌊Γ⌋
⌊Γ, x⌈s⌉ : A⌋ = ⌊Γ⌋, ẋ s : ⌊A⌋
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Strong Normalization

Theorem 2 (normalization)

If P is strongly normalizing, so is P2

Proof

If a term A is typable in P2 and not normalizable, then either:

one of the first-level subterms of A is not normalizable, or

the first-level term ⌊A⌋ is not normalizable.

Contradiction

By Lemma 4, the projection ⌊A⌋ is a well-typed term of P.

By Lemma 5, projection does not introduce new β-reduction.

Hence, any non-termination in P2 yields a non-terminating term of P.

This contradicts strong normalization of P.
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Recap

We considered Pure Type Systems, and constructed a logic for every
PTS

In this logic, there are formulas which can refer to the programs and
types from the PTS

We proved that the levels are seperated, and considered lifting and
projection to convert between the levels

Finally, we looked at the proof that if the PTS P is strongly
normalizing, then P2 is as well.
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