Realizability and Parametricity
in Pure Type Systems

Based on the paper by
Jean-Philippe Bernardy and Marc Lasson

Eskil Dam & Sophie Krijgsman

December 17, 2025

Eskil Dam & Sophie Krijgsman Realizability and Parametricity in PTS December 17, 2025

L
Introduction

@ We start from a programming language described as a Pure Type
System (PTS).

@ Main idea of the paper: build a logic on top of that PTS in which
we can reason about its programmes.

@ The original PTS P = programming language (types and terms).

o A new PTS P2 is constructed as a logic whose formulas state
properties about programmes in P.

Eskil Dam & Sophie Krijgsman Realizability and Parametricity in PTS December 17, 2025 2/29

L
Introduction

@ We start from a programming language described as a Pure Type
System (PTS).

@ Main idea of the paper: build a logic on top of that PTS in which
we can reason about its programmes.

@ The original PTS P = programming language (types and terms).

o A new PTS P2 is constructed as a logic whose formulas state
properties about programmes in P.

Research Question

How can we systematically build such a logic so that parametricity and
realizability are both internalized in it, and how are these two notions
related in the general setting of PTSs?

Eskil Dam & Sophie Krijgsman Realizability and Parametricity in PTS December 17, 2025 2/29

Parametricity (informal)

Idea
@ Polymorphic programs must behave uniformly for all type instances.

@ Types are interpreted as relations on terms; a program is parametric if
it preserves these relations.

e Example (Haskell-style type):
f :: forall a. [a] —> [a]

Parametricity says that f cannot depend on the concrete type a, only
on the structure of the list.)

Eskil Dam & Sophie Krijgsman Realizability and Parametricity in PTS December 17, 2025 3/29

Realizability (informal)

Idea
@ Realizability connects formulas with programs that witness their truth.
@ A realizer for AA B can be seen as a pair of programs (pa, pg)
realizing A and B.
@ A realizer for A — B is a program that turns any realizer of A into a
realizer of B.)

4/29

Eskil Dam & Sophie Krijgsman Realizability and Parametricity in PTS December 17, 2025

[
The First Level: Pure Type Systems

Pure Type System (PTS)
A PTS is given by a specification (S, A4, R):
e S: a set of sorts (e.g. x,0J).

e AC S x S: axioms.
(s1,52) € A expresses that s; has sort sp.

@ RC S xS xS: rules for product types.
(s1,52,53) € R determines the sort of -types with domain of sort s;
and codomain of sort sp.

Typing judgements have the form '+ A : B.
We write [= A: B : C as shorthand for bothTFA: Band T+ B : C.

Eskil Dam & Sophie Krijgsman Realizability and Parametricity in PTS December 17, 2025 5/29

[
The First Level: Pure Type Systems

Pure Type System (PTS)
A PTS is given by a specification (S, A4, R):
e S: a set of sorts (e.g. x,0J).

e AC S x S: axioms.
(s1,52) € A expresses that s; has sort sp.

@ RC S xS xS: rules for product types.
(s1,52,53) € R determines the sort of -types with domain of sort s;
and codomain of sort sp.

Typing judgements have the form '+ A : B.
We write [= A: B : C as shorthand for bothTFA: Band T+ B : C.

Example: Ay (System F) as a PTS

Sxn = {*7D}7 Ay, = {(*7D)}7 Ry, = {(fv *, :)? (D_v*v’t)}'

Eskil Dam & Sophie Krijgsman Realizability and Parametricity in PTS December 17, 2025 5/29

I
Reminder: A\, (System F) from the Course

Polymorphic lambda calculus A

o Types:
AB:=al|A— B|Va. A

@ Terms (Church-style):
M;N ::=x| MN|Ax: A M| MA|Na.M
@ Polymorphic identity:

id=MXa:*x.Xx:ax : [la:*x.a— a.

Eskil Dam & Sophie Krijgsman Realizability and Parametricity in PTS December 17, 2025

[
A2 as a PTS: Reading the Rules in R

Specification for Ay

S)Q = {*7D}7 Ay, = {(*7D)}7 Ry, = {(*7 *, *)> (Dv*a*)}'

The rule (x,*,x): arrow types

M=A:% Mx:AFB:x

FENx:A B x (%) € R

@ Domain A has sort * (ordinary type), Codomain B has sort *.
@ Resulting lM-type also has sort *.

o If B does not depend on x, then
Mx: A B = A— B.

This rule gives us arrow types.

Eskil Dam & Sophie Krijgsman Realizability and Parametricity in PTS December 17, 2025 7/29

[
A2 as a PTS: Polymorphic Types

The rule (O, %, x): polymorphism
N-A:00 Na:AFB:x%
N=MNa:AB:x

(O0,%,%x) € R

@ Bound variable « has sort (I (a type-level variable).
@ Body B has sort * (an ordinary type).

@ The resulting lN-type again has sort x.

@ We are binding a type variable, so

MNa:0.B = Va. B.

This rule gives us polymorphic types.

Eskil Dam & Sophie Krijgsman Realizability and Parametricity in PTS December 17, 2025

L
Sort-Annotated Terms

Sort Annotations

@ Variables come with a sort tag: for each sort s € S we have a set Vi
of variables of sort s.

e We write x° to mean: x € V; (so x is a variable of sort s).

@ Typing in the context looks like: x°: Awith '+ A: s.

Eskil Dam & Sophie Krijgsman Realizability and Parametricity in PTS December 17, 2025 9/29

L
Sort-Annotated Terms

Sort Annotations

@ Variables come with a sort tag: for each sort s € S we have a set Vi
of variables of sort s.

e We write x° to mean: x € V; (so x is a variable of sort s).

@ Typing in the context looks like: x°: Awith '+ A: s.

Product Rule for A\
N-A:s x*:AFB:s
M= (Nxs:A.B):s3

if (51,52,53) €R

Eskil Dam & Sophie Krijgsman Realizability and Parametricity in PTS December 17, 2025

L
Sort-Annotated Terms

Sort Annotations

@ Variables come with a sort tag: for each sort s € S we have a set Vi
of variables of sort s.

e We write x° to mean: x € V; (so x is a variable of sort s).

@ Typing in the context looks like: x°: Awith '+ A: s.

Product Rule for A\
N-A:s x*:AFB:s
M= (Nxs:A.B):s3

if (51,52,53) €R

Application Rule for A,

r-F:Mx*: A B Na: A
= (Fa)s: Blx— 4

Eskil Dam & Sophie Krijgsman Realizability and Parametricity in PTS December 17, 2025

A> Terms: Examples

Conventions for \»
@ Term variables x, y,z,... range over V,.

@ Type variables «, 5,7, ... range over V.

Eskil Dam & Sophie Krijgsman Realizability and Parametricity in PTS December 17, 2025 10/29

A> Terms: Examples

Conventions for \»
@ Term variables x, y,z,... range over V,.

@ Type variables «, 5,7, ... range over V.

Identity (term) and Unit (type)

Unit=Ma:x.a— «

ld = Ma:*)(x:a).x with FId : Unit.

Eskil Dam & Sophie Krijgsman Realizability and Parametricity in PTS December 17, 2025 10/29

A> Terms: Examples

Conventions for \»
@ Term variables x, y,z,... range over V,.

@ Type variables «, 5,7, ... range over V.

Identity (term) and Unit (type)

Unit=Ma:x.a— «

ld = Ma:*)(x:a).x with FId : Unit.

Church Numerals
Nat =Na: *. (o — a) = (a = a)
0= Ma:*)(f:a—a)(x:a).x with F0: Nat.
Succ = A(n: Nat)(a: %)(f :a = a)(x:). f(nafx) : Nat — Nat.]

™ = —y = .

Eskil Dam & Sophie Krijgsman Realizability and Parametricity in PTS December 17, 2025 10 /29

Constructing the logic

We want to build a logic strong enough to reason about our PTS.
Note

In A2, we want to express formulas like Vo : x.A, whereas we do not need
this in A —. This means not every PTS needs the same logic.

@ The more powerful the PTS, the more powerful the logic.
o Idea: use the PTS itself to construct the logic

@ Thanks to Curry-Howard, a PTS is already a logic, we just need to
add some extra things. This works for any PTS.

Question
How exactly do we build this logic? J

Eskil Dam & Sophie Krijgsman Realizability and Parametricity in PTS December 17, 2025 11/29

L
Idea of the construction

e We denote the logic of a PTS P by P2.
e P?isa PTS, so we only need to specify sorts, axioms and rules

@ We want to keep a copy of P inside P?

Sorts

The PTS Xy consists of two sorts: x and [. In its logic A2, we extend this
with the sorts [x| and [O].

@ [x] is the sort of all propositions

e [[] is the sort of propositions %], as well as predicates 7 — [x| and
relations 71 — -+ — 7, — [*]

Axioms
We have the axioms x : O and [*] : [J]

Eskil Dam & Sophie Krijgsman Realizability and Parametricity in PTS December 17, 2025 12 /29

I
The rules of A\

Recall: product rule for PTS
M=A:s MNx:AFB:s

R
-Nx:AB: s (51,2, 53) €

A2 has rules (%, %,) and ([J, %, *).
@ We want a copy of A, so we need (x,*,*) and (O, x, *).
e We also add ([x], [x], [x]) and ([CI], [*], [*]).

Example formula: reflexivity J

Mo *Tx : a.x =4 x

This means we also need to add the rules (OJ, [x], [*]) for quantifying over
types and (%, [x], [x]) for quantifying over programs.
Finally, we need the rule (x, [(J], [(]) to construct predicates T — [x]| etc.

Eskil Dam & Sophie Krijgsman Realizability and Parametricity in PTS December 17, 2025 13 /29

Overview of A\

PTS for)\S
A2
S ={x 0O}
A={(x0)}

R = {(*,*,%), (O, %,%)}

¥
S={x0, [[0}
A:{(*’D)’(
R = {(*,*,%),(
) (

These rules allow us to type the reflexivity formula Mo : x.MNx : a.x =, x.

Eskil Dam & Sophie Krijgsman

Realizability and Parametricity in PTS

December 17, 2025

14 /29

Rules of P? for a general PTS P

Let (S, A, R) be the PTS P.
Definition

We define the PTS P? as (52, A%, R?) where

S2=SU{[s] | s € S}
A% = AU{([s1], [2]) | (51, 2) € A}
R? = RU{([s1], [%2], [s3]) | (51,2, 53) € R}
U{(s1, [s3], [s3]) | (s1,%2,53) € R}
U{(s1, [2], [s2]) | (s1,%2) € A}

In general, for any sort s of P, we think of [s] as the sort of formulas
expressing properties of inhabitants of s.

Eskil Dam & Sophie Krijgsman

Realizability and Parametricity in PTS

December 17, 2025 15/29

Seperation

Let P be an arbitrary PTS.

Theorem 1 (seperation)

If a program or type is typable in P2, then it is also typable in P. More
formally, for a sort s € S we have that if T A: B : s, then there is a
subcontext " C T such that " +p A: B: s

16 /29

Eskil Dam & Sophie Krijgsman Realizability and Parametricity in PTS December 17, 2025

Seperation

Let P be an arbitrary PTS.

Theorem 1 (seperation)

If a program or type is typable in P2, then it is also typable in P. More
formally, for a sort s € S we have that if T A: B : s, then there is a
subcontext " C T such that " +p A: B: s

Recall our rules:

R? = RU{([s1],[s2], [53]) | (51,52, 53) € R}
U{(s1, [s3], [s3]) | (51,2, 53) € R}
U{(s1; [s2], [s21) | (s1,%2) € A}

The proof is by induction on the structure of the program (or type).

Eskil Dam & Sophie Krijgsman Realizability and Parametricity in PTS December 17, 2025 16 /29

[
Lifting

We have defined [s] for any sort s, which we call the lifting of a sort.
Similarly, we define the lift of any expression. Nothing really changes,
except the naming convention of variables, and the change of s to [s]
Example
The type

Nat =Ma : *.(a = a) = (o = «)

gets lifted to

INat] = MX : [+].(X = X) = (X = X)

Any inhabited type gets lifted to a logical tautology, since the inhabitants
get lifted to proofs.

Eskil Dam & Sophie Krijgsman Realizability and Parametricity in PTS December 17, 2025 17 /29

Syntactical rules for lifting

Rules for lifting of expressions (top) and [x] =x
contexts (bottom) [s] = Ts]

o Note that x is the renamed variant [Mx: A.B] =MNx: [A].[B]
of the variable x, for example [Ax : A.b] = Ax : [A].[b]
renaming o to X. [AB] = [A][B]

@ Structure remains the same [<>]=<>

[T,x: Al =[], x:[A]

Eskil Dam & Sophie Krijgsman Realizability and Parametricity in PTS

December 17, 2025

18 /29

Lemmas about lifting

Extending the lifting from sorts to expressions leads to nice lemmas

Lemma 1 (lifting preserves typing)

For all expressions A, B and sorts s in P we have

FFpA:B:is = [T Fp2 [A] 1 [B]: [s]

This is because the logic P? contains a lifted copy of all sorts, axioms and
rules of the PTS P.

Eskil Dam & Sophie Krijgsman Realizability and Parametricity in PTS December 17, 2025 19 /29

Lemmas about lifting

Extending the lifting from sorts to expressions leads to nice lemmas

Lemma 1 (lifting preserves typing)

For all expressions A, B and sorts s in P we have

FFpA:B:is = [T Fp2 [A] 1 [B]: [s]

This is because the logic P? contains a lifted copy of all sorts, axioms and
rules of the PTS P.

Lemma 2 (lifting preserves [-reduction)
If A—s5 B, then [A] —>5 [B] J

Formal proof by induction, informally true because lifting only renames
variables and lifts sorts.

Eskil Dam & Sophie Krijgsman Realizability and Parametricity in PTS December 17, 2025 19 /29

Projection

Projection maps second-level terms in P? to first-level terms in P.

@ It removes all second-level constructs (formulas, proofs) and all
interactions between levels.

First-level subterms are erased.

@ Projection is defined only on second-level terms.

Renaming convention

Variables x/¢! are renamed to x°. This renaming cancels the one
introduced by lifting.

Eskil Dam & Sophie Krijgsman Realizability and Parametricity in PTS December 17, 2025

Projection: Examples

Examples in F?
| T] = Unit | Obvious| = Id
[M(a: *)(x :). x =4 x| = Unit |Nt] = Nat

e T =T0X:[x].X = X is a logical tautology; erasing the logical layer
yields the first-level type Unit = MNa : . o — a.

@ Obvious is a proof of T; under projection, proofs are erased, yielding
the corresponding first-level program Id.

@ Leibniz equality x =, x is purely logical; its reflexivity carries no
computational content after projection.

o Nt is a predicate over Nat; projection removes the predicate layer
and retains its domain.

Eskil Dam & Sophie Krijgsman Realizability and Parametricity in PTS December 17, 2025 21/29

Examples in detail

Leibniz
Ll_la* cx N o (x =4 X)J = LHX* Ca (x = X)J B])

= \‘X =« XJ
= Unit

Eskil Dam & Sophie Krijgsman Realizability and Parametricity in PTS December 17, 2025 22/29

Examples in detail

Leibniz

= Nat.

Eskil Dam & Sophie Krijgsman Realizability and Parametricity in PTS December 17, 2025 22/29

Lemma 3 and 4

Lemma 3: projection is the left inverse of lifting

For any first-level term A,

L[AT] = A.

Eskil Dam & Sophie Krijgsman Realizability and Parametricity in PTS December 17, 2025 23/29

Lemma 3 and 4

Lemma 3: projection is the left inverse of lifting
For any first-level term A,

L[AT] = A.

Lemma 4: projection preserves typing
If
r-A:B:|[s|,
then
IF]F[A]:|B]:s.

Eskil Dam & Sophie Krijgsman Realizability and Parametricity in PTS December 17, 2025

Example: Lemma 4 in F?

The formula T and its proof

In F2, truth is defined as T = MNX : [¥]. X — X and is proved by
Obvious = A(X : [*])(h: X).h
with typing judgement

F Obvious : T : [x].

Projection (Lemma 4)

Applying projection removes the second level:
| T| = Unit | Obvious| = Id

hence

F1d : Unit : *.

Eskil Dam & Sophie Krijgsman Realizability and Parametricity in PTS December 17, 2025 24/29

Lemma 5

Lemma 5 (S-reduction)
If A—3 B, then either

Al =5 [B] or [A]=[B].

Case 1
A= (AX:[x].t) T —g B = t[T/X].

[(AX : [x].t) T] = (Aa % [t]) [T]
= (Ao : = [t]) Unit and L[t[T/X]] = [t].
—p (1]

(Al = [(Aa:x[t]) T] =5 [t] = |B].

R R R RRRRRRRRRRRRBBBBRBRBRD_R_DRDRRSRRRRRRH
Eskil Dam & Sophie Krijgsman Realizability and Parametricity in PTS December 17, 2025 25/29

Lemma 5: [-reduction erased by projection

Case 2

Take A = (Ax* : a.x) y and B = y since they are both first-level terms,
projection acts like this:

Eskil Dam & Sophie Krijgsman

Realizability and Parametricity in PTS

December 17, 2025

Rules for Projection

Projection rules

LXMJ x5
L[sl] = s
IMx*:A.B] = |B]
INx[s:A.B] = Nx*:|A|.|B]
IAx*:A.B| = |B]
IMxIST-A Bl = Mxs:|A]|B]
[(AB)s] = Al
(AB)s1l = |A]l(B]
<> = <>
IFx*: Al = |I]
IT,xIs1- Al = |T],%°: |A]

Eskil Dam & Sophie Krijgsman

Realizability and Parametricity in PTS

December 17, 2025

27 /29

Strong Normalization

Theorem 2 (normalization)

If P is strongly normalizing, so is P2

Proof

If a term A is typable in P? and not normalizable, then either:
@ one of the first-level subterms of A is not normalizable, or

o the first-level term |A] is not normalizable.

Eskil Dam & Sophie Krijgsman

Realizability and Parametricity in PTS

December 17, 2025 28/29

Strong Normalization

Theorem 2 (normalization)

If P is strongly normalizing, so is P2

Proof

If a term A is typable in P? and not normalizable, then either:
@ one of the first-level subterms of A is not normalizable, or

o the first-level term |A] is not normalizable.

Contradiction
e By Lemma 4, the projection |A| is a well-typed term of P.
@ By Lemma 5, projection does not introduce new [-reduction.

@ Hence, any non-termination in P? yields a non-terminating term of P.
@ This contradicts strong normalization of P.

Eskil Dam & Sophie Krijgsman

Realizability and Parametricity in PTS December 17, 2025

28 /29

Recap

@ We considered Pure Type Systems, and constructed a logic for every
PTS

@ In this logic, there are formulas which can refer to the programs and
types from the PTS

@ We proved that the levels are seperated, and considered lifting and
projection to convert between the levels

o Finally, we looked at the proof that if the PTS P is strongly
normalizing, then P2 is as well.

Eskil Dam & Sophie Krijgsman Realizability and Parametricity in PTS December 17, 2025 29/29

