Induction Is Not Derivable in Second Order Dependent Type Theory

Herman Geuvers

Josja Koopmans, Matej Hora

What do we want to prove?

- lnduction is not derivable in $\lambda P2$.
- ► So, for example, with

$$\operatorname{ind} := \Pi P : \operatorname{nat} \to \star.(PO) \to (\Pi y : \operatorname{nat}.(Py) \to (P(\operatorname{succ} y)))$$
$$\to \Pi x : \operatorname{nat}.(Px)$$

 \blacktriangleright we prove that for any context Γ and pseudo-term N:

$$\Gamma \not\vdash \text{ind} : N$$

What do we need to prove it?

- Introduce notation, definitions and lemmas.
- Introduce counter-model.

Note The counter-model will be a model of $\lambda P2$, for which the induction property is not valid.

Validity

Definition 10. For \mathcal{M} a $\lambda P2$ -model, Γ a context, σ a type in Γ and ξ, ρ valuations such that $\xi, \rho \models \Gamma$, we say that σ is valid in \mathcal{M} under ξ, ρ , notation

$$\mathcal{M}, \xi, \rho \models^{\lambda P2} \sigma,$$

if

$$\llbracket \sigma \rrbracket_{\xi\rho}^{\mathcal{M}} \neq \emptyset.$$

So, to prove the non-derivability of ind in $\lambda P2$, we are looking for a $\lambda P2$ -model $\mathcal M$ such that

$$\mathcal{M} \not\models^{\lambda P2}$$
 ind.

Consistency

Definition 11. A $\lambda P2$ -model M is *consistent* if $\emptyset \in \mathcal{P}$. For a $\lambda P2$ -model, being consistent is equivalent to saying that $[\![\bot]\!] = \emptyset$, because $[\![\bot]\!]$ is the minimal element (w.r.t. \subseteq) of \mathcal{P} . Here, \bot is defined as usual as $\Pi \alpha : \star .\alpha$. Note that the polyset structures of Example 2 all yield a consistent $\lambda P2$ -model.

Convention 12. From now on we only discuss consistent $\lambda P2$ -models.

Connectives

Definition 13. In a $\lambda P2$ -model $\mathcal{M}=\langle \mathcal{A},\mathcal{P},\mathcal{N}\rangle$ we define the 'connectives' \bot , \neg , \wedge , \vee and \exists as follows. $(X,Y\in\mathcal{P},F:X\to\mathcal{P})$ and $Y_i\in\mathcal{P}$ for all $i\in I$; as in types, we let brackets associate to the right.)

$$\bot := \bigcap_{Z \in P} Z, \qquad \neg X := X \to \bot,$$

$$X \land Y := \bigcap_{Z \in P} (X \to Y \to Z) \to Z,$$

$$X \lor Y := \bigcap_{Z \in P} (X \to Z) \to (Y \to Z) \to Z,$$

$$\exists_{x \in X} F(x) := \bigcap_{Z \in P} (\Pi x \in X. F(x) \to Z) \to Z,$$

$$\exists_{i \in I} Y_i := \bigcap_{Z \in P} (\bigcap_{i \in I} Y_i \to Z) \to Z.$$

Logic in λ P2-models

Lemma 1. The following holds in arbitrary (consistent) $\lambda P2$ -models \mathcal{M} :

 $i \in I$

$$\neg X = \emptyset \Leftrightarrow X \neq \emptyset, \tag{1}$$

$$X \to Y \neq \emptyset \Leftrightarrow \text{ if } X \neq \emptyset \text{ then } Y \neq \emptyset, \tag{2}$$

$$X \land Y \neq \emptyset \Leftrightarrow X \neq \emptyset \text{ and } Y \neq \emptyset, \tag{3}$$

$$X \lor Y \neq \emptyset \Leftrightarrow X \neq \emptyset \text{ or } Y \neq \emptyset, \tag{4}$$

$$\exists_{x \in X} F(x) \neq \emptyset \Leftrightarrow \exists t \in X (F(t) \neq \emptyset), \tag{5}$$

$$\exists_{i \in I} Y_i \neq \emptyset \Leftrightarrow \exists i \in I (Y_i \neq \emptyset), \tag{6}$$

$$\Pi_{x \in X} F(x) \neq \emptyset \Rightarrow \forall t \in X (F(t) \neq \emptyset), \tag{7}$$

$$\bigcap Y_i \neq \emptyset \Rightarrow \forall i \in I (Y_i \neq \emptyset). \tag{8}$$

Logic in λ P2-models

Lemma 2. For a simple $\lambda P2$ -model over $\mathcal A$ the reverse implications in Lemma 1, cases (7) and (8), hold. Similarly for a $\lambda P2$ -model generated from a set C.

Reminder A simple $\lambda P2$ model over \mathcal{A} is a model made with the simple polyset structure over \mathcal{A} , so $\mathcal{P} = \{\emptyset, \mathbf{A}\}.$

 $\lambda P2$ -model generated from a set C:

$$\mathcal{P} := \{ X \subseteq \Lambda(C) \mid X = \emptyset \ \lor \ C \subseteq X \}.$$

For (7), if for all $t \in X$, $F_t \neq \emptyset$, then there is an element q such that

$$\forall t \in X \ (q \in F(t))$$

and hence $\lambda^* x. q \in \Pi_{t \in X} F(t)$. Case (8) is immediate.

Classical Logic in λ P2-models

Lemma 3. All $\lambda P2$ -models satisfy classical logic, i.e.

$$\neg \neg X \to X \neq \emptyset$$

for all $X \in \mathcal{P}$ in all $\lambda P2$ -models.

Proof. We reason classically in the models, using Lemma 1. Let $X \in \mathcal{P}$. If $X \neq \emptyset$, say $t \in X$, then $\neg \neg X \to X \neq \emptyset$, because e.g. $\lambda^* x.t \in \neg \neg X \to X$. If $X = \emptyset$, then $\neg X = \mathbf{A}$, so $\neg \neg X = \emptyset$, so $\neg \neg X \to X = \mathbf{A}$

Reminder Lemma 1 is the logic in $\lambda P2$ -models.

Leibniz equality

Equality is defined in $\lambda P2$ using Leibniz equality: for $\sigma:\star,M,N:\sigma$

$$M =_{\sigma} N := \Pi P : \sigma \to \star . (PM) \to (PN)$$

Model intepretation

Lemma 4. Given a $\lambda P2$ -model \mathcal{M} , a type σ and terms $M,N:\sigma$, we have

$$\mathcal{M}, \xi, \rho \models M =_{\sigma} N \Leftrightarrow (M)_{\rho} = (N)_{\rho}.$$

Note: A term "M is Leibniz equal to N"is valid in the model if and only if M and N have the same interpretations.

Model intepretation cont.

Lemma 4. Given a $\lambda P2$ -model \mathcal{M} , a type σ and terms $M,N:\sigma$, we have

$$\mathcal{M}, \xi, \rho \models M =_{\sigma} N \Leftrightarrow (M)_{\rho} = (N)_{\rho}.$$

Proof. \Rightarrow :

Step 1: Rewrite $M =_{\sigma} N$ to

$$\bigcap_{Q \in [\![\sigma]\!] \to \mathcal{P}} Q(\![M]\!]_{\rho} \to Q(\![N]\!]_{\rho} \neq \emptyset$$

Step 2: Define a function Q such that $Qx \neq \emptyset$ iff $x = (M)_{\rho}$.

Step 3: Then, $Q(N)_o \neq \emptyset$.

Conclusion: So, $(M)_{\rho} = (N)_{\rho}$.

Model intepretation cont.

Lemma 4. Given a $\lambda P2$ -model \mathcal{M} , a type σ and terms $M,N:\sigma$, we have

$$\mathcal{M}, \xi, \rho \models M =_{\sigma} N \Leftrightarrow (M)_{\rho} = (N)_{\rho}.$$

Proof. \Leftarrow :

Step 1: Since $(M)_{\rho} = (N)_{\rho}$,

$$Q(M)_{\rho} = Q(N)_{\rho}$$

Step 2: thus

$$\lambda^*x.x \in \bigcap_{Q \in [\![\sigma]\!] \to \mathcal{P}} Q(\![M]\!]_{\rho} \to Q(\![N]\!]_{\rho}$$

Conclusion: So $M =_{\sigma} N$ is valid in the model.

Induction defintion

Definition 14. Given a closed $\lambda P2$ -type N and closed terms

0:N and $S:N\to N$, we define the type $\mathrm{ind}_{N,0,S}$ by

 $\Pi P: N \to \star .P0 \to (\Pi x: N.Px \to P(Sx)) \to \Pi x: N.Px.$

Lemma 5. For a $\mathcal{M} = \langle \mathcal{A}, \mathcal{P}, \mathcal{N} \rangle$ a $\lambda P2$ -model,

$$\mathcal{M} \models \operatorname{ind}_{N,0,S} \Rightarrow \llbracket N \rrbracket = \{ S^n 0 | n \in \mathbb{N} \}$$

If, moreover, the test-for-zero and predecessor function are definable on the type N in the model \mathcal{M} , then also

$$\llbracket N \rrbracket = \{ S^n 0 | n \in \mathbb{N} \} \Rightarrow \mathcal{M} \models \operatorname{ind}_{N,0,S}$$

The interpretation of N is the natural numbers if (and only if) $\operatorname{ind}_{N,0,S}$ is valid in \mathcal{M} .

Lemma 5. For a $\mathcal{M} = \langle \mathcal{A}, \mathcal{P}, \mathcal{N} \rangle$ a $\lambda P2$ -model,

$$\mathcal{M} \models \operatorname{ind}_{N,0,S} \Rightarrow \llbracket N \rrbracket = \{S^n 0 | n \in \mathbb{N}\}$$

Proof.

Step 1: We re-write $\mathcal{M} \models \operatorname{ind}_{N,0,S}$ as

$$\bigcap_{Q \in N \to \mathcal{P}} Q0 \to (\prod_{t \in N} Qt \to Q(St)) \to \prod_{t \in N} Qt \neq \emptyset.$$

Step 2: Let X be some non-empty element of \mathcal{P} . Define a function

 $Q: N \to \mathcal{P}$ such that if $t = S^n 0$, then Qt = X else $Qt = \emptyset$.

Step 3: By definition, $Q0 \neq \emptyset$, and $\Pi_{t \in N} Qt \rightarrow Q(St) \neq \emptyset$.

Step 4: Thus, $\Pi_{t\in N}Qt\neq\emptyset$, so an element $M\in\Pi_{t\in N}Qt$.

Lemma 5. For a $\mathcal{M} = \langle \mathcal{A}, \mathcal{P}, \mathcal{N} \rangle$ a $\lambda P2$ -model,

$$\mathcal{M} \models \operatorname{ind}_{N,0,S} \Rightarrow \llbracket N \rrbracket = \{S^n 0 | n \in \mathbb{N}\}$$

Proof cont.

Step 5: Now, suppose $q \in N$ with $q \neq S^n 0$. Then, by definition of $Q, \ Qq = \emptyset$.

Step 6: Also, $Mq \in Qq$, with $Mq \neq \emptyset$.

Conclusion: Contradiction, so all $q \in N$ are of the form S^n0 .

Lemma 5 cont. If, moreover, the test-for-zero and predecessor function are definable on the type N in the model \mathcal{M} , then also

$$\llbracket N \rrbracket = \{ S^n 0 | n \in \mathbb{N} \} \Rightarrow \mathcal{M} \models \operatorname{ind}_{N,0,S}$$

Proof.

Step 1: We suppose test-for-zero and the predecessor function are definable in the model.

Step 2: Suppose $N = \{S^n 0 | n \in \mathbb{N}\}$ (the assumption).

Step 3: Again, re-write $\mathcal{M} \models \operatorname{ind}_{N,0,S}$ as

$$\bigcap_{Q \in N \to \mathcal{P}} Q0 \to (\Pi_{t \in N} Qt \to Q(St)) \to \Pi_{t \in N} Qt \neq \emptyset.$$

This is our goal.

Step 4: Define a function $Q \in N \to \mathcal{P}$ arbitrarily, and let $Z \in Q0$.

Step 5: Define another function $F \in \Pi_{t \in N} Qt \to Q(St)$.

Step 6: We are looking for an element of $\Pi_{t \in N}Qt$.

Lemma 5 cont. If, moreover, the test-for-zero and predecessor function are definable on the type N in the model \mathcal{M} , then also

$$[\![N]\!] = \{S^n 0 | n \in \mathbb{N}\} \Rightarrow \mathcal{M} \models \operatorname{ind}_{N,0,S}$$

Proof cont.

Step 7: This element is given by an H which is the solution to

$$Hx = \text{if } \operatorname{Zero}(x) \text{ then } Z \text{ else } F(x-1)(H(x-1)).$$

Step 8: We can obtain the element by taking a fixed point of

$$\lambda^* hx.$$
if $\operatorname{Zero}(x)$ then Z else $F(x-1)(H(x-1))$

Note: We need the test-for-zero and predecessor to be able to define this in H.

Proof

Theorem 2. Induction over the natural numbers is not derivable in $\lambda P2$ for any type N and terms 0:N and $S:N\to N$.

Recap: simple $\lambda P2$ -model over Λ

Example 1.

1. A standard example of a weca is $\Lambda,$ consisting of the classes of open $\lambda\text{-terms}$ modulo $\beta\text{-equality}.$ Thus, $\mathbf A$ is just Λ/β and [M]=[N] iff $M=_\beta N.$ It is easily verified that this yields a weca.

Example 3.

2. The simple $\lambda P2$ -model over \mathcal{A} is $\mathcal{M}=\langle \mathcal{A},\mathcal{P},\mathcal{N}\rangle$, where \mathcal{P} is the simple polyset structure over \mathcal{A} (so $\mathcal{P}=\{\emptyset,\mathcal{A}\}$).

So, simple $\lambda P2$ -model over Λ : $\mathcal{M} = \langle \Lambda, \mathcal{P}, \mathcal{N} \rangle$, where $\mathcal{P} = \{\emptyset, \Lambda\}$.

Recap: interpretation functions

Definition 4 ...

We now define three interpretation functions:

$$\mathcal{V}(-): \mathsf{kinds} o \mathcal{N}, \qquad \llbracket - \rrbracket : egin{cases} \mathsf{constructors} o \bigcup \mathcal{N}, \\ \mathsf{types} o \mathcal{P}. \end{cases}$$

...

So for all types σ , $\llbracket \sigma \rrbracket \in \mathcal{P}$.

Assume induction is derivable

$$\mathcal{M} \parallel = \operatorname{ind}_{N,0,S} \Rightarrow \llbracket N \rrbracket = \{ S^n 0 | n \in \mathbb{N} \}$$
$$|\{ S^n 0 | n \in \mathbb{N} \}| > 0$$
$$|\llbracket N \rrbracket| > 0$$

Example 3: $\mathcal{P} = \{\emptyset, \Lambda\}$ Definition 4: $[\![N]\!] \in \mathcal{P}$ We can conclude that $[\![N]\!] = \Lambda$

Contradiction: $\Lambda = \{S^n 0 | n \in \mathbb{N}\}$

Results

The arguments of **Lemma 5** and **Theorem 2** also apply to other data types like lists and trees and even to a finite data type like the booleans. So, induction is not derivable for any data type.

Other results

One more non-derivability result in λ P2, based on our models: **Lemma 6.** There are closed types σ, τ and a relation $R: \sigma \to \tau \to \star$ in λ P2 for which the Axiom of Choice, $(\Pi x: \sigma. \exists y: \tau. Rxy) \to (\exists f: \sigma \to \tau. \Pi x: \sigma. Rx(fx))$, is not derivable.

Explanation.

Assumption: For every element in $x \in \sigma$, there exists an element $y \in \tau$ such that Rxy.

Conclusion: There exists a function $f: \sigma \to \tau$ such that for every element $x \in \sigma$, Rx(fx).

Other results

Lemma 6. There are closed types σ, τ and a relation $R: \sigma \to \tau \to \star$ in $\lambda P2$ for which the Axiom of Choice, $(\Pi x: \sigma. \exists y: \tau. Rxy) \to (\exists f: \sigma \to \tau. \Pi x: \sigma. Rx(fx))$, is not derivable.

Proof.

Step 1: Take $\sigma = \tau = \text{nat}$ and $Rxy := x \neq_{\text{nat}} y$.

Step 2: Consider the simple $\lambda P2$ -model over $\mathbf{A} = \Lambda$.

Step 3: Now $\mathcal{M} \models \Pi x : \sigma . \exists y : \tau . Rxy$, because this is equivalent to (using Lemmas 1 and 4) $\forall t \in \Lambda \exists q \in \Lambda(t \neq_{\beta} q)$.

Step 4: On the other hand, $\mathcal{M} \not\models \exists f : \sigma \to \tau.\Pi x : \sigma.Rx(fx)$, because this is equivalent to the statement $\exists g \in \Lambda \forall t \in \Lambda(gt \neq_{\beta} t)$, which is not possible, because every element of Λ has a fixed point.

Other results

Remark 4. It is in general not the case in $\lambda P2$ that the induction principle for one data type (say the natural numbers) implies the induction principle for another data type (say booleans).

Remark 4 continued

For a counterexample consider the context

$$\Gamma = N : \star, \ 0 : N, \ S : N \to N, \ h : \text{ind} \ _{N,0,S}$$

and the $\lambda P2$ -model $\langle \Lambda(C), \mathcal{P}, N \rangle$, where

$$C = \{ S^n(0) \mid n \in \mathbb{N} \}$$

(so the $S^n(0)$ are considered as constants) and $\mathcal P$ is the polyset structure generated from C.

Now, take valuations ξ and ρ with

$$\xi(N) = C, \qquad \rho(0) = 0, \qquad \rho(S) = S, \qquad \rho(h) = \lambda^* z f x. \, 0.$$

Then $\rho(h) \in \llbracket \operatorname{ind}_{N,0,S} \rrbracket_{\xi,\rho}$:

$$\lambda^* z f x. 0 \in \bigcup_{Q \in C \to P} Q0 \to (\prod_{t \in C} Qt \to Q(St)) \to \prod_{t \in C} Qt,$$

because for $Q \in C \to P$, $Z \in Q0$, $G \in \Pi_{t \in C}(Qt \to Q(St))$ and $t \in C$, we find that $t = S^n(0)$ (by definition of C) and for all $n \in \mathbb{N}$ we have $Q(S^n(0)) \neq \emptyset$ (by induction on n, using Z and G), so $0 \in Qt$.

Remark 4 continued

We conclude that

$$\xi, \rho \models \Gamma.$$

Thus,

$$M, \xi, \rho \models \mathsf{ind}_{N,0,S}$$

On the other hand, for any closed type B (the 'booleans') with closed terms T:B and F:B, we have

$$[\![B]\!] \supsetneq \{\,[F],[T]\,\},$$

so induction over booleans is not valid.

Reminder:

$$\mathcal{P} := \{ \, X \subseteq \Lambda(C) \mid X = \emptyset \ \lor \ C \subseteq X \, \}.$$

Adding induction

One may wonder what happens with the counterexample in the proof of **Theorem 2** if we add induction over natural numbers to $\lambda P2$ as a primitive concept, together with the associated reduction rules.

We extend $\lambda P2$ with a type constant N and term constants 0:N, $S:N\to N$,

$$R: \Pi P: N \to \star. \ (P\ 0) \to (\Pi y: N.\ P\ y \to P(Sy)) \to \Pi x: N.\ P\ x.$$

Furthermore, we add the reduction rules:

$$RPzf0 \rightarrow_r z$$

 $RPzf(Sx) \rightarrow_r fx(RPzfx).$

Adding induction continued

To make a model of this extension of $\lambda P2$ we have to give an interpretation to the constants in such a way that the equality rule for R is preserved. For Λ (that we used in the counter-model of Theorem 2), this can be achieved by adding primitive constants 0, S and R to Λ , with the reduction rules

$$Rzf0 \longrightarrow_r z$$
 and $Rzf(Sx) \longrightarrow_r fx(Rzfx)$.

Let us denote this extension of λ -calculus (it is a weca) by Λ^+ . (So we interpret 0 by 0, S by S and R by R.) Now consider the simple Λ^+ -model determined by the polyset structure $\{\emptyset,\Lambda\}$ and notice that it is not a model of this $\lambda P2$ extension, because $\mathrm{ind}_{N,0,S}$ is empty in this model (so we cannot interpret R).