Induction Is Not Derivable in Second Order Dependent Type Theory

Written by Herman (2001)

Presented by Hilde & Sonia (2025)

December 8, 2025

Overview

1. First Section

Before we dive in...

Element		Set		Powerset
(-)	\in	$\llbracket - \rrbracket$	\in	$\mathcal{V}(-)$

Theorem: Non-derivability of **ind** in $\lambda P2$

We need to prove $\mathcal{M} \nvDash^{\lambda P2}$ ind

Theorem: Non-derivability of **ind** in $\lambda P2$

We need to prove $\mathcal{M} \nvDash^{\lambda P2}$ ind

Goal of the paper

Construct this counter-model ${\mathcal M}$

Theorem: Non-derivability of **ind** in $\lambda P2$

 $\mathcal{M}
otin \stackrel{\lambda P2}{=} \operatorname{ind}$

Goal of the presentations

Theorem: Non-derivability of **ind** in $\lambda P2$

 $\mathcal{M} \not\Vdash^{\lambda P2}$ ind

Goal of the presentations

Presentation 1: We will discuss model construction

Theorem: Non-derivability of **ind** in $\lambda P2$

 $\mathcal{M} \not\Vdash^{\lambda P2}$ ind

Goal of the presentations

Presentation 1: We will discuss model construction

Presentation 2: They will discuss the specific counter-model ${\mathcal M}$

Second order dependent type theory $\lambda P2$

Second order dependent type theory $\lambda P2$

Extends λP by allowing quantification over type constructors

Second order dependent type theory $\lambda P2$

Extends λP by allowing quantification over type constructors Extends $\lambda 2$ by adding dependency so types can depend on terms

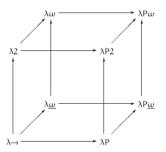


Figure: Pure type systems

Second order dependent type theory $\lambda P2$

Extends λP by allowing quantification over type constructors Extends $\lambda 2$ by adding dependency so types can depend on terms

Soundness

$$\Gamma \vdash M : T \Rightarrow \Gamma \models M : T$$

Second order dependent type theory $\lambda P2$

Extends λP by allowing quantification over type constructors Extends $\lambda 2$ by adding dependency so types can depend on terms

Soundness

$$\Gamma \vdash M : T \Rightarrow \Gamma \models M : T$$

Logic: Syntactic \Rightarrow Semantic

Second order dependent type theory $\lambda P2$

Extends λP by allowing quantification over type constructors Extends $\lambda 2$ by adding dependency so types can depend on terms

Soundness

$$\Gamma \vdash M : T \Rightarrow \Gamma \models M : T$$

Logic: Syntactic \Rightarrow Semantic

Type Theory: Derivation of the type \Rightarrow Semantic evaluation is true

Second order dependent type theory $\lambda P2$

Extends λP by allowing quantification over type constructors Extends $\lambda 2$ by adding dependency so types can depend on terms

Soundness

$$\Gamma \vdash M : T \Rightarrow \Gamma \models M : T$$

Logic: Syntactic \Rightarrow Semantic

Type Theory: Derivation of the type \Rightarrow Semantic evaluation is true

Using \vdash notation \Rightarrow Using \in notation

Second order dependent type theory $\lambda P2$

Extends λP by allowing quantification over type constructors Extends $\lambda 2$ by adding dependency so types can depend on terms

Soundness

$$\Gamma \vdash \mathbf{M} : T \Rightarrow \Gamma \models \mathbf{M} : T$$

M is

- An object t, q, ... (variable version x, y, z)
- A constructor P, Q, ... (variable version α, β, γ)

Second order dependent type theory $\lambda P2$

Extends λP by allowing quantification over type constructors Extends $\lambda 2$ by adding dependency so types can depend on terms

Soundness

$$\Gamma \vdash M : \mathbf{T} \Rightarrow \Gamma \models M : \mathbf{T}$$

M is

- An object t, q, ... (variable x, y, z)
- A constructor P, Q, ... (variable α, β, γ)

T is

- A type $\sigma, \tau, ...$
- A kind *A*, *B*, *C*, ...

Second order dependent type theory $\lambda P2$

Extends λP by allowing quantification over type constructors Extends $\lambda 2$ by adding dependency so types can depend on terms

Soundness

$$\Gamma \vdash M : \mathbf{T} \Rightarrow \Gamma \models M : \mathbf{T}$$

M is

- An object t, q, ... (variable x, y, z)
- A constructor P, Q, ... (variable α, β, γ)

T is

- A type $\sigma, \tau, ...$
- A kind *A*, *B*, *C*, ...

constructor P: kind A

UI

objects t : type σ : \star

Second order dependent type theory $\lambda P2$

Extends λP by allowing quantification over type constructors Extends $\lambda 2$ by adding dependency so types can depend on terms

Soundness

$$\Gamma \vdash M : \mathbf{T} \Rightarrow \Gamma \models M : \mathbf{T}$$

M is

- An object t, q, ... (variable x, y, z)
- A constructor P, Q, ... (variable α, β, γ)

T is

- A type $\sigma, \tau, ...$
- A kind *A*, *B*, *C*, ...

	constructor P	:	kind A	Element		Set	Powerset
objects t :	\cup l $ au$ type σ	:	*	(t)	\in		$\mathcal{V}(A)$ $\mathcal{V}(*)$

Second order dependent type theory $\lambda P2$

Extends λP by allowing quantification over type constructors Extends $\lambda 2$ by adding dependency so types can depend on terms

Soundness

$$\Gamma \vdash M : T \Rightarrow \Gamma \models M : T$$

M is

- An object t, q, ...
- A constructor P, Q, ...

T is

- A type $\sigma, \tau, ...$
- A kind *A*, *B*, *C*, ...

 $\boldsymbol{\Gamma}$ is context, assigning variables to types and kinds.

For example $\Gamma = x : \sigma$,

Second order dependent type theory $\lambda P2$

Extends λP by allowing quantification over type constructors Extends $\lambda 2$ by adding dependency so types can depend on terms

Soundness

$$\Gamma \vdash M : T \Rightarrow \Gamma \models M : T$$

M is

- An object t, q, ...
- A constructor P, Q, ...

T is

- A type $\sigma, \tau, ...$
- A kind *A*, *B*, *C*, ...

 $\boldsymbol{\Gamma}$ is context, assigning variables to types and kinds.

For example $\Gamma = x : \sigma$, $\sigma : *$,

Second order dependent type theory $\lambda P2$

Extends λP by allowing quantification over type constructors Extends $\lambda 2$ by adding dependency so types can depend on terms

Soundness

$$\Gamma \vdash M : T \Rightarrow \Gamma \models M : T$$

M is

- An object t, q, ...
- A constructor P, Q, ...

T is

- A type $\sigma, \tau, ...$
- A kind *A*, *B*, *C*, ...

 $\boldsymbol{\Gamma}$ is context, assigning variables to types and kinds.

For example $\Gamma = x : \sigma$, $\sigma : *$, $\alpha : A$

Goal of the following section

Goal

To understand the difference between variables and pseudo-terms

Goal of the following section

Goal

To understand the difference between *variables* and *pseudo-terms* and what map we use to map each!

	Objects	Constructors	Kinds
Variables	$\{x,y,z\}$	$\{\alpha,\beta,\gamma\}$	

	Objects	Constructors	Kinds
Variables	$\{x,y,z\}$	$\{\alpha,\beta,\gamma\}$	
\cap	\cap	\cap	
Pseudo-Terms	$\{t,u,v\}$	$\{P,Q,R\}$	$\{*,A,B,C\}$

	Objects	Constructors	Kinds
Variables	$\{x,y,z\}$	$\{\alpha,\beta,\gamma\}$	
\cap	\cap	\cap	
Pseudo-Terms	$\{t,u,v\}$	$\{P,Q,R\}$	$\{*,A,B,C\}$

Variables

Assigned in our context Γ .

	Objects	Constructors	Kinds
Variables	$\{x,y,z\}$	$\{\alpha,\beta,\gamma\}$	
\cap	\cap	\cap	
Pseudo-Terms	$\{t,u,v\}$	$\{P,Q,R\}$	$\{*,A,B,C\}$

Variables

Assigned in our context Γ . We use ρ and ξ to evaluate them.

	Objects	Constructors	Kinds
Variables	$\{x,y,z\}$	$\{\alpha,\beta,\gamma\}$	
\cap	\cap	\cap	
Pseudo-Terms	$\{t,u,v\}$	$\{P,Q,R\}$	$\{*,A,B,C\}$

Variables

Assigned in our context Γ . We use ρ and ξ to evaluate them.

Pseudo-Terms

Depends on our context Γ .

	Objects	Constructors	Kinds
Variables	$\{x,y,z\}$	$\{\alpha,\beta,\gamma\}$	
\cap	\cap	\cap	
Pseudo-Terms	$\{t,u,v\}$	$\{P,Q,R\}$	$\{*,A,B,C\}$

Variables

Assigned in our context Γ . We use ρ and ξ to evaluate them.

Pseudo-Terms

Depends on our context Γ . We use (-), [-] and $\mathcal{V}(-)$ to evaluate them.

	Objects	Constructors	Kinds
Variables	$\{x,y,z\}$	$\{\alpha, \beta, \gamma\}$	
\cap	\cap	\cap	
Pseudo-Terms	$\{t,u,v\}$	$\{P,Q,R\}$	$\{*,A,B,C\}$

Variables

Assigned in our context Γ . We use ρ and ξ to evaluate them.

Pseudo-Terms

Depends on our context Γ. We use $(-)_{\rho}$, $[-]_{\xi\rho}$ and $\mathcal{V}(-)_{\xi\rho}$ to evaluate them

	Objects	Constructors	Kinds
Variables	$\{x,y,z\}$	$\{\alpha, \beta, \gamma\}$	
\cap	\cap	\cap	
Pseudo-Terms	$\{t,u,v\}$	$\{P,Q,R\}$	$\{*,A,B,C\}$

Variables

Assigned in our context Γ . We use ρ and ξ to evaluate them.

Pseudo-Terms

Depends on our context Γ . We use $(-)_{\rho}$, $[-]_{\xi\rho}$ and $\mathcal{V}(-)_{\xi\rho}$ to evaluate themwhile respecting to ρ and ξ .

Goal of the following section

Goal

To understand truth in $\lambda P2$

Truth in $\lambda 2P$

 $\Gamma \models M : T \text{ if } \Gamma \models^{\mathcal{M}} M : T \text{ for all } \lambda 2P\text{-models } \mathcal{M}$

Truth in $\lambda 2P$

$$\Gamma \models M : T \text{ if } \Gamma \models^{\mathcal{M}} M : T \text{ for all } \lambda 2P\text{-models } \mathcal{M}$$

I.e. a general truth in $\lambda P2$ means this is true in **all** models of $\lambda P2$

Truth in $\lambda 2P$

$$\Gamma \models M : T \text{ if } \Gamma \models^{\mathcal{M}} M : T \text{ for all } \lambda 2P\text{-models } \mathcal{M}$$

I.e. a general truth in $\lambda P2$ means this is true in **all** models of $\lambda P2$

```
\Gamma \models^{\mathcal{M}_1} M : T 

\Gamma \models^{\mathcal{M}_2} M : T
```

$$\Gamma \models^{\mathcal{M}_n} M : T$$

$$\Gamma \models M : T \text{ if } \Gamma \models^{\mathcal{M}} M : T \text{ for all } \lambda 2P\text{-models } \mathcal{M}$$

I.e. a general truth in $\lambda P2$ means this is true in **all** models of $\lambda P2$

```
\Gamma \models^{\mathcal{M}_1} M : T 

\Gamma \models^{\mathcal{M}_2} M : T 

... 

\Gamma \models^{\mathcal{M}_n} M : T

\Rightarrow \qquad \qquad \Gamma \models M : T \text{ in } \lambda P2
```

Goal

To understand the two cases of truth for $\lambda P2$

Object case $\Gamma \models^{\mathcal{M}} t : \sigma$

Object case

 $\Gamma \models^{\mathcal{M}} t : \sigma \text{ if } (t)_{\rho} \in \llbracket \sigma \rrbracket_{\xi\rho}$

Constructor case

$$\Gamma \models^{\mathcal{M}} P : A$$

Object case

 $\Gamma \models^{\mathcal{M}} t : \sigma \text{ if } (t)_{\rho} \in \llbracket \sigma \rrbracket_{\xi\rho}$

Constructor case

$$\Gamma \models^{\mathcal{M}} P : A \text{ if } \llbracket P \rrbracket_{\xi\rho} \in \mathcal{V}(A)_{\xi\rho}$$

Object case

$$\Gamma \models^{\mathcal{M}} t : \sigma \text{ if } (t)_{\rho} \in \llbracket \sigma \rrbracket_{\xi\rho}$$

Constructor case

$$\Gamma \models^{\mathcal{M}} P : A \text{ if } \llbracket P \rrbracket_{\xi\rho} \in \mathcal{V}(A)_{\xi\rho}$$

Element		Set		Powerset
		$\llbracket P \rrbracket_{\xi\rho}$	\in	$\mathcal{V}(A)_{\xi ho}$
$(\!(t)\!)_ ho$	\in	$\llbracket\sigma rbracket_{\xi ho}$	\in	

Object case

 $\Gamma \models^{\mathcal{M}} t : \sigma \text{ if } (t)_{\rho} \in \llbracket \sigma \rrbracket_{\xi\rho}$

Constructor case

 $\Gamma \models^{\mathcal{M}} P : A \text{ if } \llbracket P \rrbracket_{\xi\rho} \in \mathcal{V}(A)_{\xi\rho}$

Condition: $\rho, \xi \models \Gamma$

Goal

To understand how our maps for variables fulfills our context.

$$\rho, \xi \models \Gamma$$

 $\Gamma = \mathsf{Var}^* \cup \mathsf{Var}^{\mathsf{Kind}}$

$$\rho, \xi \models \Gamma$$

$$\Gamma = \mathsf{Var}^* \cup \mathsf{Var}^{\mathsf{Kind}}$$

$$\mathsf{Var}^* = \{x, y, z\}$$

$$\mathsf{Var}^{\mathsf{Kind}} = \{\alpha, \beta, \gamma\}$$

$$\forall x : \mathsf{Var}^*$$

$$\rho, \xi \models \Gamma$$

$$\Gamma = \mathsf{Var}^* \cup \mathsf{Var}^{\mathsf{Kind}}$$

$$\mathsf{Var}^* = \{x, y, z\}$$

$$\mathsf{Var}^{\mathsf{Kind}} = \{\alpha, \beta, \gamma\}$$

$$\forall x: \mathsf{Var}^*$$
 , $x: \sigma \in \Gamma$

$$\rho, \xi \models \Gamma$$

$$\Gamma = \mathsf{Var}^* \cup \mathsf{Var}^\mathsf{Kind}$$

$$Var^* = \{x, y, z\}$$

$$\mathsf{Var}^{\mathsf{Kind}} = \{\alpha, \beta, \gamma\}$$

$$\forall x : \mathsf{Var}^*$$
 , $x : \sigma \in \Gamma$ then $\rho(x) \in \llbracket \sigma \rrbracket_{\xi \rho}$

 $\forall \alpha : \mathsf{Var}^{\mathsf{Kind}}$

$$\rho, \xi \models \Gamma$$

$$\Gamma = \mathsf{Var}^* \cup \mathsf{Var}^\mathsf{Kind}$$

$$\mathsf{Var}^* = \{x, y, z\}$$

$$\mathsf{Var}^{\mathsf{Kind}} = \{\alpha, \beta, \gamma\}$$

$$\forall x : \mathsf{Var}^*$$
 , $x : \sigma \in \Gamma$ then $\rho(x) \in \llbracket \sigma \rrbracket_{\xi \rho}$

$$\forall \alpha : \mathsf{Var}^\mathsf{Kind}$$
 , $\alpha : A \in \Gamma$

$$\rho, \xi \models \Gamma$$

$$\Gamma = \mathsf{Var}^* \cup \mathsf{Var}^\mathsf{Kind}$$

$$\mathsf{Var}^* = \{x, y, z\}$$

$$\mathsf{Var}^{\mathsf{Kind}} = \{\alpha, \beta, \gamma\}$$

$$\forall x : \mathsf{Var}^*$$
 , $x : \sigma \in \Gamma$ then $\rho(x) \in \llbracket \sigma \rrbracket_{\xi \rho}$

$$\forall \alpha : \mathsf{Var}^{\mathsf{Kind}}$$
 , $\alpha : A \in \Gamma$ then $\xi(x) \in \mathcal{V}(A)_{\xi\rho}$

Goal

To understand the size ordering of a $\lambda 2P$ model

λP 2-model

 $\langle \mathcal{A}, \mathcal{P}, \mathcal{N} \rangle \text{ is a } \lambda P2\text{-model where } \mathcal{A} = \langle \textit{\textbf{A}}, \cdot, \textit{\textbf{k}}, \textit{\textbf{s}} \rangle \text{ is a combinatory algebra}$

λP 2-model

 $\langle \mathcal{A}, \mathcal{P}, \mathcal{N} \rangle \text{ is a } \lambda P2\text{-model where } \mathcal{A} = \langle \textbf{\textit{A}}, \cdot, \textbf{\textit{k}}, \textbf{\textit{s}} \rangle \text{ is a combinatory algebra}$

Set	Powerset	Set of Powersets
Α		

λP 2-model

 $\langle \mathcal{A}, \mathcal{P}, \mathcal{N} \rangle \text{ is a } \lambda P2\text{-model where } \mathcal{A} = \langle \textbf{\textit{A}}, \cdot, \textbf{\textit{k}}, \textbf{\textit{s}} \rangle \text{ is a combinatory algebra}$

Set	Powerset		Set of Powersets
Α			
	${\cal P}$	\in	\mathcal{N}

λP 2-model

 $\langle \mathcal{A}, \mathcal{P}, \mathcal{N} \rangle \text{ is a } \lambda P2\text{-model where } \mathcal{A} = \langle \textbf{\textit{A}}, \cdot, \textbf{\textit{k}}, \textbf{\textit{s}} \rangle \text{ is a combinatory algebra}$

Set	Powerset		Set of Powersets
A			
	${\cal P}$	\in	\mathcal{N}
	$\cup \mathcal{N}$		

where
$$\cup \mathcal{N} = \underset{X \in \mathcal{N}}{\cup} X$$

λP 2-model

 $\langle \mathcal{A}, \mathcal{P}, \mathcal{N} \rangle$ is a λP 2-model where $\mathcal{A} = \langle \mathbf{A}, \cdot, \mathbf{k}, \mathbf{s} \rangle$ is a combinatory algebra

Set	Powerset		Set of Powersets
A			
	${\cal P}$	\in	\mathcal{N}
	$\cup \mathcal{N}$		

where
$$\cup \mathcal{N} = \underset{X \in \mathcal{N}}{\cup} X$$

Thus
$$\mathcal{N} = \{X, Y, Z\}$$

λP 2-model

 $\langle \mathcal{A}, \mathcal{P}, \mathcal{N} \rangle$ is a λP 2-model where $\mathcal{A} = \langle \mathbf{A}, \cdot, \mathbf{k}, \mathbf{s} \rangle$ is a combinatory algebra

Set	Powerset		Set of Powersets
Α			
	${\mathcal P}$	\in	$\mathcal N$
	$\cup \mathcal{N}$		

where
$$\cup \mathcal{N} = \underset{X \in \mathcal{N}}{\cup} X$$

Thus
$$\mathcal{N} = \{X, Y, Z\}$$
 and $\cup \mathcal{N} = \{x_1, ..., x_n, y_1, ..., y_m, z_1, ..., z_w\}$

Goal

To understand how the model respects \boldsymbol{A}

Goal

To understand how the model respects \boldsymbol{A} and why we need evaluations on a set level

Goal

To understand how the model respects \boldsymbol{A} and why we need evaluations on a set level, powerset level

Goal

To understand how the model respects \boldsymbol{A} and why we need evaluations on a set level, powerset level and set of powerset level.

$$| \rho : : \{x, y, z, ...\} \rightarrow \mathbf{A}$$

$$ho: \quad : \quad \{x,y,z,...\} \quad o \quad m{A}$$
 $ho: \quad : \quad \{t,q,p,...\} \quad o \quad m{A}$

$$ho: \quad : \quad \{x,y,z,...\} \quad o \quad m{A} \
ho = \
ho \quad : \quad \{t,q,p,...\} \quad o \quad m{A} \
ho = \
ho \quad .$$

Example

Let's say $x : \sigma$ and $y : \sigma$ and $t : \sigma$

$$ho: \quad : \quad \{x,y,z,...\} \quad o \quad m{A}$$
 $ho: \quad : \quad \{t,q,p,...\} \quad o \quad m{A}$

Example

Let's say $x:\sigma$ and $y:\sigma$ and $t:\sigma$, then $[\![\sigma]\!]_{\xi\rho}=$

$$ho: \quad : \quad \{x,y,z,...\} \quad o \quad m{A}$$
 $ho: \quad : \quad \{t,q,p,...\} \quad o \quad m{A}$

Example

Let's say $x:\sigma$ and $y:\sigma$ and $t:\sigma$, then $[\![\sigma]\!]_{\xi\rho}=\{\rho(x),$

$$ho: \quad : \quad \{x,y,z,...\} \quad o \quad m{A}$$
 $ho: \quad : \quad \{t,q,p,...\} \quad o \quad m{A}$

Example

Let's say $x:\sigma$ and $y:\sigma$ and $t:\sigma$, then $[\![\sigma]\!]_{\xi\rho}=\{\rho(x),\rho(y),$

$$ho: \quad : \quad \{x,y,z,...\} \quad o \quad m{A}$$
 $ho: \quad : \quad \{t,q,p,...\} \quad o \quad m{A}$

Example

Let's say $x:\sigma$ and $y:\sigma$ and $t:\sigma$, then $[\![\sigma]\!]_{\xi\rho}=\{\rho(x),\rho(y),(\![t]\!]_{\rho}\}$

$$ho: \quad : \quad \{x,y,z,...\} \quad o \quad m{A}$$
 $(-)_{
ho} \quad : \quad \{t,q,p,...\} \quad o \quad m{A}$

Example

Let's say $x:\sigma$ and $y:\sigma$ and $t:\sigma$, then $[\![\sigma]\!]_{\xi\rho}=\{\rho(x),\rho(y),(\![t]\!]_{\rho}\}\subseteq \textbf{\textit{A}}.$

Mapping of constructors

$$\mid \xi : \quad : \quad \{\alpha, \beta, \gamma, \ldots\} \quad \rightarrow \quad \cup \mathcal{N}$$

Mapping of constructors

Mapping of constructors

$$\left| \begin{array}{cccc} \xi : & : & \{\alpha, \beta, \gamma, \ldots\} & \rightarrow & \cup \mathcal{N} \\ \\ \llbracket - \rrbracket_{\xi \rho} & : & \{P, Q, R, \ldots\} & \rightarrow & \cup \mathcal{N} \end{array} \right|$$

Example

Let's say $\alpha: A$ and $\beta: A$ and P: A

Example

Let's say lpha: A and eta: A and P: A , then $\mathcal{V}(A)_{\xi
ho} =$

Example

Let's say $\alpha: A$ and $\beta: A$ and P: A, then $\mathcal{V}(A)_{\xi\rho} = \{\xi(\alpha), \}$

Example

Let's say $\alpha: A$ and $\beta: A$ and P: A, then $\mathcal{V}(A)_{\xi\rho} = \{\xi(\alpha), \beta(\alpha), \alpha\}$

Example

Let's say $\alpha: A$ and $\beta: A$ and P: A, then $\mathcal{V}(A)_{\xi\rho} = \{\xi(\alpha), \beta(\alpha), [\![P]\!]_{\xi\rho}\}$

Example

Let's say $\alpha: A$ and $\beta: A$ and P: A, then $\mathcal{V}(A)_{\xi\rho} = \{\xi(\alpha), \beta(\alpha), [\![P]\!]_{\xi\rho}\} \subseteq \cup \mathcal{N}$.

Example

Let's say $\alpha: A$ and $\beta: A$ and P: A, then $\mathcal{V}(A)_{\xi\rho} = \{\xi(\alpha), \beta(\alpha), [\![P]\!]_{\xi\rho}\} \subseteq \cup \mathcal{N}$. Note $\xi(\alpha), \beta(\alpha), [\![P]\!]_{\xi\rho} \subseteq A$.

Goal of the following section

Goal

To understand polyset structure ${\mathcal P}$

Goal of the following section

Goal

To understand polyset structure ${\cal P}$

We need a polyset structure $\ensuremath{\mathcal{P}}$ to evaluate our $\ensuremath{\textit{constructors}}$

Definition of a Polyset Structure

A polyset structure over the weakly extensional combinatory algebra $\mathcal{A} = \langle \mathbf{A}, \cdot, \mathbf{k}, \mathbf{s} \rangle$ is a collection $\mathcal{P} \subseteq \wp(\mathbf{A})$ such that

Definition of a Polyset Structure

A polyset structure over the weakly extensional combinatory algebra $\mathcal{A} = \langle \mathbf{A}, \cdot, \mathbf{k}, \mathbf{s} \rangle$ is a collection $\mathcal{P} \subseteq \wp(\mathbf{A})$ such that

• 1. $\mathbf{A} \in \mathcal{P}$,

Definition of a Polyset Structure

A polyset structure over the weakly extensional combinatory algebra $\mathcal{A} = \langle \mathbf{A}, \cdot, \mathbf{k}, \mathbf{s} \rangle$ is a collection $\mathcal{P} \subseteq \wp(\mathbf{A})$ such that

- 1. $\mathbf{A} \in \mathcal{P}$,
- 2. \mathcal{P} is closed under arbitrary intersection \cap ,

Definition of a Polyset Structure

A polyset structure over the weakly extensional combinatory algebra $\mathcal{A} = \langle \mathbf{A}, \cdot, \mathbf{k}, \mathbf{s} \rangle$ is a collection $\mathcal{P} \subseteq \wp(\mathbf{A})$ such that

- 1. $\mathbf{A} \in \mathcal{P}$,
- 2. \mathcal{P} is closed under arbitrary intersection \cap ,
- 3. \mathcal{P} is closed under dependent products.

Definition of a Polyset Structure

A polyset structure over the weakly extensional combinatory algebra $\mathcal{A} = \langle \mathbf{A}, \cdot, \mathbf{k}, \mathbf{s} \rangle$ is a collection $\mathcal{P} \subseteq \wp(\mathbf{A})$ such that

- 1. $\mathbf{A} \in \mathcal{P}$,
- 2. \mathcal{P} is closed under arbitrary intersection \cap ,
- 3. \mathcal{P} is closed under dependent products.

Examples

 $\mathcal{P} = \wp(A)$ is the full polyset structure.

Definition of a Polyset Structure

A polyset structure over the weakly extensional combinatory algebra $\mathcal{A} = \langle \mathbf{A}, \cdot, \mathbf{k}, \mathbf{s} \rangle$ is a collection $\mathcal{P} \subseteq \wp(\mathbf{A})$ such that

- 1. $A \in P$,
- 2. \mathcal{P} is closed under arbitrary intersection \cap ,
- 3. \mathcal{P} is closed under dependent products.

Examples

 $\mathcal{P} = \wp(A)$ is the full polyset structure.

 $\mathcal{P} = \{\emptyset, \mathbf{A}\}$ is a simple polyset structure.

Dependent product of a polyset structure is used to interpret types of the form Πx : $\sigma.\tau$, where both σ and τ are types

Dependent product of a polyset structure is used to interpret types of the form Πx : $\sigma.\tau$, where both σ and τ are types

Examples

Types are interpreted as subsets $\llbracket \sigma \rrbracket$, $\llbracket \tau \rrbracket \subseteq \mathbf{A}$. If $\llbracket \sigma \rrbracket$, $\llbracket \tau \rrbracket \in \mathcal{P}$ then $\llbracket \sigma \to \tau \rrbracket \in \mathcal{P}$ (Using simple notation)

Dependent product of a polyset structure is used to interpret types of the form Πx : $\sigma.\tau$, where both σ and τ are types

Examples

Types are interpreted as subsets $\llbracket \sigma \rrbracket, \llbracket \tau \rrbracket \subseteq \mathbf{A}$. If $\llbracket \sigma \rrbracket, \llbracket \tau \rrbracket \in \mathcal{P}$ then $\llbracket \sigma \to \tau \rrbracket \in \mathcal{P}$ (Using simple notation)

Intersection of a polyset structure is used to interpret types of the form $\Pi \alpha : A.\sigma$, where σ is a type and A is a kind

Dependent product of a polyset structure is used to interpret types of the form Πx : $\sigma.\tau$, where both σ and τ are types

Examples

Types are interpreted as subsets $\llbracket \sigma \rrbracket, \llbracket \tau \rrbracket \subseteq \mathbf{A}$. If $\llbracket \sigma \rrbracket, \llbracket \tau \rrbracket \in \mathcal{P}$ then $\llbracket \sigma \to \tau \rrbracket \in \mathcal{P}$ (Using simple notation)

Intersection of a polyset structure is used to interpret types of the form $\Pi\alpha:A.\sigma$, where σ is a type and A is a kind

We need to go one size level larger to accommodate for predicates and their powerset interpretations $\mathcal{V}(A)$

Goal of the following section

Goal

To understand predicative structure ${\cal N}$

We need a predicative structure ${\cal N}$ to evaluate our ${\it kinds}$

Defining predicative structure ${\cal N}$

Definition of a Predicative Structure

For a polyset structure \mathcal{P} , the predicative structure over \mathcal{P} is the collection of sets \mathcal{N} defined inductively by

- 1. $\mathcal{P} \in \mathcal{N}$
- 2. If $X \in \mathcal{P}$ and $\forall t \in X, F(t) \in \mathcal{N}$ then $\Pi_{t \in X} F(t) \in \mathcal{N}$

Defining predicative structure ${\cal N}$

Definition of a Predicative Structure

For a polyset structure \mathcal{P} , the predicative structure over \mathcal{P} is the collection of sets \mathcal{N} defined inductively by

- 1. $\mathcal{P} \in \mathcal{N}$
- 2. If $X \in \mathcal{P}$ and $\forall t \in X, F(t) \in \mathcal{N}$ then $\Pi_{t \in X} F(t) \in \mathcal{N}$

Set		Powerset		Set of Powersets
Α	\in	\mathcal{P}	\in	\mathcal{N}

Defining predicative structure ${\mathcal N}$

Definition of a Predicative Structure

For a polyset structure \mathcal{P} , the predicative structure over \mathcal{P} is the collection of sets \mathcal{N} defined inductively by

- 1. $\mathcal{P} \in \mathcal{N}$
- 2. If $X \in \mathcal{P}$ and $\forall t \in X, F(t) \in \mathcal{N}$ then $\Pi_{t \in X} F(t) \in \mathcal{N}$

Set		Powerset		Set of Powersets
A	\in	\mathcal{P}	\in	\mathcal{N}

$$\mathcal{N} = \{\mathcal{P}, X \to \mathcal{P}, X \to X \to \mathcal{P}, Y \to \mathcal{P}, \}$$