An extended calculus of constructions by Zhaohui Luo (sections 7.1 & 7.2)

Teun van Brakel

Institute for Computing and Information Sciences – Software Science Radboud University Nijmegen

3 December 2025

Table of contents

- Goal
- ω-sets
- Morphism of ω -sets
- Type universe
- Interpretation of context, types and terms
- First projection property
- Conclusion

Goal

The goal is to use sets to model the calculus of extended calculus of constructions

(recap / intuition)

- $(|A|, \Vdash_A)$
- Elements of |A| are the *objects* of the set.
- The relation $n \Vdash_A x$ means:

"the code n gives a (computational) representation of x."

ω -sets: definition

ω -set

An ω -set is a pair

$$A = (|A|, \Vdash_A)$$

where |A| is a set (the carrier) and $\Vdash_A \subseteq \omega \times |A|$ is a *realizability relation*.

ω -sets: definition

ω -set

An ω -set is a pair

$$A = (|A|, \Vdash_A)$$

where |A| is a set (the carrier) and $\Vdash_A \subseteq \omega \times |A|$ is a *realizability relation*.

Surjectivity condition

We require:

$$\forall a \in |A|. \exists n \in \omega. n \Vdash_A a.$$

(Every element has at least one realizer.)

ω -sets: Boolean example

Example: Booleans

Let $|A| = \{\text{true}, \text{false}\}\$ and suppose we choose two codes in ω as realizers:

$$\omega \supseteq \{r_{\mathsf{true},r_{\mathsf{false}}\}.}$$

Set

$$r_{\text{true}} \vdash_{A} \text{true}, \qquad r_{\text{false}} \vdash_{\Delta} \text{false}.$$

Then \Vdash_A consists of these pairs (plus any additional pairs allowed).

Morphisms (Recap)

example

suppose we have two sets

 $(\mathbb{N}, \Vdash_{\mathbb{N}})$ and $(\mathbb{B}, \Vdash_{\mathbb{B}})$

If we want to go $\mathbb{N} \to \mathbb{B}$ we could use the function:

 $f: even: \mathbb{N} \to \mathbb{B}$

e: is the implementation of the function such that

if $d \in \mathbb{N}$ & $d \Vdash_{\mathbb{N}} n$ then $ed \Vdash_{\mathbb{B}} even(n)$

Morphisms of ω -sets (definition)

A morphism $f: A \rightarrow B$ consists of:

- **1** A function on carriers $f: |A| \rightarrow |B|$;
- **2** Computable realizer: there exists $e \in \omega$ (a code) such that

$$\forall a \in |A| \ \forall m \in \omega. \quad m \Vdash_A a \Longrightarrow e \cdot m \Vdash_B f(a).$$

(Here $e \cdot m$ denotes Kleene application / partial recursive application.)

• $\mathsf{Prop} \in \mathsf{Type}_0 \in \mathsf{Type}_1 \in \mathsf{Type}_2 \dots$

- $\mathsf{Prop} \in \mathsf{Type}_0 \in \mathsf{Type}_1 \in \mathsf{Type}_2 \dots$
- Prop \subseteq Type₀ \subseteq Type₁ $\subseteq \dots$

- $\mathsf{Prop} \in \mathsf{Type}_0 \in \mathsf{Type}_1 \in \mathsf{Type}_2 \dots$
- Prop \subseteq Type₀ \subseteq Type₁ $\subseteq \dots$
- Each Type; closed under Π and Σ

- $\mathsf{Prop} \in \mathsf{Type}_0 \in \mathsf{Type}_1 \in \mathsf{Type}_2 \dots$
- Prop \subseteq Type₀ \subseteq Type₁ $\subseteq \dots$
- Each Type; closed under Π and Σ
- Prop closed under Π

Empty context

The empty context is interpreted as the trivial ω -set:

$$[\![\langle\rangle]\!](1,\ \omega\times 1)$$

- Carrier $|1| = \{*\}$.
- Every $n \in \omega$ realizes *: $n \Vdash_{\llbracket \langle \rangle \rrbracket} *$.

Types as Γ-indexed families

A type judgment $\Gamma \vdash A : \text{Type}_j$ is interpreted as:

 $\llbracket A \rrbracket : | \llbracket \Gamma \rrbracket | \longrightarrow \omega$ -set.

- For each environment $\gamma \in | \llbracket \Gamma \rrbracket |$, $\llbracket A \rrbracket (\gamma)$ is an ω -set.
- So a type is a family of carriers with realizability relations depending on γ .

Context extention

Sementically

$$\llbracket \Gamma, x : A \rrbracket = \sigma(\llbracket \Gamma \rrbracket, \llbracket A \rrbracket)$$

- $\llbracket A \rrbracket$ is a family $|\llbracket \Gamma \rrbracket| \to \omega set$.
- \bullet σ bundles an environment with a value for the new variable.

The σ -construction (context extension)

Let Γ be an ω -set and $A: |\Gamma| \to \text{be a } \Gamma$ -indexed family. Define:

$$|\sigma(\Gamma, A)|\{(\gamma, a) \mid \gamma \in |\Gamma|, a \in |A(\gamma)|\}.$$

Realizers:

$$\langle m, n \rangle \Vdash_{\sigma(\Gamma, A)} (\gamma, a) \iff m \Vdash_{\Gamma} \gamma \wedge n \Vdash_{A(\gamma)} a.$$

So realizers for a pair are pairs of realizers.

Extention example

Example

Let $\Gamma = (x:Bool)$

Let A(x) = Nat

Then:

$$|\llbracket \Gamma, x : A \rrbracket| = \{(true, n), (false, n) | n \in Nat\}$$

Dependent extension example

Example (dependent)

Let
$$\Gamma = (n : Nat)$$

Let
$$A(n) = Vec(Bool, n)$$

Then:

$$|\llbracket \Gamma, x : A \rrbracket| = \{(n, v) \mid n \in Nat, \ v \in Bool^n\}.$$

Realizers:

- a realizer for n
- a realizer computing a Boolean vector of length n

Terms as morphisms

A term judgment $\Gamma \vdash M : A$ is interpreted as a morphism:

$$\llbracket M \rrbracket : |\llbracket \Gamma \rrbracket | \longrightarrow |\llbracket A \rrbracket |$$

together with a realizer-index e such that for each γ and each $m \Vdash_{\Gamma} \gamma$ we have:

$$e \cdot m \Vdash_{\llbracket A \rrbracket(\gamma)} \llbracket M \rrbracket(\gamma).$$

First Projection Property (FPP)

Definition

A map $f: \Gamma \to \sigma(\Gamma, A)$ satisfies FPP if:

$$\pi_1 \circ f = \mathrm{id}_{\Gamma}$$

and the realizer for $f(\gamma)$ depends only on a realizer for γ .

First Projection Property (FPP)

Definition

A map $f: \Gamma \to \sigma(\Gamma, A)$ satisfies FPP if:

$$\pi_1 \circ f = \mathrm{id}_{\Gamma}$$

and the realizer for $f(\gamma)$ depends only on a realizer for γ .

• FPP guarantees that a term producing an element of the extended context does not change the underlying environment.

First Projection Property (FPP)

Definition

A map $f: \Gamma \to \sigma(\Gamma, A)$ satisfies FPP if:

$$\pi_1 \circ f = \mathrm{id}_\Gamma$$

and the realizer for $f(\gamma)$ depends only on a realizer for γ .

- FPP guarantees that a term producing an element of the extended context does not change the underlying environment.
- It is crucial when interpreting dependent terms as sections of σ .

General interpretation

$$\Gamma \in \omega$$
-Set

$$K: |\Gamma| \to \omega$$
-Set

$$K(\gamma) = (X, \omega \times X) \ \forall \gamma \in |\Gamma|$$

$$n \Vdash_{K(\gamma)} X$$

This means that terms like (Γ, K) are similar to morphisms of $|\Gamma| \to X$

Summary

- ω -sets give a computational semantics for ECC.
- Contexts interpreted as ω -sets via the σ -construction.
- Types become families of ω -sets over contexts.
- Terms become computable morphisms.
- The First Projection Property ensures coherence of context extension.

Table of Contents Goal ω -sets Morphism of ω -sets Valid context Interpretation of types Interpretation Terms First Projection Property (FPP)

Radboud University Nijmegen

Questions

Are there any questions?

