Realizability Models for Type Theories

By Bernhard Reus (sections 2 and 3.1)

Thijs van de Griendt (s1040379) Marloes Steenbergen (s1053015)

Radboud University

26-11-2025

Structure

- **1** Simply typed λ -calculus
- Goal
- Overview
- Preliminaries
 - PCA (recap)
 - **2** D-Set (morphisms, nabla ∇)
 - Mod_D
 - PER_D
- **1** A D-Set model for simply typed λ -calculus
- Q&A

Simply typed λ -calculus

Recall simply typed λ -calculus consists of:

- ullet Types: $o ext{ } | ext{ } T_{base}$
- Terms: var $\mid \lambda \mid \cdot$

Simply typed λ -calculus

Recall simply typed λ -calculus consists of:

- Types: $\rightarrow \mid T_{base}$
- Terms: var $\mid \lambda \mid$ ·

For the terms, the following rules apply:

• The variable rule (var):

$$\Gamma$$
, x : $A \vdash x$: A

• The abstraction rule (λ) :

$$\frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x : A \cdot t : A \to B}$$

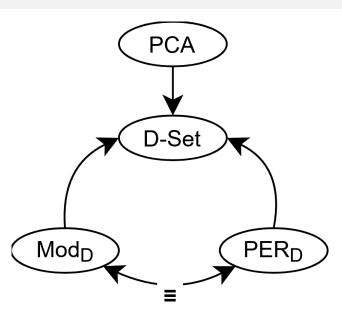
• The application rule (\cdot) :

$$\frac{\Gamma \vdash f : A \to B \qquad \Gamma \vdash t : A}{\Gamma \vdash (f \ t) : B}$$

Goal

• Our goal is to create a model for simply typed λ -calculus using D-Sets.

Overview



Partial combinatory algebra (1)

Recall from the first presentation that:

Definition partial combinatory algebra

A quadruple $\langle D,\cdot,k,s\rangle$ where D is a set and $_\cdot_:D\times D \rightharpoonup D$ a partial application function is called a pca when $k,s\in D$ such that for any $x,y,z\in D$ it holds that:

$$k \cdot x \cdot y = x$$
$$s \cdot x \cdot y \downarrow \land s \cdot x \cdot y \cdot z \simeq (x \cdot z) \cdot (y \cdot z)$$

- $t \downarrow$: t is defined
- t ↑: t is undefined
- $s \simeq t$: $t \downarrow \land s \downarrow \land s = t$ or $t \uparrow \land s \uparrow$

Partial combinatory algebra (2)

- Using k, s and application we can create any function.
- Example: $s \cdot k \cdot k$ is the identity function.

Partial combinatory algebra (2)

- Using k, s and application we can create any function.
- Example: $s \cdot k \cdot k$ is the identity function.

Example lambda calculus

 $k: \lambda xy.x$

 $s: \lambda xyz.(xz)(yz)$

Partial combinatory algebra (2)

- Using k, s and application we can create any function.
- Example: $s \cdot k \cdot k$ is the identity function.

Example lambda calculus

 $k : \lambda xy.x$ $s : \lambda xyz.(xz)(yz)$

- Pca's are combinatory complete.
- This allows us to write expressions like: $\Lambda n.t.$

D-Set (1)

Definition D-Set

Pick any pca for D. A D-set is denoted as (X, \Vdash) , where X is a set and \Vdash a realizability relation $\Vdash \subseteq D \times X$ such that:

$$\forall x : X. \exists d : D.d \Vdash x$$

- $d \Vdash x$ is pronounced "d realizes x".
- Here d is the realizer that realizes entity x.

D-Set (2)

From a programmer's point of view, the realizer is the code that results in a mathematical entity.

Example D-Sets

• D: Any pca

 \bullet $X : \mathbb{N}$

Realizer	Entity
$\Lambda x.x$	0
$\Lambda x.fx$	1
$\Lambda x.f(fx)$	2
$\Lambda x.f^{\circ n}x$	n (n > 0)

D-Set (3)

Definition morphism between D-Sets

A morphism between D-sets $f:(X_1,\Vdash_1)\to (X_2,\Vdash_2)$ is a function $|f|:X_1\to X_2$, such that there exists an $e\in D$ that realizes |f|:

$$\forall x: X_1. \forall d: D.d \Vdash_1 x \implies (e \cdot d) \Vdash_2 |f|(x)$$

and $e \cdot d \downarrow$

D-Set (4)

Example morphism between D-Sets

- Say we have D-Sets: $(\mathbb{N}, \Vdash_{\mathbb{N}})$ and $(\mathbb{B}, \Vdash_{\mathbb{B}})$. We have $d \in D$ and $n \in \mathbb{N}$.
- even is a function from $\mathbb{N} \to \mathbb{B}$.
- There exists a realizer e for even.
- $d \Vdash_{\mathbb{N}} n$
- $e \cdot d \Vdash_{\mathbb{B}} \operatorname{even}(n)$

e · d ↓

Intermezzo: Nabla and D-Sets

Any set can be made into a D-set using the full realizability relation $\nabla:\mathsf{Set}\to\mathsf{D}\mathsf{-Set}.$

Example morphism with ∇

- Say we have D-set $S:(A,\Vdash_S)$ and a set X. We have $d\in D$ and $a\in A$.
- $f: A \to X$ is a morphism between D-Sets A and ∇X .
- There exists a realizer $n \in D$.
- d ⊩_S a
- $n \cdot d \Vdash_{\nabla X} f(a)$

$Mod_D(1)$

Definition modest D-Set

A D-Set (X, \Vdash) is called modest if for any $n \in D$:

$$\forall x, x' : X.n \Vdash x \land n \Vdash x' \implies x = x'$$

The collection of all modest sets is called Mod_D .

$Mod_D(2)$

Clarification modest D-Set

We have D-Set (X, \Vdash) , where $d_1 \in D$ and $x_1, x_2 \in X$.

$$\frac{d_1 \Vdash x_1}{d_1 \Vdash x_2}$$
 then $x_1 = x_2$

So a D-Set is modest, if every realizer realizes a single entity.

$$\Lambda x. f^{\circ n} x \Vdash n$$
 (for $n > 0$)

PER_D (1)

 PER_D stands for partial equivalence relation (per) on realizers in D.

Definition PERD-object

A D-set (X, \Vdash_X) is called a PER_D -object when:

- $X \subseteq \mathcal{P}(D) \setminus \{\emptyset\}$
- $\forall A, B : X.A \neq B \implies A \cap B = \emptyset$
- $d \in A \iff d \Vdash_X A$

- PERD is the set of all PERD-objects.
- Mod_D and PER_D are equivalent.

PER_D (2)

Example PER_D -object

We have a D-Set (X, \Vdash_X) with $x_1, x_2 \in X$ and $D := \{d_1, d_2, d_3\}$. We know that:

$$d_1 \Vdash x_1$$
$$d_2 \Vdash x_2$$
$$d_3 \Vdash x_2$$

- The power set of *D* is:
 - $\{\{d_1\},\{d_2\},\{d_3\},\{d_1,d_2\},\{d_1,d_3\},\{d_2,d_3\},\{d_1,d_2,d_3\}\}$
- So X must be: $\{\{d_1\}, \{d_2, d_3\}\}$

Difference between Mod_D and PER_D

- Mod_D is the collection of all modest D-Sets.
- This collection is incredibly large.
- PER_D is the set of all PER_D -objects.
- Thus, PER_D is more tangible than Mod_D .

Recall that $\lambda \to \text{consists of:}$

- ullet types: $o | \mathsf{T}_{\mathit{base}}$
- ullet terms: var $\mid \lambda \mid \cdot$

Recall that $\lambda \to \text{consists of:}$

- types: $\rightarrow | \mathsf{T}_{base}$
- ullet terms: var $\mid \lambda \mid \cdot$

Now we want to define complete semantics for $\lambda \to \text{in terms of D-sets}$.

Recall that $\lambda \to \text{consists of:}$

- ullet types: $eta \mid \mathsf{T}_{\mathit{base}}$
- ullet terms: var $|\lambda|$ ·

Now we want to define complete semantics for $\lambda \to \text{in terms of D-sets}$.

$$[\![A]\!]$$
 , $[\![B]\!]$ and $[\![A o B]\!]$

Recall that $\lambda \to \text{consists of:}$

- types: $\rightarrow | \mathsf{T}_{base}$
- terms: var $\mid \lambda \mid$ ·

Now we want to define complete semantics for $\lambda \to \text{in terms of D-sets}$.

$$[\![A]\!]$$
 , $[\![B]\!]$ and $[\![A o B]\!]$

var:
$$[x_1 : A_1, ..., x_i : A_i, ..., x_n : A_n \vdash x_i : A_i]$$

Recall that $\lambda \to \text{consists of:}$

- types: $\rightarrow | \mathsf{T}_{base}|$
- terms: var $\mid \lambda \mid$ ·

Now we want to define complete semantics for $\lambda \to \text{in terms of D-sets}$.

•

$$[\![A]\!]$$
 , $[\![B]\!]$ and $[\![A o B]\!]$

•

var:
$$[x_1 : A_1, ..., x_i : A_i, ..., x_n : A_n \vdash x_i : A_i]$$

abs:
$$\left[\frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x : A \cdot t : A \rightarrow B} \right]$$

Recall that $\lambda \to \text{consists of:}$

- types: $\rightarrow | \mathsf{T}_{base}|$
- terms: var $\mid \lambda \mid$ ·

Now we want to define complete semantics for $\lambda \to \text{in terms of D-sets}$.

•

$$\llbracket A \rrbracket \quad , \quad \llbracket B \rrbracket \quad \text{and} \quad \llbracket A \to B \rrbracket$$

•

var:
$$[x_1 : A_1, \dots, x_i : A_i, \dots x_n : A_n \vdash x_i : A_i]$$

•

abs:
$$\left[\frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x : A \cdot t : A \rightarrow B} \right]$$

app:
$$\left[\left[\frac{\Gamma \vdash t_1 : A \to B \qquad \Gamma \vdash t_2 : A}{\Gamma \vdash t_1 \ t_2 : B} \right] \right]$$

How can we define the representation of arbitrary types A and B?

How can we define the representation of arbitrary types A and B?

We take
$$\llbracket A \rrbracket = (A, \vdash_A)$$
 and $\llbracket B \rrbracket = (B, \vdash_B)$

How can we define the representation of arbitrary types A and B?

We take
$$\llbracket \mathsf{A} \rrbracket = (\mathsf{A}, \vdash_{\mathsf{A}})$$
 and $\llbracket \mathsf{B} \rrbracket = (\mathsf{B}, \vdash_{\mathsf{B}})$

Now how can we define $[A \rightarrow B]$?

How can we define the representation of arbitrary types A and B?

We take
$$\llbracket \mathsf{A} \rrbracket = (\mathsf{A}, \vdash_{\mathsf{A}})$$
 and $\llbracket \mathsf{B} \rrbracket = (\mathsf{B}, \vdash_{\mathsf{B}})$

Now how can we define $[A \rightarrow B]$?

We can create a new D-set over the set F of morphisms $(A, \vdash_A) \to (B, \vdash_B)$. . . including the according realisability relations.

$$[\![A \rightarrow B]\!] = (F, \vdash_F)$$

such that $e \vdash_F f$, with $e : D$ and $f : F$

Context and Judgement

Say we want to represent a judgement $\llbracket \Gamma \vdash t : B \rrbracket$ Then we need a way to represent context $\Gamma = x_1 : A_1, \ldots, x_n : A_n$

We can do this by taking Cartesian products:

$$\llbracket \Gamma \rrbracket = \llbracket A_1 \rrbracket * \dots * \llbracket A_n \rrbracket = (A_1 * \dots * A_n, \vdash_1 * \dots * \vdash_n)$$
(here: empty context excluded)

Now we can represent the full judgement $[\![\Gamma \vdash t : B]\!]$ by taking the D-Set over all

Variable Rule

We want to represent the variable rule with D-sets:

$$[[x_1:A_1,\ldots,x_i:A_i,\ldots x_n:A_n\vdash x_i:A_i]]$$

We know how to represent the context and the consequence:

$$\llbracket \Gamma \rrbracket = (A_1 * ... * A_n, \vdash_1 * ... * \vdash_n)$$

$$\llbracket T \rrbracket = (A_i, \vdash_i)$$

We can represent the variable rule as the morphism between these D-sets:

$$[\![\Gamma]\!] \to [\![T]\!]$$

Recall that a morphism between D-sets is a function f and a realiser e that tracks f

$$f = A_1 * \cdots * A_i * \cdots * A_n \rightarrow A_i$$

$$e = \Lambda x.\pi_i x$$

Lambda Abstraction Rule

We want to represent the abstraction rule with D-sets:

$$\left[\frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x : A \cdot t : A \to B} \right]$$

Assume we have $\llbracket \Gamma, x : A \vdash t : B \rrbracket$ Prove that $\llbracket \Gamma \vdash \lambda x : A : t : A \rightarrow B \rrbracket$ follows.

$$\label{eq:linear_continuity} \begin{split} \llbracket t \rrbracket &= \llbracket \Gamma \rrbracket \times \llbracket A \rrbracket \ \longrightarrow \ \llbracket B \rrbracket \\ \llbracket \lambda x. \ t \rrbracket &= \llbracket \Gamma \rrbracket \to (\llbracket A \rrbracket \to \llbracket B \rrbracket) \\ \mathsf{curry} : (X \times A \to B) \to (X \to (A \to B)). \\ \llbracket \lambda x. \ t \rrbracket &= \mathsf{curry}(\llbracket t \rrbracket). \end{split}$$

Application Rule

We want to represent the application rule with D-sets:

app:
$$\left[\frac{\Gamma \vdash t_1 : A \to B \qquad \Gamma \vdash t_2 : A}{\Gamma \vdash t_1 \ t_2 : B} \right]$$

This means that we can assume we have $\llbracket \Gamma \vdash t_1 : A \to B \rrbracket$ and $\llbracket \Gamma \vdash t_2 : A \rrbracket$ We need to prove that from this $\llbracket \Gamma \vdash t_1 \ t_2 : B \rrbracket$ follows.

This has been left as an exercise for the observer.

Different models

"Note that analogously one could obtain a model working with PER_D -objects, modest D-sets, or even just D-sets instead of pers." ¹

¹Reus, B. (1999). Realizability Models for Type Theories. Electronic Notes in Theoretical Computer Science, 23(1), 128–158. https://doi.org/10.1016/s1571-0661(04)00108-2

Q&A

Are there any questions?