Polymorphism is not set-theoretic (part 2)

Thijs van den Berg, Ties Steijn

19 november 2025

Recap

We defined **B**, a type such that:

- **B** contains no free type variables.
- $B = S^{\#} \mathbf{B}$, the interpretation of \mathbf{B} , has at least 2 elements.

We also defined

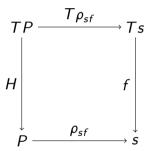
$$\mathbf{P} = \Pi s.(((s \to \mathbf{B}) \to \mathbf{B}) \to s) \to s,$$

$$P = S^{\#}\mathbf{P},$$

$$T(X) = (X \to B) \to B.$$

Recap

Finally, we found a function $H: TP \to P$ such that for any T-algebra (s, f), there is a function $\rho_{sf}: P \to s$ making the following diagram commute:



In other words: ρ_{sf} is a homomorphism of T-algebras.

Remember: we want to show that the initial assumption that there exists a set-theoretic model for $\lambda 2$ leads to a contradiction.

Remember: we want to show that the initial assumption that there exists a set-theoretic model for $\lambda 2$ leads to a contradiction.

Idea: use Lambek's lemma and an initial T-algebra.

Remember: we want to show that the initial assumption that there exists a set-theoretic model for $\lambda 2$ leads to a contradiction.

Idea: use Lambek's lemma and an initial T-algebra.

Problem: (P, H) is not quite an initial T-algebra.

Remember: we want to show that the initial assumption that there exists a set-theoretic model for $\lambda 2$ leads to a contradiction.

Idea: use Lambek's lemma and an initial T-algebra.

Problem: (P, H) is not quite an initial T-algebra.

Solution: Restrict P until ρ_{sf} is unique.

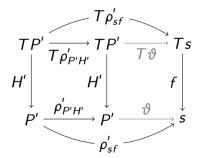
Lemma

If $\lambda 2$ has a set-theoretic model, then there is a T-algebra (P', H') such that for any T-algebra (s, f), there is a homomorphism $\rho'_{sf}: P' \to s$ with the property that any other homomorphism $\vartheta: P' \to s$ satisfies $\rho'_{sf} = \rho'_{P'H'}$; ϑ .

Lemma

If $\lambda 2$ has a set-theoretic model, then there is a T-algebra (P', H') such that for any T-algebra (s, f), there is a homomorphism $\rho'_{sf}: P' \to s$ with the property that any other homomorphism $\vartheta: P' \to s$ satisfies $\rho'_{sf} = \rho'_{P'H'}$; ϑ .

In other words, the following diagram commutes for any $\vartheta':P'\to s$:



Definition (Parametricity)

Definition (Parametricity)

We call $p \in P$ parametric if for any homomorphism α from (s, f) to (t, g) we have $\rho_{tg}(p) = \alpha(\rho_{sf}(p))$.

• This is a weakening of (PAR) in [Reynolds, 1983].

Definition (Parametricity)

- This is a weakening of (PAR) in [Reynolds, 1983].
- Informally: a parametric polymorphic function maps related values to related values.

Definition (Parametricity)

- This is a weakening of (PAR) in [Reynolds, 1983].
- **Informally:** a parametric polymorphic function maps related values to related values.
- **Even more informally:** a parametric polymorphic function cannot do different things for different sets.

Definition (Parametricity)

- This is a weakening of (PAR) in [Reynolds, 1983].
- **Informally:** a parametric polymorphic function maps related values to related values.
- **Even more informally:** a parametric polymorphic function cannot do different things for different sets.
- Example: $p[\sigma](f) = f(\varnothing[\sigma])$.

Definition (Parametricity)

- This is a weakening of (PAR) in [Reynolds, 1983].
- Informally: a parametric polymorphic function maps related values to related values.
- **Even more informally:** a parametric polymorphic function cannot do different things for different sets.
- Example: $p[\sigma](f) = f(\varnothing[\sigma])$.
- Non-example: $p[\sigma](f) = \begin{cases} 0 & \text{if } \sigma = \{0, 1\}, \\ f(\varnothing[\sigma]) & \text{otherwise.} \end{cases}$

- Define $P' = \{ p \in P \mid p \text{ is parametric} \}$.
- Let *J* be the inclusion $P' \rightarrow P$.
- If α is a homomorphism $(s, f) \rightarrow (t, g)$, then

$$J; \rho_{tg} = J; \rho_{sf}; \alpha$$

- Define $P' = \{ p \in P \mid p \text{ is parametric} \}$.
- Let *J* be the inclusion $P' \rightarrow P$.
- If α is a homomorphism $(s, f) \rightarrow (t, g)$, then

$$TJ; T\rho_{tg} = TJ; T\rho_{sf}; T\alpha$$

- Define $P' = \{ p \in P \mid p \text{ is parametric} \}$.
- Let *J* be the inclusion $P' \rightarrow P$.
- If α is a homomorphism $(s, f) \rightarrow (t, g)$, then

$$TJ; T\rho_{tg}; g = TJ; T\rho_{sf}; T\alpha; g$$

- Define $P' = \{ p \in P \mid p \text{ is parametric} \}$.
- Let *J* be the inclusion $P' \rightarrow P$.
- If α is a homomorphism $(s, f) \rightarrow (t, g)$, then

$$TJ; T\rho_{tg}; g = TJ; T\rho_{sf}; f; \alpha$$

Proof.

- Define $P' = \{ p \in P \mid p \text{ is parametric} \}$.
- Let *J* be the inclusion $P' \rightarrow P$.
- If α is a homomorphism $(s, f) \rightarrow (t, g)$, then

$$TJ; T\rho_{tg}; g = TJ; T\rho_{sf}; f; \alpha$$

By Lemma 2, we have:

$$TJ$$
; H ; $\rho_{tg} = TJ$; H ; ρ_{sf} ; α

Proof.

- Define $P' = \{ p \in P \mid p \text{ is parametric} \}$.
- Let *J* be the inclusion $P' \rightarrow P$.
- If α is a homomorphism $(s, f) \rightarrow (t, g)$, then

$$TJ; T\rho_{tg}; g = TJ; T\rho_{sf}; f; \alpha$$

By Lemma 2, we have:

$$TJ$$
; H ; $\rho_{tg} = TJ$; H ; ρ_{sf} ; α

• Thus, H(TJ(h)) is parametric for all $h \in TP'$.

Proof.

- Define $P' = \{ p \in P \mid p \text{ is parametric} \}$.
- Let *J* be the inclusion $P' \rightarrow P$.
- If α is a homomorphism $(s, f) \rightarrow (t, g)$, then

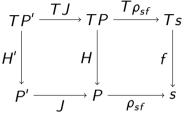
$$TJ; T\rho_{tg}; g = TJ; T\rho_{sf}; f; \alpha$$

By Lemma 2, we have:

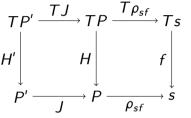
$$TJ$$
; H ; $\rho_{tg} = TJ$; H ; ρ_{sf} ; α

- Thus, H(TJ(h)) is parametric for all $h \in TP'$.
- Define H' as the corestriction of TJ: H.

Now, the following diagram commutes:

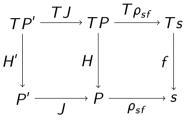


Now, the following diagram commutes:



• Thus, $\rho'_{sf} = J$; ρ_{sf} is a homomorphism.

Now, the following diagram commutes:



- Thus, $\rho'_{sf} = J$; ρ_{sf} is a homomorphism.
- Finally, let $\vartheta: P' \to s$ be another homomorphism.
- All elements $p \in P'$ are parametric, so $\rho'_{sf}(p) = (J; \rho_{sf})(p) = (J; \rho_{P'H'}; \vartheta)(p) = (\rho'_{P'H'}; \vartheta)(p).$

Lemma

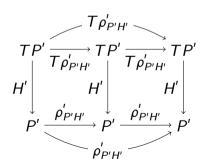
If $\lambda 2$ has a set-theoretic model, then there exists an initial T-algebra (P'', H''), i.e. there is a unique homomorphism $\rho''_{sf}: P'' \to s$ for any T-algebra (s, f).

Lemma

If $\lambda 2$ has a set-theoretic model, then there exists an initial T-algebra (P'', H''), i.e. there is a unique homomorphism $\rho_{sf}'': P'' \to s$ for any T-algebra (s, f).

Proof.

Apply the previous lemma with s = P', f = H', $\vartheta = \rho'_{P'H'}$. Then the following diagram commutes:

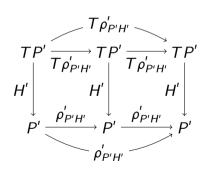


Lemma

If $\lambda 2$ has a set-theoretic model, then there exists an initial T-algebra (P'', H''), i.e. there is a unique homomorphism $\rho_{sf}'': P'' \to s$ for any T-algebra (s, f).

Proof.

Apply the previous lemma with s = P', f = H', $\vartheta = \rho'_{P'H'}$. Then the following diagram commutes:



Conclusion: $\rho'_{P'H'} = \rho'_{P'H'}$; $\rho'_{P'H'}$.

Radboud University (

- Write $\rho'_0 = \rho'_{P'H'}$.
- Define $P'' = \rho'_0[P']$, let $\Gamma: P' \to P''$ be the corestriction of ρ'_0 , and let $K: P'' \to P'$ be the inclusion map.

- Write $\rho'_0 = \rho'_{P'H'}$.
- Define $P'' = \rho'_0[P']$, let $\Gamma: P' \to P''$ be the corestriction of ρ'_0 , and let $K: P'' \to P'$ be the inclusion map.
- Note that Γ ; $K = \rho'_0$, and K; $\Gamma = \mathrm{id}_{P''}$.

- Write $\rho'_0 = \rho'_{P'H'}$.
- Define $P'' = \rho'_0 \lceil P' \rceil$, let $\Gamma : P' \to P''$ be the corestriction of ρ'_0 , and let $K: P'' \to P'$ be the inclusion map.
- Note that Γ ; $K = \rho'_0$, and K; $\Gamma = \mathrm{id}_{P''}$.
- We define $H'':TP'' \rightarrow P''$ as $H''=TK:H':\Gamma$.

- Write $\rho'_0 = \rho'_{P'H'}$.
- Define $P'' = \rho_0'[P']$, let $\Gamma: P' \to P''$ be the corestriction of ρ_0' , and let $K: P'' \to P'$ be the inclusion map.
- Note that Γ ; $K = \rho'_0$, and K; $\Gamma = \mathrm{id}_{P''}$.
- We define $H'':TP''\to P''$ as H''=TK; H'; Γ .

$$H''$$
; $K = TK$; H' ; Γ ; K

- Write $\rho'_0 = \rho'_{P'H'}$.
- Define $P'' = \rho'_0 [P']$, let $\Gamma : P' \to P''$ be the corestriction of ρ'_0 , and let $K: P'' \to P'$ be the inclusion map.
- Note that Γ ; $K = \rho'_0$, and K; $\Gamma = \mathrm{id}_{P''}$.
- We define $H'':TP'' \rightarrow P''$ as H''=TK; H'; Γ .

$$H''$$
; $K = TK$; H' ; Γ ; K
= TK ; H' ; ρ'_0

- Write $\rho'_0 = \rho'_{P'H'}$.
- Define $P'' = \rho_0'[P']$, let $\Gamma: P' \to P''$ be the corestriction of ρ_0' , and let $K: P'' \to P'$ be the inclusion map.
- Note that Γ ; $K = \rho'_0$, and K; $\Gamma = \mathrm{id}_{P''}$.
- We define $H'': TP'' \rightarrow P''$ as H'' = TK; H'; Γ .

$$H''; K = TK; H'; \Gamma; K$$

$$= TK; H'; \rho'_{0}$$

$$= TK; T\rho'_{0}; H'$$

- Write $\rho'_0 = \rho'_{P'H'}$.
- Define $P'' = \rho_0'[P']$, let $\Gamma: P' \to P''$ be the corestriction of ρ_0' , and let $K: P'' \to P'$ be the inclusion map.
- Note that Γ ; $K = \rho'_0$, and K; $\Gamma = \mathrm{id}_{P''}$.
- We define $H'':TP''\to P''$ as H''=TK; H'; Γ .

$$H''; K = TK; H'; \Gamma; K$$

$$= TK; H'; \rho'_{0}$$

$$= TK; T\rho'_{0}; H'$$

$$= TK; T\Gamma; TK; H'$$

- Write $\rho'_0 = \rho'_{P'H'}$.
- Define $P'' = \rho_0'[P']$, let $\Gamma: P' \to P''$ be the corestriction of ρ_0' , and let $K: P'' \to P'$ be the inclusion map.
- Note that Γ ; $K = \rho'_0$, and K; $\Gamma = \mathrm{id}_{P''}$.
- We define $H'':TP''\to P''$ as H''=TK; H'; Γ .

$$H''; K = TK; H'; \Gamma; K$$

$$= TK; H'; \rho'_{0}$$

$$= TK; T\rho'_{0}; H'$$

$$= TK; T\Gamma; TK; H'$$

$$= TK; H'$$

- Write $\rho'_0 = \rho'_{P'H'}$.
- Define $P'' = \rho'_0 [P']$, let $\Gamma : P' \to P''$ be the corestriction of ρ'_0 , and let $K: P'' \to P'$ be the inclusion map.
- Note that Γ ; $K = \rho'_0$, and K; $\Gamma = \mathrm{id}_{P''}$.
- We define $H'':TP'' \rightarrow P''$ as H''=TK; H'; Γ .

```
Then:
H'': K = TK: H': \Gamma: K
       = TK: H': \rho'_0
       = TK; T\rho'_0; H'
       = TK: T\Gamma: TK: H'
       = TK: H'
```

$$H'$$
; $\Gamma = H'$; Γ ; K ; Γ

- Write $\rho'_0 = \rho'_{P'H'}$.
- Define $P'' = \rho'_0 [P']$, let $\Gamma : P' \to P''$ be the corestriction of ρ'_0 , and let $K: P'' \to P'$ be the inclusion map.
- Note that Γ ; $K = \rho'_0$, and K; $\Gamma = \mathrm{id}_{P''}$.
- We define $H'':TP'' \rightarrow P''$ as H''=TK; H'; Γ .

```
Then:
H'': K = TK: H': \Gamma: K
       = TK: H': \rho'_0
       = TK; T\rho'_0; H'
       = TK: T\Gamma: TK: H'
       = TK: H'
```

$$H'; \Gamma = H'; \Gamma; K; \Gamma$$
$$= H'; \rho'_0; \Gamma$$

- Write $\rho'_0 = \rho'_{P'H'}$.
- Define $P'' = \rho'_0 [P']$, let $\Gamma : P' \to P''$ be the corestriction of ρ'_0 , and let $K: P'' \to P'$ be the inclusion map.
- Note that Γ ; $K = \rho'_0$, and K; $\Gamma = \mathrm{id}_{P''}$.
- We define $H'':TP'' \rightarrow P''$ as H''=TK; H'; Γ .

Then: $H'': K = TK: H': \Gamma: K$ $= TK: H': \rho'_0$ $= TK; T\rho'_0; H'$ $= TK: T\Gamma: TK: H'$ = TK: H'

$$H'; \Gamma = H'; \Gamma; K; \Gamma$$

$$= H'; \rho'_0; \Gamma$$

$$= T\rho'_0; H'; \Gamma$$

- Write $\rho'_0 = \rho'_{P'H'}$.
- Define $P'' = \rho'_0 [P']$, let $\Gamma : P' \to P''$ be the corestriction of ρ'_0 , and let $K: P'' \to P'$ be the inclusion map.
- Note that Γ ; $K = \rho'_0$, and K; $\Gamma = \mathrm{id}_{P''}$.
- We define $H'':TP'' \rightarrow P''$ as H''=TK; H'; Γ .

Then: $H'': K = TK: H': \Gamma: K$ $= TK: H': \rho'_0$ $= TK; T\rho'_0; H'$ $= TK: T\Gamma: TK: H'$ = TK: H'

$$H'; \Gamma = H'; \Gamma; K; \Gamma$$

$$= H'; \rho'_0; \Gamma$$

$$= T \rho'_0; H'; \Gamma$$

$$= T \Gamma; T K; H'; \Gamma$$

- Write $\rho'_0 = \rho'_{P'H'}$.
- Define $P'' = \rho'_0[P']$, let $\Gamma : P' \to P''$ be the corestriction of ρ'_0 , and let $K : P'' \to P'$ be the inclusion map.

Radboud University

- Note that Γ ; $K = \rho'_0$, and K; $\Gamma = \mathrm{id}_{P''}$.
- We define $H'': TP'' \rightarrow P''$ as H'' = TK; H'; Γ .

Then: $H''; K = TK; H'; \Gamma; K$ $= TK; H'; \rho'_{0}$ $= TK; T\rho'_{0}; H'$ $= TK; T\Gamma; TK; H'$ = TK; H'

$$H'; \Gamma = H'; \Gamma; K; \Gamma$$

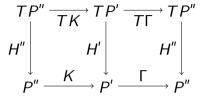
$$= H'; \rho'_0; \Gamma$$

$$= T \rho'_0; H'; \Gamma$$

$$= T \Gamma; T K; H'; \Gamma$$

$$= T \Gamma; H''$$

In summary, the following diagram commutes:



In summary, the following diagram commutes:

$$TP'' \xrightarrow{TK} TP' \xrightarrow{T\Gamma} TP''$$

$$H'' \downarrow \qquad \qquad H' \downarrow \qquad \qquad H'' \downarrow$$

$$P'' \xrightarrow{K} P' \xrightarrow{\Gamma} P''$$

$$H''; \rho_{sf}'' = H''; K; \rho_{sf}'$$

In summary, the following diagram commutes:

$$TP'' \xrightarrow{TK} TP' \xrightarrow{T\Gamma} TP''$$

$$H'' \downarrow \qquad \qquad H' \downarrow \qquad \qquad H'' \downarrow$$

$$P'' \xrightarrow{K} P' \xrightarrow{\Gamma} P''$$

$$H''; \rho''_{sf} = H''; K; \rho'_{sf}$$

= $TK; H'; \rho'_{sf}$

In summary, the following diagram commutes:

$$TP'' \xrightarrow{TK} TP' \xrightarrow{T\Gamma} TP''$$

$$H'' \downarrow \qquad \qquad H' \downarrow \qquad \qquad H'' \downarrow$$

$$P'' \xrightarrow{K} P' \xrightarrow{\Gamma} P''$$

$$H''; \rho''_{sf} = H''; K; \rho'_{sf}$$
$$= TK; H'; \rho'_{sf}$$
$$= TK; T\rho'_{sf}; f$$

In summary, the following diagram commutes:

$$TP'' \xrightarrow{TK} TP' \xrightarrow{T\Gamma} TP''$$

$$H'' \downarrow \qquad \qquad H' \downarrow \qquad \qquad H'' \downarrow$$

$$P'' \xrightarrow{K} P' \xrightarrow{\Gamma} P''$$

$$H''; \rho''_{sf} = H''; K; \rho'_{sf}$$

$$= TK; H'; \rho'_{sf}$$

$$= TK; T\rho'_{sf}; f$$

$$= T\rho''_{sf}; f$$
Radboud University

- Thus, ρ''_{sf} is a homomorphism $(P'', H'') \rightarrow (s, f)$.
- To see that it is unique, let $\vartheta': P'' \to s$ be a homomorphism.

- Thus, ρ''_{sf} is a homomorphism $(P'', H'') \rightarrow (s, f)$.
- To see that it is unique, let $\vartheta':P''\to s$ be a homomorphism.
- Then:

$$H'$$
; Γ ; $\vartheta' = T\Gamma$; H'' ; ϑ'

- Thus, ρ''_{sf} is a homomorphism $(P'', H'') \rightarrow (s, f)$.
- To see that it is unique, let $\vartheta': P'' \to s$ be a homomorphism.
- Then:

$$H'; \Gamma; \vartheta' = T\Gamma; H''; \vartheta'$$

= $T\Gamma; T\vartheta'; f$

- Thus, ρ''_{sf} is a homomorphism $(P'', H'') \rightarrow (s, f)$.
- To see that it is unique, let $\vartheta': P'' \to s$ be a homomorphism.
- Then:

$$H'; \Gamma; \vartheta' = T\Gamma; H''; \vartheta'$$

$$= T\Gamma; T\vartheta'; f$$

$$= T(\Gamma; \vartheta'); f$$

- Thus, ρ''_{sf} is a homomorphism $(P'', H'') \rightarrow (s, f)$.
- To see that it is unique, let $\vartheta': P'' \to s$ be a homomorphism.
- Then:

$$H'; \Gamma; \vartheta' = T\Gamma; H''; \vartheta'$$

$$= T\Gamma; T\vartheta'; f$$

$$= T(\Gamma; \vartheta'); f$$

• So Γ ; ϑ' is a homomorphism $(P', H') \to (s, f)$, which means that $\rho'_{sf} = \rho'_{0}$; Γ ; ϑ' .

Thus we have:

$$\rho_{sf}'' = K; \rho_{sf}'$$

Thus we have:

$$\rho''_{sf} = K; \rho'_{sf}$$
$$= K; \rho'_{0}; \Gamma; \vartheta'$$

Thus we have:

$$\rho''_{sf} = K; \rho'_{sf}$$

$$= K; \rho'_{0}; \Gamma; \vartheta'$$

$$= K; \Gamma; K; \Gamma; \vartheta'$$

Thus we have:

$$\rho''_{sf} = K; \rho'_{sf}$$

$$= K; \rho'_{0}; \Gamma; \vartheta'$$

$$= K; \Gamma; K; \Gamma; \vartheta'$$

$$= \vartheta'$$

QED

Definition (Extensionality)

We say that the parametric polymorphic functions in P' are *extensional* if for all $p, q \in P'$ we have that

$$\forall s \in \mathbf{Set}, \mu_{[\mathbf{p}:\mathbf{P}],\mathbf{W}}[\mathbf{p}[\mathbf{s}]][S \mid \mathbf{s}:s][\mathbf{p}:p] = \mu_{[\mathbf{p}:\mathbf{P}],\mathbf{W}}[\mathbf{p}[\mathbf{s}]][S \mid \mathbf{s}:s][\mathbf{p}:q] \\ \Longrightarrow p = q.$$

Definition (Extensionality)

We say that the parametric polymorphic functions in P' are extensional if for all $p, q \in P'$ we have that

$$\forall s \in \mathbf{Set}, \mu_{[\mathbf{p}:\mathbf{P}],\mathbf{W}}[\mathbf{p}[\mathbf{s}]][S \mid \mathbf{s}:s][\mathbf{p}:p] = \mu_{[\mathbf{p}:\mathbf{P}],\mathbf{W}}[\mathbf{p}[\mathbf{s}]][S \mid \mathbf{s}:s][\mathbf{p}:q]$$

$$\implies p = q.$$

• If we assume that the functions in P' are extensional, then p = q whenever $\rho'_{sf}(p) = \rho'_{sf}(q)$ for all s, f.

Definition (Extensionality)

We say that the parametric polymorphic functions in P' are extensional if for all $p, q \in P'$ we have that

$$\forall s \in \mathbf{Set}, \mu_{[\mathbf{p}:\mathbf{P}],\mathbf{W}}[\mathbf{p}[\mathbf{s}]][S \mid \mathbf{s}:s][\mathbf{p}:p] = \mu_{[\mathbf{p}:\mathbf{P}],\mathbf{W}}[\mathbf{p}[\mathbf{s}]][S \mid \mathbf{s}:s][\mathbf{p}:q] \\ \Longrightarrow \rho = q.$$

- If we assume that the functions in P' are extensional, then p = q whenever $\rho'_{sf}(p) = \rho'_{sf}(q)$ for all s, f.
- But we know that $\rho'_{sf}(p) = \rho'_{sf}(\rho'_0(p))$, so $\rho'_0 = \mathrm{id}_{P'}$.

Definition (Extensionality)

We say that the parametric polymorphic functions in P' are extensional if for all $p, q \in P'$ we have that

$$\forall s \in \mathbf{Set}, \mu_{[\mathbf{p}:\mathbf{P}],\mathbf{W}}[\mathbf{p}[\mathbf{s}]][S \mid \mathbf{s}:s][\mathbf{p}:p] = \mu_{[\mathbf{p}:\mathbf{P}],\mathbf{W}}[\mathbf{p}[\mathbf{s}]][S \mid \mathbf{s}:s][\mathbf{p}:q] \\ \Longrightarrow p = q.$$

- If we assume that the functions in P' are extensional, then p = q whenever $\rho'_{sf}(p) = \rho'_{sf}(q)$ for all s, f.
- But we know that $\rho'_{sf}(p) = \rho'_{sf}(\rho'_0(p))$, so $\rho'_0 = \mathrm{id}_{P'}$.
- This means that the last lemma is trivial under this assumption.

Step 3: Lambek's lemma

Theorem (Lambek's lemma)

Let $F : \mathbf{Set} \to \mathbf{Set}$ be a functor. If (f, X) is an initial F-algebra, then f is a bijection.

Step 3: Lambek's lemma

Theorem (Lambek's lemma)

Let $F : \mathbf{Set} \to \mathbf{Set}$ be a functor. If (f, X) is an initial F-algebra, then f is a bijection.

Proof. By initiality, there is a unique $g: X \to FX$ such that the following diagram commutes:

$$FX \xrightarrow{Fg} F(FX) \xrightarrow{Ff} FX$$

$$f \downarrow \qquad Ff \downarrow \qquad f \downarrow$$

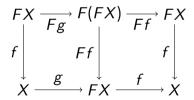
$$X \xrightarrow{g} FX \xrightarrow{f} X$$

Step 3: Lambek's lemma

Theorem (Lambek's lemma)

Let $F : \mathbf{Set} \to \mathbf{Set}$ be a functor. If (f, X) is an initial F-algebra, then f is a bijection.

Proof. By initiality, there is a unique $g: X \to FX$ such that the following diagram commutes:



Since id_X is the unique homomorphism $(X,f)\to (X,f)$, we have $g;f=\mathrm{id}_X$. We also have f;g=Fg;Ff=F(g;f)=F $\mathrm{id}_X=\mathrm{id}_{FX}$, so f is a bijection. **QED**

Conclusion

Theorem (Reynolds)

There is no set-theoretic model of λ 2.

Conclusion

Theorem (Reynolds)

There is no set-theoretic model of λ 2.

Proof. Assume there was such a model. Then the functor $Ts = (s \rightarrow B) \rightarrow B$ has an initial algebra (P'', H'').

Lambek's lemma now implies that $H'': ((P'' \rightarrow B) \rightarrow B) \rightarrow P''$ is a bijection.

This is impossible, since B contains more than 1 element. **QED**

What if we wanted a model anyway?

Since there is no set-theoretic model of $\lambda 2$, we might look for other kinds of models:

What if we wanted a model anyway?

Since there is no set-theoretic model of $\lambda 2$, we might look for other kinds of models:

- Interpret every type as a set with 0 or 1 elements.
 - This is just a model of second-order propositional logic with proof irrelevance.

What if we wanted a model anyway?

Since there is no set-theoretic model of $\lambda 2$, we might look for other kinds of models:

- Interpret every type as a set with 0 or 1 elements.
 - This is just a model of second-order propositional logic with proof irrelevance.
- A model based on some other Cartesian closed category.
 - **Example:** The category of complete partial orders and continuous functions.
 - A model has been constructed in [McCracken, 1979].